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Project History

This thesis stems from a modeling project whose inception was September 2022. Funded

through April 2023 by the Center of Undergraduate Research in Mathematics and headed by Dr.

Joanna Wares, the project began with a team of students comprising Olivia Barlow (Class of

2023), Connor Gasgarth (Class of 2023), Leah Ghazali (Class of 2024), and myself. During that

time, we developed an ordinary differential equations (ODE) model of the opioid epidemic in

Virginia’s correctional facilities. The focus of the model was to study the relationship between

the size of the addicted population and these facilities’ provision of Medication-Assisted

Treatment (MAT) versus unmedicated treatment for opioid use disorder. For the resulting paper,

we were awarded the Symposium Paper Competition Award at the Honors Convocation here at

the University of Richmond.

From May 2023 onwards, the project pivoted to modeling the impacts of MAT and

non-MAT for the general population of Virginia. Headed again by Dr. Joanna Wares, the team of

contributors included Leah Ghazali (Class of 2024), Muskan Agarwal (Class of 2026), Gabe

Greenberg (Class of 2025), and myself. For this work, we developed a new model that does not

include compartments for the incarcerated populations. This ODE model simplified the original

incarceration model, leading to the latter’s separation into its own sub-project. I present below

the analysis of the simplified model, including a conduction of sensitivity analysis to identify

parameters that most affect model outcomes. In addition, I present results about policy and

intervention effects on the opioid crisis.

1. Abstract



The opioid epidemic is prevalent in countless communities throughout the United States

and has yet to be mitigated. Treatments for OUD (opioid use disorder) include

Medication-Assisted Treatment (MAT) and treatment without medication (non-MAT), with the

former being judged as more effective in terms of lower relapse rates, death rates, and criminal

activity (U.S. Food & Drug Administration, 2023; SAMHSA, 2024). Motivated by the promising

research on MAT, this paper models the relationship between the treatment and addicted

populations using a system of ordinary differential equations. In addition to producing

closed-form equilibrium solutions, the model leads to the conclusion that expanding access to

MAT, while important for decreasing the addicted population, is not a sufficient policy measure

in isolation. Instead, policymakers should endeavor to increase access to all forms of treatment.

Furthermore, varying the rate of addiction to prescription opioids causes significantly different

equilibrium populations, indicating that the prescription of opioids requires further monitoring.

2. Introduction

The U.S. opioid epidemic has its roots in the 1990s, a decade that saw a significant

increase in opioid prescriptions (CDC, 2023). Since then, through opioids both legally prescribed

and illicitly acquired, the epidemic has continued to cause thousands of overdose deaths every

year (NIDA, 2023). Although prescriptions may have become less important as a driver of mass

overdose deaths in recent years, with Medicaid opioid prescriptions to treat pain falling by 44%

between 2016 and 2019 (Williams & Saunders, 2023), overdose deaths rose by 38% between

2019 and 2020. This recent wave of deaths is largely attributed to the increase in usage of

synthetic opioids such as illegally produced fentanyl. Moreover, putting these deaths in a broader

context, the Centers for Disease Control and Prevention reports that opioids accounted for 70%



of the 70,630 overdose deaths in 2019 (CDC, 2023). The opioid epidemic is thus a national

health concern that requires meaningful attention from policymakers.

When addressing concerns about substance use disorders (SUDs), the first consideration

is treatment. Individuals with OUD may receive treatment from two categories:

Medication-Assisted Treatment (MAT) and unmedicated treatment (non-MAT), with the former

not precluding the use of the latter. Non-MAT includes strategies such as withdrawal

management, psychotherapies, and community-based treatments (Carley & Oesterle, 2021),

while drug choices for MAT include three FDA-approved medications: buprenorphine,

methadone, and naltrexone (Carroll, 2022). Buprenorphine and methadone, respectively a partial

opioid and an opioid, regulate withdrawal symptoms such as vomiting and diarrhea while

reducing cravings. A comparative benefit of these medications is their link to lower overdose

death rates than naltrexone, which acts as an opioid blocker.

