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1 Introduction

Partial difference sets are algebraic objects that lie at the intersection of algebra, com-
binatorics, geometry, graph theory, and coding theory. In addition to being a natural
way to explore the connections between these fundamental areas of discrete mathemat-
ics, partial difference sets have many useful applications. The properties of difference
sets are useful in constructing and understanding error correcting codes, which are of
fundamental importance to any kind of reliable, long range digital communication as well
as to the storage of such data. (For example, error correcting codes are used in satellite
communications, video streaming, and encoding data onto CDs). Other uses include pre-
cise alignment of physical objects and providing a way to measure radar distances with
high levels of precision [1, 5].

Furthermore, each partial difference set immediately provides a construction of a
strongly regular graph. Since strongly regular graphs are some of the most symmetric
graphs that can be constructed, they have very simple adjacency matrices. For this rea-
son, they are of great interest in the widely studied field of graph theory [9]. Furthermore,
strongly regular graphs are useful objects for constructing and understanding association
schemes, which are a generalization of error correcting codes [6].

Despite their importance, many questions remain about partial difference sets. While
some constructions are known, many partial difference sets (particularly those in non-
abelian groups) have been found only through computer search. A deeper understanding
of the nature of these objects is a rich problem with application to several branches of
mathematics.

In this work, we investigate the structure of particular partial difference sets (PDS)
of size 70 with Denniston parameters in an elementary abelian group and in a non-
elementary abelian group. We will make extensive use of character theory in our in-
vestigation and ultimately seek to understand the nature of difference sets with these
parameters. To begin, we will cover some basic definitions and examples of difference
sets and partial difference sets. We will then move on to some basic theorems about
partial difference sets before introducing a group ring formalism and using it to explore
several important constructions of partial difference sets. Finally, we will conclude our
introduction by developing the character theory that we will exploit to understand our
partial difference sets.

1.1 Basic Definitions

We begin our discussion by defining a difference set. These objects are closely related to
partial difference sets, but are somewhat simpler to understand.

Definition 1.1 (Difference Set). A (v, k, λ) difference set D is a subset of a group G of or-
der such that |G| = v, |D| = k, and the multiset of pairwise differences
∆ = {d1 − d2 d1, d2 ∈ D, d1 ̸= d2} contains every nonidentity element of G exactly
λ times.

Example 1.1. Consider the group G = Z7 and the subset D = {1, 2, 4}. Notice that
1−2 = 6, 1−4 = 4, 2−1 = 1, 2−4 = 5, 4−1 = 3, 4−2 = 2. Therefore ∆ = {1, 2, 3, 4, 5, 6},
so D is a (7, 3, 1) difference set in Z7.

Example 1.2. Consider the group G = Z4
2 and the subset
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D = {(0, 0, 1, 1), (1, 0, 1, 1), (0, 1, 1, 1), (0, 0, 0, 1), (0, 0, 1, 0), (1, 1, 0, 0)}.

Computing all of the pairwise differences shows us that ∆ contains two copies of each
nonidentity element of Z4

2, so D is a (16, 6, 2) difference set in Z4
2.

The (16, 6, 2) difference set in the example above is a difference set from a family called
the Hadamard difference sets. A Hadamard difference set is a (v, k, λ) difference set with
the property that v = 4(k − λ). It can be shown that for any Hadamard difference set,
there exists a positive integer m such that the set is a (4m2, 2m2 −m,m2 −m) difference
set. We note that the converse is an open question: given some integer m, is there
a(4m2, 2m2 −m,m2 −m) difference set? It is known that such a difference set exists if
m is a power of two, but the general existence has not been proven [2, 8, 12].

The Hadamard difference sets are a very well studied example of an infinite family of
difference sets. For a more thorough treatment, see [2, 12].

As we can see, difference sets are highly regular objects and therefore have greatly
restricted structures. To loosen these restrictions while preserving interesting structural
properties (particularly those related to combinatorial objects), we define a related but
somewhat less restrictive object: a partial difference set.

Definition 1.2 (Partial Difference Set). A (v, k, λ, µ) partial difference set D is a subset
of a group G such that |G| = v, |D| = k, and the multiset of pairwise differences ∆ =
{d1 − d2 d1, d2 ∈ D, d1 ̸= d2} contains every nonidentity element of D exactly λ times
and every nonidentity element of G \D exactly µ times.

Example 1.3. Consider the group Z5 and the set D = {1, 4}. Notice that 4− 1 = 3 and
1− 4 = 2, so ∆ = {2, 3}. This contains each nonzero element of G \D exactly once and
each nonzero element of D exactly zero times, so D is a (5, 2, 0, 1) PDS in Z5.

Example 1.4. Consider the group Z13 and the subsetD = {1, 4, 9, 3, 12, 10}. Straightfor-
ward computation will show that the multiset of pairwise differences ∆ = {d1−d2 d1, d2 ∈
D, d1 ̸= d2} contains every nonidentity element of G \D exactly 3 times and every non-
identity element of D exactly 2 times. Therefore D is a (13, 6, 2, 3) PDS in Z13.

In fact, both of the partial difference sets presented above are members of an infinite
family of partial difference sets called the Paley squares [11]. It may be shown that in
any group Zp where p is a prime that is 1 mod 4, the set of elements {a2|a ̸= 0, a ∈ G}
is a partial difference set with parameters (v, v−1

2
, v−5

4
, v−1

4
) [6]. For a proof that this is a

partial difference set, see theorem 6.2 in the appendix.

Example 1.5. Consider the groupG = Z3×Z3 and the setD = {(1, 0), (2, 0), (0, 1), (0, 2)}.
Computing the pairwise differences shows us that ∆ contains every nonzero element of
G \ D exactly twice and every element of D exactly once. Therefore D is a (9, 4, 1, 2)
PDS in Z3 × Z3. Not only is this a Paley partial difference set (it is the set of squares in
G), it is also the union of two subgroups (each missing the identity). This is a type of
PDS called a partial congruence partition; we will return to this construction later.

1.2 Basic Theorems

Now that we have defined partial difference sets and seen some typical examples of these
structures, we will develop some basic theorems that require no formalism beyond these
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definitions. We conclude this subsection by presenting a method that allows for construc-
tion of a strongly regular graph from a given PDS; this one motivation to discover and
characterize more partial difference sets.

We begin by discussing trivial partial difference sets in order to become more familiar
with the definition of a PDS and as an exercise in the basic style of manipulations that
will be used throughout this work.

Theorem 1.1. If G is a finite group of order v, then G is a (v, v, v, 0) partial difference
set [6].

Proof: By hypothesis, G has v elements. Thus v and k must be equal to v. The group
is closed under its binary operation, so no binary operation d1d

−1
2 , where d1, d2 ∈ G, can

produce an element outside of G. Thus µ must be zero.
Let a ∈ G. Then g = (ga)(a)−1, so d1 = ga , g2 = a is a solution pair of d1d

−1
2 = g for

each a ∈ G. Since each a ∈ G is distinct, we can find v distinct solutions of this form.
Therefore there are at least v distinct solutions to this equation.

Suppose that there exists a (v+1)th distinct solution to this equation, d1d
−1
2 = g, where

d1, d2 ∈ G. But since d2 ∈ G, we also have a solution of the form above corresponding
to d2: we have shown that d′1 = (gd2) gives a solution pair (d′1, d2). Then it follows that
g = d′1d

−1
2 = d1d

−1
2 . Right multiplying by d2, we find that d′1 = d1. Then d1, d2 is the same

as the solution above corresponding to d2, so it is not distinct. This is a contradiction,
so there are at most v distinct solutions.

