DOI
10.1039/b922092e
Abstract
ABC transport systems provide selective passage of metabolites across cell membranes and typically require the presence of a soluble binding protein with high specificity to a specific ligand. In addition to their primary role in nutrient gathering, the binding proteins associated with bacterial transport systems have been studied for their potential to serve as design scaffolds for the development of fluorescent protein biosensors. In this work, we used Fourier transform infrared spectroscopy and molecular dynamics simulations to investigate the physicochemical properties of a hyperthermophilic binding protein from Thermotoga maritima. We demonstrated preferential binding for the polar amino acid arginine and experimentally monitored the significant stabilization achieved upon binding of ligand to protein. The effect of temperature, pH, and detergent was also studied to provide a more complete picture of the protein dynamics. A protein structure model was obtained and molecular dynamic experiments were performed to investigate and couple the spectroscope observations with specific secondary structural elements. The data determined the presence of a buried ẞ-sheet providing significant stability to the protein under all conditions investigated. The specific amino acid residues responsible for arginine binding were also identified. Our data on dynamics and stability will contribute to our understanding bacterial binding protein family members and their potential biotechnological applications.
Document Type
Article
Publication Date
2010
Publisher Statement
Copyright © 2010 The Royal Society of Chemistry. This article first appeared in Molecular BioSystems 6 (2010), 687-698.
Please note that downloads of the article are for private/personal use only.
Recommended Citation
Scirè, Andrea, Anna Marabotti, Maria Staiano, Luisa Iozzino, Matthew S. Luchansky, Bryan S. Der, Jonathan D. Dattelbaum, Fabio Tanfani, and Sabato D'auria. "Amino Acid Transport in Thermophiles: Characterization of an Arginine-binding Protein in Thermotoga Maritima. 2. Molecular Organization and Structural Stability." Molecular BioSystems 6, no. 4 (2010): 687. doi:10.1039/b922092e.