All three drugs, having received attention as a strategy to treat OUD, have increasingly

become the subject of treatment literature. Importantly, some of the literature supports the

potential of MAT, citing reduced risk of overdose death, reduced opioid use, and greater

treatment retention (Pew Trusts, 2020). However, only 51% of treatment facilities surveyed in

2020 by the Substance Abuse and Mental Health Services Administration offered any type of

MAT for individuals with OUD (SAMHSA, 2021). This indicates a significant barrier to

effective relief for individuals who already struggle to receive any form of treatment, with

treatment rates reported to be as low as 25% (Saunders & Panchal, 2023). Consequently,

acknowledging the severity of the opioid epidemic and the effectiveness of MAT, one is likely to

suggest that access to MAT be expanded. The fruitfulness of this solution, in addition to the

proposal of increasing the general treatment rate, is central to this paper.



Prior to the creation of our model, a search for similar models revealed little

mathematical modeling research on the opioid epidemic in relation to MAT. This is not to allege

a complete lack of scholarly attention to epidemic– Butler (2020), similarly to our MAT model,

uses the Ordinary Differential Equations (ODE) framework to model heroin and pharmaceutical

opioid abuse in Maine; Phillips et al. (2021) present an ODE model of heroin and fentanyl

addiction in Tennessee; Chen et al. (2019) use a system dynamics model to simulate nonmedical

opioid use in the United States; Cole and Wirkus (2022) model illicit opioid and heroin use; and

Rivas et al. (2021) build an ODE model accounting for addiction to four different opioids. Other

methods include statistical analysis on survey data (Dickson-Gomez et al., 2022) and ARIMA

modeling (Fakhrabad et al., 2023). Notably, however, none of these works contain ODE

modeling specific to the use of MAT, or the use of MAT in the United States–both fundamental

features of our model.

Addressing this scarcity of MAT-related modeling research, we use a system of ordinary

differential equations inspired by Battista et al.’s (2019) prescription epidemic model to explore

interactions between susceptible individuals, individuals with OUD, and the treatment system.

We explore the feasibility of MAT as a solution to the opioid epidemic and account for several

addiction- and treatment-related parameters in the model’s construction.

3. Mathematical Methods: Ordinary Differential Equations

Systems of ordinary differential equations (ODEs) are frequently used in epidemic

modeling, whether it be to model physical viral transmission–see, for example, Beira and

Sebastião’s (2021) model of COVID-19 transmission–or epidemics with non-physical

transmission. An example of the latter is the ODE model of the prescription opioid epidemic



built by Battista et al. (2019), an analog to the Susceptible-Infectious-Removed (SIR) model. In

their system of ODEs, susceptible individuals have either not interacted with opioids or are

prescribed opioids without being addicted to them; addiction, in this case, is the “illness,” and

those who are addicted are the “infectious” population. Moreover, transmission is defined as the

addiction rate through contact with other addicted people. The framework of ODEs is thus useful

when the subject of interest involves the concept of spread, and the model presented in this thesis

draws on the work of Battista et al. to study the spread of opioid use disorder (OUD) and

methods of abatement. This system of ODEs enables the study of how opioid addiction spreads

throughout the population of Virginia and the way in which addicted individuals cycle through

treatment.

4. Model Populations



Fig. 1: Compartmental diagram. Movements between compartments are indicated by directional arrows with all

parameters named except for the natural and overdose death rates.

The base MAT model (see Figure 2) is built on four populations:

1. (“susceptible”): Individuals in the susceptible population are neither actively addicted

with nor in treatment for an OUD. They may become addicted to opioids through

prescriptions at a rate or other illicit means at a rate . Here, is the rate that a

susceptible person becomes addicted through some kind of contact with an addicted

person or their drugs, here modeled as a mass action term.

2. (“addicted”): This population represents individuals with an OUD who are not in any

type of treatment program. Addicted individuals may opt for MAT or non-MAT at rates

and , respectively. The two remaining exit routes from A are opioid overdose,

denoted by the rate , and death by natural causes, denoted by . Notably, there is no

direct route to the S-population; this reflects a base assumption that Tn includes

individuals who stop using opioids but are still prone to relapsing at a higher rate, and

individuals from the A-population, who can move from Tn to the S-population after some

time.