Therefore there are exactly v distinct solutions to the equation d1d
−1
2 . This is true for

any element of G, so λ = v.
Note that this result implies that G is also a trivial example of a difference set. We

now discuss another example of a trivial PDS (that is also a trivial difference set).

Theorem 1.2. If G is a finite group of order v, then D = G \ {e} is a (v, v − 1, v− 2, 0)
partial difference set [6].

Proof: By hypothesis, G has v elements. Thus the first parameter must be equal to
v. Since only one element of G is not in D, there are v − 1 elements of D. Therefore
k = v− 1. The group is closed under its binary operation, so no binary operation d1d

−1
2 ,

where d1, d2 ∈ G, can produce an element outside of G. Thus d1d
−1
2 is either an element

of D or it is the identity element, so every non-identity element is in D. Therefore µ
must be zero.

Let g ∈ G, g ̸= e and let a ∈ G, a ̸= e, a ̸= g−1. Then g = (ga)(a)−1. Let d1 = ga
and d2 = a. Thus (d1, d2) is a solution pair of d1d

−1
2 = g for all a ∈ G, a ̸= e, a ̸= g−1.

Furthermore, we know that d1, d2 ∈ D. Since g ̸= e, we know that g−1 ̸= e and therefore
g−1 ∈ D. Thus the restriction a ̸= e, a ̸= g−1 excludes one element of D. But there are
v − 2 other distinct elements of D, so there are at least v − 2 distinct choices for d2 and
therefore v − 2 distinct solutions to the equation d1d

−1
2 = g.

Suppose that there exists a (v−1)th distinct solution to this equation, d1d
−1
2 = g, where

d1, d2 ∈ D. But since d2 ∈ D, we also have a solution of the form above corresponding
to d2: we have shown that d′1 = (gd2) gives a solution pair (d′1, d2). Then it follows that
g = d′1d

−1
2 = d1d

−1
2 . Right multiplying by d2, we find that d′1 = d1. Then d1, d2 is the same

as the solution above corresponding to d2, so it is not distinct. This is a contradiction,
so there are at most v − 2 distinct solutions.

Therefore there are exactly v − 2 distinct solutions to the equation d1d
−1
2 , where

d1, d2 ∈ D. This is true for any element of D, so λ = v − 2.
Next, we will prove a theorem of great computational and theoretical importance.

3
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Theorem 1.3. Let D be a (v, k, λ, µ) be a partial difference set in a group G where
λ ̸= µ. Define D(−1) = {d−1 d ∈ D}. Then D = D(−1) [6].

Proof: Let g ∈ G and note that d1d
−1
2 = g if and only if d2d

−1
1 = g−1. Then the

number of solution pairs (d1, d2) to the equation d1d
−1
2 = g is equal to the number of

solution pairs (d′1, d
′
2) to the equation d′1(d

′
2)

−1 = g−1. Then the number of differences of
elements of D that yield g (call this number n) is equal to the number of differences of
elements of D that yield g−1 (call this number n′). That is, n = n′. Since n, n′ ∈ {µ, λ}
by definition of a PDS and n = n′, it follows that either n = n′ = µ and thus g, g−1 ∈ D or
n = n′ = λ and g, g−1 ∈ G\D. Therefore g ∈ D if and only if g−1 ∈ D, so D = D(−1).

Note the computational value of this theorem: the fact thatD is closed under inversion
means that the set {d1d−1

2 |d1, d2 ∈ D} is equal to the set {d1d2|d1, d2 ∈ D}. This is an
easier condition to check, and its extreme usefulness will become immediately apparent
when we introduce a group ring formalism.

This theorem is also of great theoretical use when attempting to construct a new PDS
by taking the union of various subsets Di. We know that the entire PDS must be closed
under inversion, so we may guarantee this property if we choose the Di such that they
themselves are each closed under inversion. If a set Di is closed under inversion, we call
it reversible.

Definition 1.3 (Reversible). A subset S of a group G is called reversible if it satisfies
the property that S = S(−1), where we define S(−1) = {s−1|s ∈ S}.

Finally, we connect the existence of partial difference sets to the existence of strongly
regular graphs.

Theorem 1.4. Let G be a group and let D ⊆ G be a (v, k, λ, µ) partial difference set
where λ ̸= µ. Then there is a strongly regular graph corresponding to D.

Proof: We will construct a graph from D as follows. For each g ∈ G, create a vertex
on the graph and label it g. For two vertices x and y, connect x to y if and only if
xy−1 ∈ D.

We have proven that λ ̸= µ implies that D = D−1. Thus if xy−1 ∈ D, we have that
(xy)−1 = yx−1 ∈ D. Likewise, yx−1 ∈ D implies that xy−1 ∈ D. Therefore x is connected
to y if and only if y is connected to x. Thus our construction must generate a graph, not
a digraph, and we can simplify our connected criterion to say that x is connected to y if
and only if xy−1 ∈ D.

Now suppose that x, y, z are vertices in our graph. Then z is a common neighbor of
x, y if and only if xz−1 ∈ D and yz−1 ∈ D.

Let (d1, d2) ∈ D×D be a solution pair of the equation d1d
−1
2 = xy−1. Define z1 = d−1

1 x
and z2 = d−1

2 y, so d1 = x−1
1 and d2 = yz−1

2 .
It therefore follows that

xy−1 = d1d
−1
2

xy−1 = (xz−1
1 )(yz2)

−1

xy−1 = xz−1
1 z2y

−1.

By left and right cancellation, we have that z−1
1 z2 = 1. Since inverses are unique, it

follows that z1 = z2.
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Then we may say z = z1 = z2. Define a function f that maps the set of solution pairs
(d1, d2) ∈ D×D of d1d

−1
2 = xy−1 to the set of vertices of the graph by f(d1, d2) = d−1

1 x =
d−1
2 y. Thus for any solution pair (d1, d2), we have that z = f(d1, d2) = d−1

1 x = d−1
2 y

simultaneously satisfies xz−1 ∈ D, yz−1 ∈ D. Thus z is a common neighbor of x and y.
Conversely, suppose that z is a common neighbor of x and y. Then define d1 =

xz−1 ∈ D, d2 = yz−1 ∈ D (they must both be in D by definition of z being a common
neighbor of x and y). Then d1d

−1
2 = xy−1, so every common neighbor z can be generated

by a solution pair (d1, d2). That is, for every common neighbor z of x and y, there is a
(d1 = xz−1, d2 = yz−1) such that f(d1, d2) = z.

We have therefore found that z = f(d1, d2) = d−1
1 x is a mapping from the set of

solutions (d1, d2) ∈ D × D of the equation d1d
−1
2 = xy−1 onto the set of vertices z that

are common neighbors of x and y.
Suppose that there exist z ∈ G, (d1, d2), (d

′
1, d

′
2) ∈ D × D such that z = f(d1, d2) =

f(d′1, d
′
2) = d−1

1 x = d′−1
1 x. Then right multiplication by x−1 shows that d−1

1 = d′−1
1 . Since

the inverse is unique, it follows that d1 = d′1. Thus f is one to one.
We have therefore produced a bijection from the set of solutions (d1, d2) ∈ D ×D of

d1d
−1
2 = xy−1 onto the set of vertices z that are common neighbors of x and y. Thus the

number of distinct common neighbors of x and y must be equal to the number of distinct
solutions (d1, d2) ∈ D ×D of d1d

−1
2 = xy−1.

But we know that x ̸= y and that the inverse is unique, so y−1 ̸= x−1. Thus xy−1 ̸= e.
Then, by definition of a partial difference set, the number of solutions (d1, d2) ∈ D×D of
d1d

−1
2 = xy−1 depends only upon whether xy−1 ∈ D. Furthermore, xy−1 ∈ D if and only

if x and y are connected. Thus the number of solutions (d1, d2) depends only whether or
not x and y are connected. We therefore conclude that the number of distinct common
neighbors of x and y is dependent only on whether or not x and y are connected, which
is the definition of our graph being strongly regular.

