Date of Award
4-17-2006
Document Type
Thesis
Degree Name
Bachelor of Arts
Department
Mathematics
First Advisor
Dr. Gary R. Greenfield
Abstract
This thesis considers a variation of the 3x+1, or Collatz, Problem involving a function we call the Conway function. The Conway function is defined by letting C3(n)=2k for n=3k and C3(n)=4k±1 for n=3k±1, where n is an integer. The iterates of this function generate a few 'short' cycles, but the s' tructural dynamics are otherwise unknown. We investigate properties of the Conway function and other related functions. We also discuss the possibility of using the Conway function to generate keys for cryptographic use based on a fast, efficient binary implemenation of the function. Questions related to the conjectured tree-like structure of the 3x+1 Problem and to other decidable tree-like structures are also considered.
Recommended Citation
Givens, Robin M., "On Conway's generalization of the 3x + 1 problem" (2006). Honors Theses. 484.
https://scholarship.richmond.edu/honors-theses/484