3. (“MAT”): Those in the MAT population are currently receiving MAT for their OUD.

Members of this population may die of natural causes at a rate , relapse into addiction

and return to the A-population at a fixed rate , or recover and return to the

S-population at .

4. (“non-MAT”): Those in the non-MAT population are currently enrolled in treatment

programs that do not utilize medication or have stopped taking opioids on their own,

likely with the social support of family or friends. As in the Tm-population, there are three
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routes of exit: death by natural causes at , relapse back into the A-population at a fixed

rate , and recovery at the rate .

To simplify the the model, we assumed that the population is conserved such that

. We additionally assumed that people in treatment were not taking

opioids and therefore would not overdose, therefore assigning solely to the A-population. .

Fig. 2: Model equations.

3. Parameters

Table 1: Parameter descriptions and assigned values. Citations included where applicable.

https://www.codecogs.com/eqnedit.php?latex=%5Cmu#0
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Here we explain our baseline parameter values (Table1).

1. : Derived from Battista et. al (2019), this is the rate of addiction that occurs in

proportion with the A-population. is a mass action term that reflects pathways to

addiction other than through prescription, and it may include theft of prescription opioids,

purchases from street dealers, and other illicit means of drug acquisition.

2. : The rate at which individuals become addicted to their own prescribed opioids,

derived from prescription and prescription-based addiction rates provided again by

Battista et al. (2019).

3. : The rate at which individuals receive MAT once addicted, taken from a differential

equations study of the opioid epidemic in Philadelphia (Wares et al., 2021).

4. : The rate at which individuals receive non-MAT once addicted, provided by the same

source for .

5. : The rate at which individuals successfully complete MAT without relapsing. This was

approximated by running the model with varying values of and choosing the value

which most closely resembled base model populations provided by SAMHSA (2019).

6. : The rate at which individuals successfully complete non-MAT without relapsing. The

same numerical experiments were run to determine the value for as .

7. : The rate at which individuals relapse from MAT and restart the misuse of opioids. In

the absence of comprehensive OUD relapse data, is approximated as 0.5. This is

loosely justified by estimates of long-term relapse rates being estimated between 22-62%

(NIDA, 2021).
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8. : The rate at which individuals relapse from non-MAT. As with , this parameter is

justified by past studies reporting relapse rates ranging widely between 38-90% (NIDA,

2021).

9. : The rate of natural death, taken from Battista et al. (2019).

10. : The rate of death of individuals with OUD. To calculate this, an overdose rate was

estimated using data provided by the Virginia Department of Health (2023) and added to

.

5. Results

5.1. Existence, Uniqueness, and Positivity of Solutions

5.1.1. Solutions to Initial Value Problems Exist and are Unique

The right hand side of the system of differential equations is continuously differentiable

in terms of all dependent variables. Because of this, we know from the existence and uniqueness

theorem, that every initial value problem for our system will have a solution and that the solution

will be unique over some maximal time interval (Perko, 2001). Since our population

compartments are bounded between 0 and 1 (we know they are all positive (see 5.1.2) and that

they sum to unity), then we know that the right hand side of our system of differential equations

(Fig 2) is globally Lipschitz (all partial derivatives are bounded) and solutions exist and are

unique for all time.

5.1.2. Solutions Remain Nonnegative

Our system of differential equations is conserved, with all flows out of any compartment

entering another compartment, and with the total population proportions adding to unity. We

https://www.codecogs.com/eqnedit.php?latex=%5Clambda_2#0
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assume that all compartment proportions begin positive, since they represent real populations

that are nonzero.

We also know that solutions cannot become negative if they begin positive. Observing

the right hand side of our system, if at any time one of the compartments becomes zero (which it

would have to become before it becomes negative because solutions are continuous), we see that

the corresponding derivative will be nonnegative. Therefore, no solution that begins positive can

become negative.