1.3 Group Rings

We will now introduce the notion of a group ring and then use it to prove several important
theorems.

Definition 1.4 (Group Ring). Let G be a group (under multiplication) and let R be a
ring. The group ring of G over R (denoted R[G]) is the set of mappings f(g) : G → R of
finite support, where we define scalar multiplication by α ∈ R, f ∈ R[G] by x → αf(x),
the addition operation of the ring by f + g by (f + g)(x) = f(x) + g(x), and (fg)(x) =∑

ab=x f(a)g(b).

Said less formally: let G be a group and R be a ring. Then the group ring R[G] is
the ring of finite polynomials whose scalar coefficients come from the ring R and whose
variables come from the group G. The addition and multiplication operations of R[G]
are defined as usual for a polynomial ring: addition is defined by adding the scalar
coefficients using the addition of R for each element of G and multiplication is defined by
a distributive law where scalar multiplication uses the multiplication of R and variable
multiplication uses the group operation of G. (To see how this is equivalent to the above
definition, we need only note that the mapping from G to R simply defines a list of
coefficients. A polynomial may also be thought of as a list of coefficients, so we may
switch between these two ways of thinking about a group ring).

5
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To write this out explicitly, we note that any element two elements x, y ∈ R[G] may
be written x =

∑
g1∈G ag1g1, y =

∑
g2∈G bg2g2, where ag1 , bg1 ∈ R. Then we may define

x+y =
∑

g1=g2=g∈G(ag+bg)g and xy =
∑

g1g2=g(ag1bg2)g, where the group operation of G
is denoted multiplicatively. The structure of R and G make it a relatively simple exercise
to show that R[G] is in fact a ring.

We should note that although the elements of R[G] are finite polynomials, G need not
be a finite group. So long as x, y ∈ R[G] have finitely many nonzero coefficients, x + y
and xy also have finitely many nonzero coefficients.

We also note that no part of our definition requires G to be an abelian group; this
construction is completely general.

Example 1.6. Consider the group G = {xn|n ∈ Z}, where xaxb = xa+b and the ring
R = Z. Then R[G] is the ring of all finite polynomials with integer coefficients and
integer powers with the familiar addition and multiplication operations of ordinary real
polynomials. Note that in this example, both our group G and ring R are infinite.

Example 1.7. Consider the group G = ⟨x|x5 = 1⟩ where the ring R = Z3. As an
example, consider the elements a = x + 2x2 + x3, b = x + x2. Then a + b = (0 + 0)1 +
(1 + 1)x+ (2 + 1)x2 + (1 + 0)x3 + (0 + 0)x4 + (0 + 0)x5 = 2x+ x3 and

ab = (x+ 2x2 + x3)(x+ x2)

= (1 ∗ 1)(x ∗ x) + (1 ∗ 1)(x ∗ x2) + (2 ∗ 1)(x2 ∗ x) + (2 ∗ 1)(x2 ∗ x3)

+ (1 ∗ 1)(x3 ∗ x) + (1 ∗ 1)(x3 ∗ x5)

= x2 + x3 + 2x3 + 2x5 + 1x4 + 1x8

= x4 + x3 + x2 + 2.

Note that in this example, both R and G are finite.

Example 1.8. Consider the group G = D4, the dihedral group of order eight. We notate
a vertical flip by V , a horizontal flip by H, the diagonal flips by D and D′, and a rotation
by x degrees by Rx.

Let R = Z2. Then a = H + V , b = H + R90 yields a + b = V + R90 and ab =
(H + V )(H +R90) = H2 +HR90 + V H + V R90 = R0 +D+R180 +D′. Note that in this
example, our group is non-Abelian and the order of the multiplication in our distributive
law is therefore important.

Remark. When switching between the language of sets and group rings, we will often
abuse notation in order to simplify the presentation of our arguments. In the case where
we are considering a group ring Z[G], it is to be understood from context whether G
denotes the set of group elements or their sum in the group ring, G =

∑
g∈G g. The

frequent abuse of this notation in the context of partial difference sets is largely due to
the fact that when we analyze a set S, we often wish to take all differences between S
and some other set D. By considering S and D as sums in a group ring, the notation
SD(−1) allows for a compact way to count the number of times that group elements appear
when we take all possible differences: the group ring element SD(−1) has coefficients that
correspond to counts of each group element in the multiset {sd−1|s ∈ S, d ∈ D}.

With this understanding, let us now use group rings to explore partial difference sets.
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First, we will discuss how group rings provide a natural language to formulate the
definitions of difference sets and partial difference sets. A difference set D in a group G
is a set such that all pairwise differences of elements of D yield all non-identity elements
of G exactly λ times. We note that the identity will occur exactly k times, where |D| = k
(it appears once for each element of D, since dd−1 = 1G). In the language of group rings,
this condition is succinctly written

DD(−1) = λ(G− 1G) + k1G. (1)

Similarly, a partial difference set D in a group G is a set such that all pairwise
differences of elements of D yield the non-identity elements of D exactly λ times and the
non-identity elements of G \ D exactly µ times. Again, 1G will appear k times. This
condition may be written

DD(−1) = λD + µ(G−D − 1G) + k1G. (2)

(Here, we have assumed that 1G /∈ D; we note that we may always assume this
because the complement of a PDS is itself a PDS. This fact will be shown shortly. A
similar condition may be written down for a PDS containing the identity).

Given this group ring formulation of a PDS, we will now prove several important
theorems.

Lemma 1.5. Let G be a finite group of order v and let S be a subset of G with s′

elements. Then, switching to group ring notation, we have that SG = sG.

Proof: We know that G =
∑

g∈G g. Let S =
∑

s∈S s. Then SG =
∑

sg=g′∈G g′. But
for any s ∈ S, we know that sg ∈ G by closure. Furthermore, uniqueness of inverses
means that sg = g′ has only one solution for fixed s, g′. Then, in the group ring, we have
that sG = G for all s ∈ S. Since S =

∑
s∈S s, we have that SG =

∑
s∈S sG =

∑
s∈S G =

|S|G = s′G.

Corollary 1.5.1. If G is a finite group of order v and D is a subset of G with k elements,
then it follows that G2 = vG and that GD = DG = kG.

We will now prove an important theorem: namely, that the complement of a partial
difference set is itself a partial difference set.

Theorem 1.6. If D is a (v, k, λ, µ) partial difference set that is closed under inversion,
then G \D = D′ is a (v, v − k, v + µ− 2k, v + λ− 2k) partial difference set.

Proof: If D is closed under inversion, then D′ is also closed under inversion (since
inverses in a group are unique and D ∩D′ = ∅). Therefore D′D′−1 = D′2.

