Relevance-assisted Generation for Robust Zero-shot Retrieval

DOI

10.18653/v1/2023.emnlp-industry.67

Abstract

Zero-shot retrieval tasks such as the BEIR benchmark reveal out-of-domain generalization as a key weakness of high-performance dense retrievers. As a solution, domain adaptation for dense retrievers has been actively studied. A notable approach is synthesizing domain-specific data, by generating pseudo queries (PQ), for fine-tuning with domain-specific relevance between PQ and documents. Our contribution is showing that key biases can cause sampled PQ to be irrelevant, negatively contributing to generalization. We propose to preempt their generation, by dividing the generation into simpler subtasks, of generating relevance explanations and guiding the generation to avoid negative generalization. Experiment results show that our proposed approach is more robust to domain shifts, validated on challenging BEIR zero-shot retrieval tasks.

Document Type

Article

Publication Date

12-2023

Publisher Statement

ACL materials are Copyright © 1963–2024 ACL; other materials are copyrighted by their respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License. Permission is granted to make copies for the purposes of teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License.

Share

COinS