5.1.3. Equilibria

Using Mathematica (Wolfram Research, Inc., 2024), we were able to find closed-form

equilibrium solutions. Solving the system of ODEs resulted in two closed-form equilibria (see

Appendix). As one solution was proven to produce at least one negative population value when

parameters are positive (see Appendix), it was discarded. We prove below that the remaining

equilibrium solution, in contrast, is always positive if the parameters are positive (which they are

by realistic assumption). We then used this equilibrium to measure the model’s response to

varying parameters.

5.1.4 Baseline Results

While we did not have time to prove that the equilibrium solution is asymptotically

stable, we ran a battery of experiments with different initial conditions in R, and all solutions

tended toward the closed-form positive equilibrium solution for that set of parameter values.

As an example, using initial populations estimated from Virginia drug abuse data

(SAMHSA, 2020), running the model equations through an ODE solver in R (Soetaert et al.,



2010) with the default parameter values resulted in populations that closely resemble the

closed-form equilibrium solution S ≅ 0.98298, A ≅ 0.01375, Tm ≅ 0.00133, and Tn ≅ 0.00193

(Fig. 3). All numerical experiments which used numerical approximation in R, rather than the

closed-form solutions, similarly approached closed-form equilibria over time.

Fig. 3: Populations resulting from running the model with default parameters over a period of 200 years.

5.2. Experiments: Varying Parameters

Below, experiments are run to see the effects of different interventions on the opioid

crisis. In each case, the independent variable is a particular parameter that could affect policies or

interventions and the output is equilibria values for that set of parameters (the baseline

parameters except for the one or more that is varied).



5.2.1. Varying Treatment Rates

In this experiment, we vary the total rate that people in the A compartment seek

treatment, which keeps the proportion of those going to MAT or non-MAT constant. Fig. 4 shows

the outcome on the long-term A- and T-populations when the total treatment rate increases, with

the proportion of individuals going to MAT remaining the same. As more individuals are sent to

treatment in general, the ending A-population decreases. Additionally, there is the intuitive result

that more individuals enter treatment.

Fig. 4: End populations resulting from increasing the total treatment rate while fixing the proportion of individuals

going to MAT vs. non-MAT. Note that this is accompanied by a decrease in the ending S-populations.

To further analyze the impact of treatment, the proportion of individuals with OUD going

to MAT was varied with the total rate of treatment being held constant (Fig. 5). Importantly, the



direction of the relationship between MAT and the ending A-population is negative; the higher

the rate of going to MAT, the lower the ending addicted population. Increasing the availability of

MAT may therefore reduce the population of individuals diagnosed with OUD. However,

because relapse rates are still quite high at baseline for those receiving MAT (see Table 1), this

reduction is not large. For this experiment, the A-population decreased from 0.01129 to 0.01018.

Fig. 5: End populations resulting from diverting more individuals to MAT with a fixed total treatment rate. Not

depicted is the decrease in the S-population over time.

Combining the previous experiments, a simulation was run that both increased the

general treatment rate and sent more individuals to non-MAT. From this, we observed that

increasing the general treatment rate has a greater impact on mitigating the epidemic, i.e.

decreasing the A-population, when individuals are sent to MAT rather than its counterpart.

However, as Fig. 6 shows, the difference made by sending more individuals to MAT is negligible



at lower levels of total treatment. The greatest change in the A-population instead comes from

increasing the total treatment rate; the implications of this result are discussed in the conclusion

of this paper.

Fig. 6: Ending A-populations resulting from sending more individuals with OUD to treatment, but diverting them

away from MAT to non-MAT.

5.2.2. Varying Addiction Rates

Turning to rates of addiction, Fig. 7 and Fig. 8 demonstrate the impacts of increasing the

values of two parameters: addiction via contact, and addiction through one’s own prescription(s).