Let 1G be the identity element of G. Suppose that 1G /∈ D. Then we have that
D2 = k(1) + λD + µ(G−D − 1G). Furthermore, we know that D = G−D′, so:

7
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D′2 = (G−D)(G−D)

= G2 −GD −DG+D2

= vG− 2kG+ k(1G) + λD + µ(G−D − 1G)

= (v − 2k)G+ k(1G) + λD + µ(G−D − 1G)

= (v − 2k)(G− 1G + 1G) + k(1G) + λD + µ(G−D − 1G)

= (v − 2k + k)(1G) + (v − 2k)(G− 1G) + λD + µ(G−D − 1G)

= (v − k)(1G) + (v − 2k)(G− 1G) + λ(G−D′) + µ(D′ − 1G)

= (v − k)(1G) + (v − 2k)(G− 1G) + λ(G− 1G + 1G −D′) + µ(D′ − 1G)

= (v − k)(1G) + (v + λ− 2k)(G− 1G)− λ(D′ − 1G) + µ(D′ − 1G)

= (v − k)(1G) + (v + λ− 2k)(G− 1G) + (v + λ− 2k)D′ − (v + λ− 2k)D′

− λ(D′ − 1G) + µ(D′ − 1G)

= (v − k)(1G) + (v + λ− 2k)(G−D′) + (v + λ− 2k)(D′ − 1) + (µ− λ)(D′ − 1G)

= (v − k)(1G) + (v + λ− 2k)(G−D′) + (v + µ− 2k)(D′ − 1G)

Since 1G ∈ D′, this shows that D′ is a (v, v − k, v + µ− 2k, v + λ− 2k) PDS.
Now suppose that 1G ∈ D. Then we have that D2 = k(1G) + λ(D− 1G) + µ(G−D).

Thus:

D′2 = (G−D)(G−D)

= G2 −GD −DG+D2

= vG− 2kG+ k(1G) + λ(D − 1G) + µ(G−D)

= (v − 2k)G+ k(1G) + λ(D − 1G) + µ(G−D)

= (v − 2k)(G− 1G + 1G) + k(1G) + λ(D − 1G) + µ(G−D)

= (v − 2k + k)(1G) + (v − 2k)(G− 1G) + λ(D − 1G) + µ(G−D)

= (v − k)(1G) + (v − 2k)(G− 1G) + λ(G−D′ − 1G) + µD′

= (v − k)(1G) + (v − 2k)(G− 1G) + λ(G− 1G)− λD′ + µD′

= (v − k)(1G) + (v + λ− 2k)(G− 1G)− λD′ + µD′

= (v − k)(1G) + (v + λ− 2k)(G− 1G) + (v + λ− 2k)D′ − (v + λ− 2k)D′

− λD′ + µD′

= (v − k)(1G) + (v + λ− 2k)(G−D′ − 1G) + (v + λ− 2k)D′ + (µ− λ)D′

= (v − k)(1G) + (v + λ− 2k)(G−D′ − 1G) + (v + µ− 2k)D′

Since 1G /∈ D′, this shows that D′ is a (v, v − k, v + µ− 2k, v + λ− 2k) PDS.
In addition to automatically giving us another PDS whenever we construct a new

PDS, this theorem has another important application. Whenever we have a (v, k, λ, µ)
partial difference set D in a group G, we may assume that the identity element is not
contained in D. If it is, we know that the identity is not contained in the complement
D′, which is a (v′, k′, λ′, µ′) PDS. We may then relabel the primes, thereby eliminating
the identity element from the partial difference set of interest.

8

□ 



Another use of this theorem is to let us choose to work with a PDS with k ≤ v
2
. Given

a PDS with k > v
2
, we know that its complement is also a PDS and must have k < v

2
.

We may then work with this PDS instead.
Finally, since the language of group rings gives us a natural way to express counts,

we may find a useful expression for the parameter k. This will place a useful constraint
on possible parameters of partial difference sets.

Theorem 1.7. Suppose that D is a (v, k, λ, µ) PDS in the group G and that D does not
contain the identity. Then k2 = λk + µ(v − k − 1) + k.

Proof: By definition of a partial difference set, we know that
DD(−1) = λD + µ(G − D − 1G) + k1G. Furthermore, since D,G \ D \ {1G}, and
{1G} are disjoint sets, it follows that |DD(−1)| = λ|D| + µ|G − D − 1G| + k|1G|, so
k2 = λk + µ(v − k − 1) + k.

Remark. We note that the same reasoning may be applied to show that if e ∈ D, then
k2 = λ(k − 1) + µ(v − k) + k. One may check that this is consistent with the above
requirements that k′ = v − k, λ′ = v + µ− 2k, µ′ = v + λ− 2k for a (v, k, λ, µ) PDS and
its complement, which is a (v, k′, λ′, µ′) PDS.

1.4 Partial Congruence Partitions

We will now introduce our first major method of constructing partial difference sets. This
method, called the partial congruence partition, allows us to construct a generalization
of the PDS presented in example 1.5. We will begin with another example, followed by
two lemmas.

Example 1.9. Consider the group Z4 × Z4. Define

D = {(1, 0), (2, 0), (3, 0), (0, 1), (0, 2), (0, 3), (1, 1), (2, 2), (3, 3)}.

This is a (16, 9, 4, 6) partial difference set. Note that it is the union of three disjoint
subgroups (each missing the identity).

The construction of this PDS from disjoint subgroups may be generalized. To see
how, we will begin with two lemmas.

Lemma 1.8. Let H1, H2 be subgroups of G, where H1, H2 are of order n and G is of
order n2. If H1 ∩H2 = {e}, then H1H2 = G.

Proof: Denote H1 = 1 + x1 + x2 + ...+ xn−1 and H2 = 1 + y1 + ...+ yn−1. Then
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H1H2 = (1 + x1 + ...+ xn−1)(1 + y1 + ...+ yn−1)

= 1(1 + y1 + ...+ yn−1)

+ x(1 + y1 + ...+ yn−1)

+ ...

+ xn−1(1 + y1 + ...+ yn−1)

= (1 + y1 + ...+ yn−1)

+ (x+ x1y1 + ...+ x1yn−1)

+ ...

+ (xn−1 + xn−1y1 + ...+ xn−1yn−1).

Clearly, we have n2 elements in this sum. Since H1, H2 are subgroups of G, each
element in the sum is an element of G. Thus, if the elements are all distinct, the sum
must be equal to G.

Observe that each element in the sum can be written xiyj, where 0 ≤ i, j < n. Suppose
that we have xiyj = xkym, where 0 ≤ i, j, k,m < n. Then it follows that xix

−1
k = ymy

−1
j .

But since each element has an inverse in the group and groups are closed, it must be
true that xix

−1
k ∈ H1 and ymy

−1
j ∈ H2. Therefore xix

−1
k = ymy

−1
j ∈ H1 ∩ H2 = {e}, so

xix
−1
k = ymy

−1
j = e. Thus i = k and m = j (since inverses are unique).

Since no two elements xiyj and xkym have both i = k and m = j, they are all distinct.
Then our sum has n2 distinct elements of the group, so it must be the entire group.
Therefore H1H2 = G.

Lemma 1.9. Let H be a subgroup of G. If H is of order n and G is of order n2, then
H2 = nH.

Proof: We can write H as H = 1+x1+ ...+xn−1 (where x0 = 1). Then for 0 ≤ i < n,
we have that xiH = xi + xix + ... + xixn−1. Each element in this sum is in H since
the group is closed. Furthermore, each element in the sum is distinct. Suppose not:
then there are 0 ≤ j, k < n where j ̸= k but xixj = xixk. Then xj = xk, which is a
contradiction. Therefore xiH = H.

Then H2 = (1 + x+ ...+ xn−1)H = H +H + ...+H = nH.

We are now equipped to prove the existence of the partial congruence partition PDS.

Theorem 1.10. If G is a group of order n2 and H1, ..., Hm are subgroups of G of order
n such that Hi ∩Hj = {e} for all 1 ≤ i, j ≤ m, then D = (H1 ∪H2 ∪ ... ∪Hm) \ {e} is
an (n2,m(n− 1), n+m2 − 3m,m2 −m) PDS.

Proof: The group has order n2 by hypothesis. Similarly, there are n − 1 nonidentity
elements in each subgroup Hi for 1 ≤ i ≤ m. Since the subgroups intersect only at the
identity, no elements are repeated. Therefore each of the m groups contributes precisely
n− 1 elements to D, so D has m(n− 1) distinct elements.

