Automated Fact-Checking of Claims from Wikipedia


Automated fact checking is becoming increasingly vital as both truthful and fallacious information accumulate online. Research on fact checking has benefited from large-scale datasets such as FEVER and SNLI. However, such datasets suffer from limited applicability due to the synthetic nature of claims and/or evidence written by annotators that differ from real claims and evidence on the internet. To this end, we present WikiFactCheck-English, a dataset of 124k+ triples consisting of a claim, context and an evidence document extracted from English Wikipedia articles and citations, as well as 34k+ manually written claims that are refuted by the evidence documents. This is the largest fact checking dataset consisting of real claims and evidence to date; it will allow the development of fact checking systems that can better process claims and evidence in the real world. We also show that for the NLI subtask, a logistic regression system trained using existing and novel features achieves peak accuracy of 68%, providing a competitive baseline for future work. Also, a decomposable attention model trained on SNLI significantly underperforms the models trained on this dataset, suggesting that models trained on manually generated data may not be sufficiently generalizable or suitable for fact checking real-world claims.

Document Type


Publication Date


Publisher Statement

Copyright © 2020, The Authors, published by European Language Resources Association.

Creative Commons License

ACL materials are Copyright © 1963–2021 ACL; other materials are copyrighted by their respective copyright holders. Materials prior to 2016 here are licensed under the Creative Commons Attribution-NonCommercial-ShareAlike 3.0 International License. Permission is granted to make copies for the purposes of teaching and research. Materials published in or after 2016 are licensed on a Creative Commons Attribution 4.0 International License.