Varying them over the same range, we make three main observations. First, the ending A- and

T-populations increase over the range of values; second, at high values of and , the

A-population curve is approximately concave; and third, while the overall trajectory of the

populations is the same in both experiments, differs from in that its short-term variations

https://www.codecogs.com/eqnedit.php?latex=%5Cbeta#0
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yield convex A- and T-curves. In other words, increasing the values of both parameters

eventually raises the A- and T-populations at a decreasing rate, but variations in demonstrate

more consistently concave behavior than variations in .

Fig. 7: Ending populations resulting from increasing the rate of addiction via contact. Not depicted is the decrease in

the ending S-populations.

https://www.codecogs.com/eqnedit.php?latex=p#0
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Fig. 8: Ending populations resulting from increasing the rate of addiction via contact. Not depicted is the decrease in

the ending S-populations.

5.2.3. Varying Relapse Rates

Finally, we turn towards the success and relapse rates of both treatment options. Fig. 9

shows the difference in results when the recovery rate of MAT is varied versus when the

recovery rate of non-MAT is varied. This difference is relatively subtle, with the end population

curves being similarly shaped (convex) but yielding smaller A-populations when non-MAT is

more effective. However, this may stem from the base values of and ; with more

individuals receiving non-MAT for OUD, it is intuitive that the success of the more commonly

used treatment would cause greater population differences. and ; with more individuals

receiving non-MAT for OUD, it is intuitive that the success of the more commonly used

treatment would cause greater population differences.

https://www.codecogs.com/eqnedit.php?latex=%5Calpha_1#0
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Fig. 9: Populations resulting from increasing the success rates of MAT and non-MAT, respectively. Not depicted in

either graph is the increase in the ending S-populations.

Unlike and , the relapse rates of MAT and non-MAT affect model outcomes in

significantly different ways (Fig. 10). When the relapse rate of MAT increases, the ending

A-population increases with greater magnitude than when the relapse rate of non-MAT increases.

The A-population in the latter simulation remains lower at every value in the chosen range.

Moreover, increasing each relapse rate results in greater populations of individuals in their

associated treatments. Explained differently, this means that higher MAT relapse leads to more

people entering MAT, while higher non-MAT relapse leads to more people entering non-MAT.

The reasons behind this difference require further analysis.

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta_1#0
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Fig. 10: Populations resulting from increasing the relapse rates of MAT and non-MAT, respectively. Not depicted in

either graph is the increase in the S-populations.

6. Sobol Sensitivity Analysis

To measure the model’s sensitivity to different parameters, Sobol’s method of sensitivity

analysis was performed using R (Puy et al., 2022) . First-order indices produced by this method

formally quantify the impact of each parameter by its associated variation in model outcomes;

the greater the first-order index value, the greater the change in populations when the parameter

is varied. For this process to be carried out, numerous experiments were run to record parameters

values that kept the A-population under 5%. These values created justifiable ranges on which

Sobol’s method was conducted (Table 2).



Table 2: Parameter ranges chosen for Sobol sensitivity analysis.

Preliminary results of applying Sobol’s method are shown in Fig. 11. Denoted by Si, the

first-order indices are the greatest for and . Following these parameters closely are and

. This has several implications within the universe of this model. and . Following these

parameters closely are and . This has several implications within the universe of this

model.

We first recall that is negatively associated with the ending A-population (Fig. 5).

This means that, by its first-order value, increasing the rate of MAT not only results in fewer

individuals diagnosed with OUD, but outweighs the impact that greater non-MAT reception has

on increasing the addicted population. is negatively associated with the ending A-population

(Fig. 5). This means that, by its first-order value, increasing the rate of MAT not only results in

fewer individuals diagnosed with OUD, but outweighs the impact that greater non-MAT

reception has on increasing the addicted population.
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Secondly, non-MAT relapse has a greater effect on the model than MAT relapse. This

indicates that if the former relapse rate falls, then the ending A-population will fall by a greater

magnitude.

Thirdly, the model is more sensitive to than . Consequently, increasing the success

rate of non-MAT would more significantly change the A-population than if MAT were to become

more effective. than . Consequently, increasing the success rate of non-MAT would more

significantly change the A-population than if MAT were to become more effective.