We will prove the rest of the parameters using the group ring formalism.
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We wish to examine all pairwise differences in D, so we are interested in DD(−1).
However, D is a union of subgroups minus the identity. Each element of a subgroup
has an inverse in the subgroup; since inverses are unique and the identity is its own
inverse, each nonidentity element of the subgroup has inverse that is another nonidentity
element of the subgroup. Therefore each element of D must also have an inverse in D,
so D(−1) = D. Thus DD(−1) = D2.

Then we have that

D2 = ((H1 − 1) + (H2 − 1) + ...+ (Hm − 1))2

= (H1 +H2 + ...+Hm −m)(H1 +H2 + ...+Hm −m)

= (H1 + ...+Hm)(H1 + ...+Hm −m)−m(H1 + ...+Hm −m)

= (H1 + ...+Hm)
2 −m(H1 + ...+Hm)−m(H1 + ...+Hm) +m2

= (
∑

1≤i,j≤m

HiHj)− 2m(H1 + ...+Hm) +m2

= (
∑

1≤i≤m

H2
i ) + (

∑
i̸=j

HiHj)− 2m(H1 + ...+Hm) +m2

=
∑

1≤i≤m

nHi +
∑
i̸=j

G− 2m(H1 + ...+Hm) +m2

= n(H1 + ...+Hm) +m(m− 1)G− 2m(H1 + ...+Hm) +m2

= (n− 2m)(H1 + ...+Hm) +m(m− 1)G+m2.

Then we may see that each element of the group appears m2 −m times in the second
term. The nonidentity elements that are not in D do not appear in any other terms,
so µ = m2 − m. The elements of G each appears n − 2m times in the first term, so
λ = m2 −m+ n− 2m = n+m− 3m2.

The identity element appears m times in H1 + ... + Hm, so the first term contains
m(n − 2m) copies of the identity. Similarly, the second term contains m2 −m copies of
the identity and the third term contains m2 copies, so e appears a total of mn− 2m2 +
m2 −m+m2 = m(n− 1) times. This is the same as the k parameter, as expected.

Therefore D is an (n2,m(n− 1), n+m2 − 3m,m2 −m) PDS.

1.5 Character Theory

We will now introduce character theory, which is an incredibly powerful tool to understand
partial difference sets in finite abelian groups. We begin by defining a character.

Definition 1.5 (Character). For a finite abelian group G, a character χ on G is a group
homomorphism that maps G to the complex numbers C under multiplication.

In any finite group, all elements must have finite order. Then the images under
homomorphism must also have finite order. We note that the only complex numbers
with finite order under multiplication are the roots of unity. We remind the reader of
this definition below.

Definition 1.6 (Roots of Unity). A complex number x ∈ C is an nth root of unity if
xn = 1.
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Writing x ∈ C as a complex exponential allows us to see that every nth root of unity
can be written as e

2πik
n , where k ∈ Zn.

One example of such a homomorphism is the principal character.

Definition 1.7 (Principal Character). Given a group G, the principal character χ is the
homomorphism χ : G → C by χ(g) = 1 for all g ∈ G.

A natural question is: how many distinct characters are there in a given finite abelian
group? Fortunately, this is a relatively straightforward question to answer; it follows
directly from the fundamental theorem of finite abelian groups and simple homomorphism
properties.

Theorem 1.11. Given a finite abelian group with generators g1, ..., gk with orders n1, ..., nk,
there are n1...nk distinct characters.

Proof: To define a homomorphism χ : G → C on a group G, we need only define how
the homomorphism acts on the generators.

Consider the generator gi. Then, since the order of gi is ni, we know that gni
i = e1.

Thus, by properties of a homomorphism, it follows that 1 = χ(e1) = χ(gni
i ) = χ(gi)

ni .
Then the possible images of the generator are the nith roots of unity, of which there are
ni.

Since there are ni choices for each generator and the choices are independent, the
total number of distinct characters is equal to the product n1...nk.

Indeed, this analysis motivates a stronger theorem.

Theorem 1.12. Given a finite abelian group G, the set of characters X considered under
the operation ◦ defined by (α ◦ β)(u) = α(u)β(u) forms a group isomorphic to G.

Proof: A finite Abelian group can be written as a direct product of cyclic groups of
prime order. Denote these cyclic groups Gi. Let each generator gi of group Gi be of order
ni.

Then a homomorphism is determined by the images of the generators under the
homomorphism. Denote a homomorphism χj1,j2,...,jm , where χ(gi)j1,j2,...,jm = ωji

i for all

1 ≤ i ≤ m and ωi = e
2πi
ni . Restrict ji such that 0 ≤ ji ≤ ni: any higher power of the

generator can have a gni
i = 1 factored out.

Then it follows that for each i, (χj1, j2, ..., jm ◦ χk1, k2, ..., km)(gi) = ωji
i ω

ki
i = ωji+ki . Since

this is true for each gi, we have that (χj1, j2, ..., jm ◦ χk1, k2, ..., km) = χj1+k1, ... jm+km .
Note that the multiplication of homomorphisms is then reduced to addition of sub-

scripts in each components. This will provide us with an isomorphism.
Define the function ϕ : G → X by ϕ(gk11 , ..., gkmm ) = χk1, ..., km . Then

ϕ((gk11 , ..., gkmm ) ◦ (gj11 , ..., gjmm )) = ϕ(gk1+j1
1 , ..., gkm+jm

m ) = χk1+j1,...,km+jm . But we showed
above that

χk1+j1, ..., km+jm = χk1, k2, ..., km ◦ χj1, j2, ..., jm .

Thus
ϕ((gk11 , ..., gkmm ) ◦ (gj11 , ..., gjmm )) = ϕ(gk11 , ..., gkmm )ϕ(gj11 , ..., gjmm ),

so ϕ is a homomorphism.
Suppose that χj1, ..., jm = χk1, ..., km . Then for every i, we have that

χj1, ..., jm(gi) = χk1, ..., km(gi). Then ωji
i = ωki

i . Since 0 ≤ ji, ki < ni, this is possible if
and only if ji = ki. Therefore (k1, ..., km) = (j1, ..., jm), so ϕ is one to one.
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Finally, for every χk1, ..., km , we have that gkii ∈ Gi. Then gk11 , ..., gkmm ∈ G. Thus ϕ is
onto.

Therefore ϕ is an isomorphism.

In addition to forming a group isomorphic to G, the character group X has desirable
orthogonality properties.

Definition 1.8. Let χ, θ be characters on a finite abelian group G. Define the inner
product of χ and θ by ⟨χ, θ⟩ = 1

|G|
∑

g∈G χ(g)θ−1(g).

Theorem 1.13. The characters on a finite abelian group are an orthonormal set.

Proof: Observe that the map ϕx : G → G defined by ϕ(g) = xg is one to one by
uniqueness of inverses. Since G is finite, this means that ϕx(G) = G; that is, g 7→ xg is
simply a permutation of the elements of G for any element x ∈ G.

Using this fact (i.e., that xg ∈ G is a reindexing of g ∈ G), homomorphism properties,
and recalling that χ(g) is a complex number and therefore character multiplication is
commutative, we have:

⟨χ, θ⟩ = 1

|G|
∑
g∈G

χ(g)θ−1(g)

=
1

|G|
∑
xg∈G

χ(xg)θ−1(xg)

=
1

|G|
∑
xg∈G

χ(x)χ(g)θ−1(x)θ−1g

=
1

|G|
∑
g∈G

χ(x)χ(g)θ−1(x)θ−1(g)

= χ(x)θ−1(x)
1

|G|
∑
g∈G

χ(g)θ−1(g)

= χ(x)θ−1(x)⟨χ, θ⟩.