Fourthly, we observe that creates greater model variation than , its counterpart

addiction rate. This suggests that higher rates of addiction to prescription opioids would increase

the ending A-population more than addiction to illicitly sourced opioids. This, too, is an intuitive

result due to being an interaction term between the S-population and the smaller A-population.

creates greater model variation than , its counterpart addiction rate. This suggests that higher

rates of addiction to prescription opioids would increase the ending A-population more than

addiction to illicitly sourced opioids. This, too, is an intuitive result due to being an interaction

term between the S-population and the smaller A-population.

Lastly, changes in the death rate of individuals with OUD causes greater population

variation than changes in the natural death rate.

https://www.codecogs.com/eqnedit.php?latex=%5Ctheta_2#0
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Fig 11: First-order indices of model parameters over 786,432 experiments.

7. Conclusion

Our analysis of the model produced several intuitive results–such as the higher the

addiction rates, the higher the ending A-populations; the higher the A-population death rate, the

lower the ending A-population. However, multiple experiments produced results worthy of

further analysis.

For movement in and out of the T-populations, we observe that sending more individuals

seeking OUD treatment to non-MAT than MAT consistently ends in higher A-populations.

Moreover, increasing the non-MAT relapse rate yields lower A-populations than when fewer

people relapse from MAT, and greater non-MAT success results in fewer cases of addiction than

greater MAT success. Sensitivity analysis using Sobol’s method provides the additional

information that the rate of going to MAT causes greater variation in the ending A-population,



the relapse rate of non-MAT is more impactful than the relapse rate of MAT, and and the success

rate of non-MAT causes greater model variation than the success rate of MAT.

When analyzed in combination, these results may suggest the importance of MAT in the

opioid epidemic. Although the success of non-MAT appears to have a greater effect on model

outcomes, the processes that produced this result used the default treatment parameters

and . To repeat a previous statement, this outcome may then be attributed to

far fewer individuals receiving MAT for OUD than non-MAT, rather than the former’s

insignificance as a treatment measure. This reasoning may additionally explain the model’s

greater sensitivity to non-MAT relapse rates. and . To repeat a previous

statement, this outcome may then be attributed to far fewer individuals receiving MAT for OUD

than non-MAT, rather than the former’s insignificance as a treatment measure. This reasoning

may additionally explain the model’s greater sensitivity to non-MAT relapse rates.

However, Fig. 6 opposes MAT expansion as a sole policy measure. Although the

A-population decreases when more people receive this treatment, this reduction is less impactful

when the overall treatment rate is low. Therefore, policymakers should consider ensuring access

to treatment in general rather than focus entirely on making MAT more available. This could

involve subsidizing treatment costs for clients, advertising and funding existing treatment

centers, disseminating information about OUD for those who may not realize they are struggling

with a treatable disorder, and related measures.

In addition to improving the accessibility of treatment, policymakers may observe the

model’s high sensitivity to and determine interventions surrounding prescription opioids. This

may include restricting the prescription of opioids to cases in which there is no suitable–and

non-addictive–alternative, or more careful checks on patient compliance. The latter suggestion is

https://www.codecogs.com/eqnedit.php?latex=%5Calpha_1%20%3D%200.05#0
https://www.codecogs.com/eqnedit.php?latex=%5Calpha_2%20%3D%200.1#0
https://www.codecogs.com/eqnedit.php?latex=p#0


broad and may involve pill-counting, frequent checks of pharmacy records, and similar measures

to ensure that clients do not attempt to request more prescriptions than are medically necessary.

and determine interventions surrounding prescription opioids.

Finally, based solely on Sobol’s first indices, the death rate of individuals with OUD

causes greater variation in model outcomes than the natural death rate. While this could support

the suggestion to mitigate the risk of overdose death, it is accompanied by uncertainty that is

described in the next section.

In summary, examining the model under different parameter conditions leads to two

policy suggestions: expanding access to treatment, and regulating the use of prescription opioids.

While the latter suggestion has its own complexities, the nuance of increasing treatment

opportunities is particularly relevant to the motivation of this paper; spending resources

exclusively on expanding access to MAT is unlikely to be the best method to reduce addiction

unless more individuals have access to treatment in general. For example, introducing

medication to all existing non-MAT programs would not lessen the severity of the epidemic to a

satisfactory degree. These programs, along with all currently available treatments, must be made

accessible to those diagnosed with OUD.

8. Discussion and Limitations

The model presented in this paper is limited in predictive ability by a number of factors.

Firstly, there is a scarcity of data on several parameters. This severely impacts the accuracy of

the model’s population outcomes. Further limiting accuracy is that some parameter values were

approximated based on model experiments alone, and it is difficult to verify their accuracy due to

a lack of verifiable benchmarks.



In addition to lacking quality data, the model is limited by its simplifying assumptions.

For example, we assume that individuals do not have access to opioids while in treatment and

therefore cannot die of overdose unless they are untreated; one may argue that this is too

far-reaching of an assumption, as patients in treatment may gain access to opioids from a variety

of illicit sources. This may particularly be true for treatment that does not require the patient to

stay at a treatment facility.

Furthermore, the model ignores the issue of intersectionality. As it assumes a

homogenous population, it is absent of race as an identifier. This is incompatible with the reality

that Black communities are less likely to receive prescriptions for opioids and more likely to

experience overdose deaths (Gondré-Lewis et al. 2022). The model additionally does not

distinguish between genders, and it is reported that at least 75% of individuals with OUD in 2022

were white men (Davis 2022). Therefore, without explicitly accounting for the epidemic’s

unequally distributed consequences, the model cannot provide a comprehensive analysis of it.

Rather than serving to predict outcomes for addicted populations, then, it is a preliminary

exploration of the role that MAT may play in the epidemic. It is our hope that it will encourage

further scholarship on MAT that is not only intersectional, but accounts for the effects of

overdose in treatment and other variables that would support sound policy recommendations.

9. Appendix

9.1. Closed-Form Equilibria

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9447354/#:~:text=Ethnicity%2Dwise%2C%20Black%20OOD%20rates,COVID%2D19%20pandemic%20in%202020.
https://www.webmd.com/mental-health/addiction/opioid-use-statistics


Fig. 12: Positive closed-form equilibria. Variables ‘a’ and ‘b’ correspond to parameter subscripts ‘1’ and ‘2’.

Fig. 13: Closed-form equilibria containing at least one negative population.

9.2. Proof of Positive Compartments in Chosen Equilibrium

9.2.1. Theorem: The equilibrium from the equations seen in Fig. 12 is positive for all parameter

sets.

Proof:

For : Let

https://www.codecogs.com/eqnedit.php?latex=%5Ctextbf%7BS%7D#0


Consequently, Moreover, since we assume that

all parameters are positive, it is true that

so

Therefore, S will always be positive.

For : Let redefine and as follows:

Then
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Consequently, we have that

so

Since will be negative. It

then follows that will be positive. As a result, will be

positive.

For : Next, we move on to and break its formula into several parts.

Then . For to be positive, we must ensure that To do

this, we observe the first component of , . We also observe the addition of several
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positive parameters, which we will wrap in the expression . Then , and

because , we know that because

Therefore, and is positive.

For : Finally, we prove that is positive. Let us define the following expressions:

Next, let

. Then

Consequently, as will be

negative. It then follows that will be positive. Hence

will be positive.

Now, as we have proven that , we conclude that
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9.3. Proof of Negative Compartment in Second Equilibrium

9.2.1. Theorem: The equilibrium equation for seen in Fig. 13 is negative when parameter

values are positive.

Proof:

In the second equilibrium, we have a negative sign ahead of the equation for .

Additionally, all terms in the equation are positive except for . Let us define

the following expressions:

,

,

.

Then we have

,

so

,

which means that

.
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This will result in a positive term being multiplied by the negative at the beginning of the

equilibrium equation for . Consequently, any A-population produced by this closed-form

solution will be negative, and so the solution may be discarded.
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