Then we have that
⟨χ, θ⟩ − χ(x)θ−1(x)⟨χ, θ⟩ = 0,

so

⟨χ, θ⟩(1− χ(x)θ−1(x)) = 0.

This multiplication is in the complex numbers and is true for any x ∈ G, so we
conclude that either 1 = χ(x)θ−1(x) for all x or that ⟨χ, θ⟩ = 0.

If χ ̸= θ, then there exists some x such that χ(x) ̸= θ(x). By uniqueness of the
inverse, we know that θ−1(x) ̸= χ−1(x). Then it follows that χ(x)θ−1(x) ̸= 1, so it must
be that ⟨χ, θ⟩ = 0.
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If χ = θ, then we have by definition that

⟨χ, θ⟩ = 1

|G|
∑
g∈G

χ(g)θ−1(g)

=
1

|G|
∑
g∈G

χ(g)χ−1(g)

=
1

|G|
∑
g∈G

1

=
1

|G|
|G|

= 1.

We have therefore shown that ⟨χi, θj⟩ = δij; that is, the characters are orthonormal.

Having established some basic facts about characters, we are prepared to begin work-
ing towards a proof of the most important result of character theory in partial difference
sets: namely, that character sums (of non-principal characters) over a set D take on
exactly two specified values if and only if D is a partial difference set.

This key result will require several lemmas and theorems to prove.

Lemma 1.14. If χ is not the principal character, then χ(G) = 0.

Proof: Suppose that χ is not the principal character. Then there exists a g ∈ G such
that χ(g) ̸= 1. Observe that gG is simply a permutation of G (since the group is closed
and all groups have the cancellation property, so gh = gk if and only if h = k).

Then χ(gG) =
∑

h∈G χ(gh) =
∑

h∈G χ(g)χ(h) = χ(g)
∑

h∈G χ(h) = χ(g)χ(G).
That is, χ(gG) = χ(g)χ(G). However, gG is just a permutation of G; it does not

matter what order of the elements we use for summing their characters, so χ(H) = χ(G)
for any permutation H of G. Thus χ(gG) = χ(G).

Therefore χ(gG) = χ(G) and χ(gG) = χ(g)χ(G). Thus χ(G) = χ(g)χ(G). Thus
χ(G) − χ(g)χ(G) = 0, so χ(G)(1 − χ(G)) = 0. Either χ(G) = 0 or 1 − χ(g) = 0.
However, we chose g such that χ(g) ̸= 1, so 1− χ(g) ̸= 0. Therefore χ(G) = 0.

Theorem 1.15. Let D be a subset of a finite Abelian group G. If D is a PDS, e ∈ D,

and χ : D → C is a character, then χ(D) =
−µ+λ±

√
(µ−λ)2−4(λ−k)

2
or χ(D) = |D|. If

e /∈ D, then χ(D) =
−µ+λ±

√
(µ−λ)2−4(µ−k)

2
or χ(D) = |D|.

Proof: If χ is the principal character, then χ(g) = 1 for all g ∈ G, so χ(D) = |D|.
Suppose then that χ is not the principal character.
We will prove this by cases. For the first case, suppose that e = 1 ∈ D. Then we

know that D2 = k(1) + λ(D − 1) + µ(G−D) = (k − λ)(1) + µG+ (λ− µ)D.
Therefore D2+(µ−λ)D+(λ−k)(1)−µG = 0, so χ(D2+(µ−λ)D+(λ−k)(1)−µG) =

χ(0(1)). (For a group ring element H =
∑

gi∈G aigi, we define χ(H) =
∑

gi∈G aiχ(gi); this
makes it consistent with our notion of a homomorphism and group rings as representing
linear combinations of group elements).
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Therefore

χ(0(1)) = χ(D2 + (µ− λ)D + (λ− k)(1)− µG)

0(χ(1)) = χ(D2) + (µ− λ)χ(D) + (λ− k)χ(1)− µχ(G).

But we know that χ(1) = 1 for any homomorphism. Furthermore, the previous
lemma tells us that χ(G) = 0. Finally, we know that χ(D2) = χ(D)2, since χ(D2) =∑

ai,bi∈D χ(aibi) =
∑

ai,bi∈D χ(ai)χ(bi) = χ(D)2. Thus

0 = χ(D2) + (µ− λ)χ(D) + (λ− k)

Notice that the output of χ is a complex number. This is therefore a quadratic
in the complex variable χ(D), so we can apply the quadratic formula. Thus χ(D) =
−µ+λ±

√
(µ−λ)2−4(λ−k)

2
.

In the second case where e = 1 /∈ D, we use a similar argument. However, the group
ring expression for D2 becomes D2 = k(1) + λ(D) + µ(G−D − 1) = (k − µ)(1) + µG+
(λ− µ)D.

Then D2+(µ−λ)D+(µ− k)(1)−µG = 0, so χ(D2+(µ−λ)D+(µ− k)(1)−µG) =
χ(0(1)).

Using the same arguments as before, this gives us that 0 = χ(D)2+(µ−λ)D+(µ−k),

so χ(D) =
−µ+λ±

√
(µ−λ)2+4(µ−k)

2
.

Lemma 1.16. If G is a finite abelian group and χ is a character, then for all h ∈ G,∑
j χj(h) = |G| if h = e and

∑
j χj(h) = 0 if h ̸= e.

Proof: Recall that we have shown previously that if a group G is isomorphic to
G1 × G2 × ... × Gk, where |Gk| = nk, then there are n1...nk distinct characters on the
group.

By the Fundamental Theorem of Finite Abelian Groups, we know that G ≈ G1 ×
G2 × ... × Gk, where Gi is a cyclic group of prime power order ni. We know also that
n1...nk = |G|. Then the theorem mentioned above tells us that there are n1...nk = |G|
distinct characters.

If h = e, then χ(h) = 1 for any character χ. Thus
∑

j χj(h) =
∑

j 1 = |G|.
Then suppose that h ̸= e. We know that we can write h = gmi , where gi is a generator

for one of the cyclic groups and m ∈ Z+. Furthermore, since h ̸= e, it follows that ni > 1.

Then χ(h) = χ(gmi ) for all characters χ. Define η(gi) = e
2πi
mni (this is well defined, as

m,ni > 0). Then η(gxi )η(g
y
i ) = e

2πix
mni e

2πiy
mni = e

2πi
mni (x + y) = η(gx+y) = η(gxgy), so this

function is a homomorphism. Furthermore, this function has the property that χ(h) =

χ(gm) = e
2πi
ni Since ni > 1, e

2πi
ni ̸= 1. Therefore if h ̸= e, there exists a homomorphism η

such that η(h) ̸= 1.
Furthermore, we know that the characters form a group under multiplication, guar-

anteeing closure and the cancellation property. Then {ηχj : χj ∈ the character group} is
just a permutation of the group; the order of the terms does not matter in the sum (since
the characters are complex numbers, which commute), so

∑
j χj(h) =

∑
j χj(h)η(h).

Therefore
∑

j χj(h)(η(h) − 1) = 0. Since η(h) − 1 is independent of j, we have that
(η(h)− 1)(

∑
j χj(h)) = 0, so either η(h)− 1 = 0 or

∑
j χj(h) = 0. But we choose η such

that η(h) ̸= 1, so it must be that
∑

j χj(h) = 0.
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Lemma 1.17. Let G be a finite abelian group, and let y be an element of the group ring
Z[G]. Let {χj|j ∈ Z|G|} be the set of distinct characters on G. Denote y =

∑
g∈G agg;

then ah = 1
|G|
∑

j χj(h
−1y).

Proof: By definition, h−1D =
∑

g∈G agh
−1g. Therefore for any character χj, we have

that χj(h
−1D) =

∑
g∈G agχj(h

−1g).
Therefore

1

|G|
∑
j

χj(h
−1D) =

1

|G|
∑
j

∑
g∈G

agχj(h
−1g).

Now, in a finite sum of complex numbers, the sum is the same even if the terms are
permuted, so

1

|G|
∑
j

χj(h
−1D) =

1

|G|
∑
j

∑
g∈G

agχj(h
−1g)

=
1

|G|
∑
g∈G

∑
j

agχj(h
−1g)

=
1

|G|
(ah(

∑
j

χj(h
−1h)) +

∑
g∈G,g ̸=h

∑
j

χj(h
−1g).

Since g ̸= h in the second sum, the uniqueness of inverses guarantees that h−1g ̸= e.
Applying the previous lemma to both sums, we have that

1

|G|
∑
j

χj(h
−1D) =

1

|G|
(ah(

∑
j

χj(h
−1h)) +

∑
g∈G,g ̸=h

∑
j

χj(h
−1g)

=
1

|G|
(ah|G|+

∑
g∈G,g ̸=h

0)

= ah.

Corollary 1.17.1. Let y, y′ ∈ Z[G], where G is an abelian group. Then χ(y) = χ(y′) for
any character χ implies that y = y′.

Proof: Suppose χ(y) = χ(y′) for any character χ. Since y, y′ are in the group
ring, we have y =

∑
g∈G agg and y′ =

∑
g∈G a′gg. But ah = 1

|G|
∑

j χj(h
−1y′) and

a′h = 1
|G|
∑

j χj(h
−1y). Since χj(y) = χj(y

′), we have that ah = a′h and thus y = y′.
That is, the set of character sums on a group element contains all of the information

about the element. With this insight, we are finally prepared to prove our main theorem.

Theorem 1.18. Let D be a reversible subset of a finite abelian group G. Then, if

e /∈ D, we have that D is a PDS if and only if and χ(D) =
−µ+λ±

√
(µ−λ)2−4(µ−k)

2
for every

non-principal character χ and that k2 = λk + µ(v − k − 1) + k [3].
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Proof: We have already shown that if D is a PDS, then the character sum χ(D) is as
claimed (see theorem 1.15).

Suppose now that D is a subset of a group G that does not contain the identity. Let
|G| = v, |D| = k, and β = λ − µ and γ = µ − k. Furthermore, suppose that χ(D) =
−µ+λ±

√
(µ−λ)2−4(µ−k)

2
for every non-principal character χ. That is, χ(D) =

β±
√

β2−4γ

2
for

every non-principal χ. To simplify notation, define ∆ = β2−4γ. Therefore χ(D) = β±
√
∆

2

for every non-principal character.
Let us consider the group ring R[G] with the group G and the ring R = Z. Let D′

denote the group ring element D′ =
∑

d∈D d. Let 1G denote the group ring element 1e,
where e is the identity element of G.

Consider the group ring element y = (D′− β+
√
∆

2
1G)(D

′− β−
√
∆

2
1G). Carrying out this

multiplication, we find that

y = (D′ − β +
√
∆

2
1G)(D

′ − β −
√
∆

2
1G)

= D′2 −D′

(
β −

√
∆

2

)
1G −D′

(
β +

√
∆

2

)
1G +

β2 −∆

4

= D′2 − βD′ +
β2 −∆

4
1G.

Suppose that we apply a non-principal character χ to this equation. Then homomor-
phism properties give us that

χ(y) = χ(D′2)− χ(βD′) + χ

(
β2 −∆

4
1G

)
= χ(D′)2 − βχ(D′) +

β2 −∆

4
χ(1G)

= χ(D′)2 − βχ(D′) +
β2 −∆

4
.

That is,

χ(y) = χ(D′)2 − βχ(D′) +
β2 −∆

4
. (3)

Consider the equation

0 = χ(D′)2 − βχ(D′) +
β2 −∆

4
. (4)

This equation is a quadratic in the variable χ(D′) in the complex numbers, so we may
apply the quadratic formula. This tells us that the solutions of the equation are

χ(D′) =
β ±

√
β2 − 4(β

2−∆
4

)

2

=
β ±

√
∆

2
.
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But this is exactly what we have said that the value of χ is for any non-principal
character. That is, for any non-principal character χ, χ(D′) satisfies equation 4. But the
right side of equation 4 is the same of the right side of equation 3. We know that equation
3 is always true, and we have just argued that equation 4 is true for any non-principal
χ. We therefore conclude that for any non-principal χ, the left hand sides of equations 3
and 4 are equal. That is, χ(y) = 0.

For a principal character χ1, equation 3 tells us that χ1(y) = |D|2 − β|D| + β2−∆
4

.

That is, χ1(y) = k2 − βk + β2−∆
4

; define this constant to be χ1(y) = C.
Consider now the group ring element y′ = (C

v
)G′, where G′ =

∑
g∈G 1g. It is clear

that for the principal character, χ1((
C
v
)G = C

v
χ1(G) = C

v
|G| = C

v
v = C.

Furthermore, we know that for a non-principal character χ, we have that χ(G) = 0.
Then χ(y′) = C

v
χ(G) = 0.

We therefore know that χ(y) = χ(y′) for every character χ. By the previous corollary,
it follows that y = y′. Therefore

C

v
G′ = D′2 − βD′ +

β2 −∆

4
1′G

D′2 = βD′ − β2 −∆

4
1G +

C

v
(G′ −D′ − 1G) +

C

v
D′ +

C

v
1G

D′2 = (β +
C

v
)D′ +

C

v
(G′ −D′ − 1G) + (

C

v
− β2 −∆

4
)1G.

That is,

D′2 = (β +
C

v
)D′ +

C

v
(G′ −D′ − 1G) + (

C

v
− β2 −∆

4
)1G, (5)

the general form of the group ring equation we are looking for.
Now,

C = k2 − βk +
β2 −∆

4

= k2 − βk +
β2 − (β2 − 4(µ− k))

4
= k2 − k(λ− µ) + µ− k.

By theorem 1.7, it follows that

C = k2 − k(λ− µ) + µ− k

= [λk + µ(v − k − 1) + k]− k(λ− µ) + µ− k

= kλ+ vµ− kµ− µ+ k − kλ+ kµ+ µ− k

= vµ.

Therefore C
v
= vµ

v
= µ.
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Finally, we have that

C

v
− β2 −∆

4
= µ− β2 − (β2 − 4(µ− k)

4
= µ− (µ− k)

= k.

Using C
v
= µ, C

v
− β2−∆

4
= k, and β = λ− µ in equation 5,

D′2 = (λ− µ+ µ)D′ + µ(G′ −D′ − 1G) + k1G.

That is,
D′2 = λD′ + µ(G′ −D′ − 1G) + k1G. (6)

Since D is reversible, this means that D′2 = D′(D′)(−1) and thus equation 6 implies
that D is a (v, k, λ, µ) partial difference set.

Corollary 1.18.1. Let D′ be a subset of a finite abelian group G with e ∈ D. Then D

is a (v, k′, λ, µ′) PDS if and only if χ(D′) =
λ′−µ′±

√
(λ′−µ′)2−4(λ′−k′)

2
, where k′2 = λ′(k′ −

1) + µ′(v − k′) + k′, for every character χ.

Proof: We know that D′ is a (v, k′, λ′, µ′) PDS if and only if G \ D′ is a (v, k, λ, µ)
PDS, where k′ = v− k, λ′ = v + µ− 2k, and µ′ = v + λ− 2k. Furthermore, we note that
given these definitions, the condition on k′2 in the statement of the corollary is equivalent
to the condition on k2 in the statement of the previous theorem.

Define D = G \ D′. The previous theorem tells us that D is a PDS if and only if

χ(D) =
λ−µ±

√
(µ−λ)2−4(µ−k)

2
. Now, we know that χ(G) = 0 and that D ∪D′ = G, so we

have that χ(D′) = −χ(D). Then D is a PDS if and only if χ(D′) =
µ−λ±

√
(λ−µ)2−4(µ−k)

2
.

Now, we note that µ − λ = λ′ − µ′ and that µ − k = λ′ + k − v = λ′ − k′. Substituting

these into our character expression, we have that χ(D′) =
(λ′−µ′)±

√
(λ′−µ′)2−4(λ′−k′)

2
. That

is, we have shown that the χ(D′) condition in the corollary is equivalent to the χ(D)
statement in the previous theorem.

Taking this together with the counting condition, we have that

χ(D′) =
λ′−µ′±

√
(λ′−µ′)2−4(λ′−k′)

2
, where k′2 = λ′(k′−1)+µ′(v−k′)+k′, for every character

χ, if and only if D = G \D′ is a partial difference set. But we know that D is a PDS if

and only if its complement D′ is a PDS. That is, χ(D′) =
λ′−µ′±

√
(λ′−µ′)2−4(λ′−k′)

2
, where

k′2 = λ′(k′ − 1) + µ′(v − k′) + k′, for every character χ, if and only if D′ is a (v, k′, λ′, µ′)
PDS.

An analogous result also exists for difference sets. Not only will this theorem be
used in our exploration of partial difference sets, this is one of the earliest foundational
character theory results. We will state it below; the proof will be given in the appendix.

Theorem 1.19. Let G be a finite abelian group of order v and let D be a subset of G
of order k. Then D is a (v, k, λ) difference set if and only if |χ(D)| =

√
k = λ for every

character χ [10].

Proof: see theorem 6.1 in the appendix.
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2 Denniston Partial Difference Sets

We will now explore a family of partial difference sets called the Denniston family. We
begin with a construction of a simple example of a Denniston PDS.

First, we remind the reader of the definition of a quadratic form.

Definition 2.1 (Quadratic Form). Let F be a field. A quadratic form is a polynomial
Q : F 2 → F such that Q(ax, ay) = a2Q(x, y).

We will also define a special type of quadratic form: an irreducible.

Definition 2.2 (Irreducibility). Let F be a field and Q : F 2 → F be a quadratic form.
Then the quadratic form is irreducible over F if Q(x, y) = 0 if and only if (x, y) = 0.

We will now proceed with a specific example.
Let F4 = {0, 1, α, α+ 1} be the field with four elements. We desire Q : F 2

4 → F4 that
is a quadratic form such that Q(x, y) = 0 if and only if (x, y) = (0, 0). We will show that
x2 + xy + αy2 is such a quadratic form.

Note that Q(x, y) takes on the following values for the specified inputs:

(x,y) Q(x,y)
(0,0) 0
(0,1) α
(0, α) 1
(0, α2) α2

(1,0) 1
(1,1) α
(1,α) α
(1, α2) 1

Table 1: Some outputs of Q(x, y) = x2 + xy + αy2.

Then we consider Q(x, y) for an (x, y) not in the table. Since (x, y) is not in the table,
we know that x ̸= 0. Therefore if we want to write y = xy′, we know that y′ = x−1y
exists and will satisfy this equation.

We therefore have that (x, y) = (x(1), x(x−1y′)). Since Q is a quadratic form, it
follows that Q(x, y) = x2Q(1, x−1y). Since we are working in a field, there are no zero
divisors. Since x ̸= 0, we conclude that Q(x, y) = 0 if and only if Q(1, x−1y) = 0. But
table 1 shows that Q(1, a) ̸= 0 for any a ∈ F , so we may conclude that Q(x, y) ̸= 0 if
(x, y) is not in the table.

We have thus shown that Q(x, y) = 0 if and only if (x, y) = 0.
Now define K = {0, 1} and S = {(1, a, b)|Q(a, b) ∈ K}. Referencing our table (and

using the calculation for Q(x, y) above), we may see that

S = {(1, 0, 0), (1, 0, α), (1, 1, 0), (1, 1, α2), (1, α, α), (1, α, α2)}.

Then consider the set D = S ∪ αS ∪ α2S. It may be shown that each set S, αS,
and α2S are (16,6,2) Hadamard difference sets. Furthermore, one may show that D is a
(64, 18, 2, 6) PDS in the additive group of F 3

4 , which is isomorphic to Z6
2.

We can replicate this construction to get a Denniston PDS in a larger group. Suppose
that we use the field F8 instead of F4. In much the same way as we did in the simpler
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case, one may verify that Q(x, y) = x2 + xy + y2 is irreducible over the field. We
then define K = {0, 1, α, α + 1} and S = {(1, a, b)|Q(a, b) ∈ K}. Then, we have that
D =

∑
x∈F\{0} xS is a PDS in Z9

2 [4]. The parameters of this PDS are (512, 196, 60, 84).

Indeed, we may construct a (512, 70, 6, 10) PDS in Z9
2 by following the same construc-

tion using the field of eight elements but replacing K with K ′ = {0, 1} [3, 4].
Each multiplicative coset of S has 10 elements. Since the first component is just the

multiplicative coset representative, it is fruitful to consider S as a subset of Z3
2 × Z6

2. In
this work, we set out to answer the question: what is the structure of the second and
third components (a, b) in each coset (viewed as a subset of Z6

2)?
We observe that each multiplicative coset may be written as a subgroup isomorphic to

Z2×Z2 taken together with a (16, 6, 2) difference set. See appendix 6.1 for a list of these
PDS elements and how they may be partitioned into subgroups and difference sets. This
may be considered analogous to the structure of the (64, 18, 2, 6) PDS; instead of three
sets of (16, 6, 2) difference sets, we have seven sets of the union of a Z2 × Z2 subgroup
and a (16, 6, 2) difference set.

2.1 McFarland Construction

We claimed that the sets of six elements in our (64, 18, 2, 6) example were (16, 6, 2) differ-
ence sets. A useful way to think of these difference sets is via the McFarland construction,
which we will develop now.

Suppose that we have groups G and E such that E = Zn
2 and |G| = 2n.

First, we define a hyperplane.

Definition 2.3 (Hyperplane). Let S be a linear vector space of dimension n. Then any
subspace H ⊆ S of dimension n− 1 is called a hyperplane.

We will now develop several lemmas concerning hyperplanes.

Lemma 2.1. The group E has 2n − 1 subgroups isomorphic to Zn−1
2 [7].

Proof: Think of E as an n dimensional linear vector space over Z2. Each subgroup
isomorphic to Zn−1

2 is an n− 1 dimensional subspace (or hyperplane), so it is the unique
complement of a one dimensional subspace. Therefore the number of n− 1 dimensional
subspaces is exactly equal to the number of one dimensional subspaces.

Now, any nonzero vector generates a unique subspace (since we are working over Z2

and there are no scalar multiples of a vector. We have 2n − 1 nonzero vectors, so we
therefore have 2n − 1 one dimensional subspaces and thus 2n − 1 hyperplanes.

Define D = ∪2n−1
i=1 (gi, Hi) ⊆ G × E, where the Hi are the distinct hyperplanes of E.

We will notate (gi, Hi) as giHi for the sake of brevity.

Lemma 2.2. Using group ring notation, Hi(H
−1
i ) = 2n−1Hi.

Proof: We know that Hi is a subgroup, so it is closed under addition. Furthermore,
given h1 ∈ Hi, we know that h1+h2 ̸= h1+h3 for distinct h2, h3 ∈ Hi. Thus h+Hi = Hi

for any h ∈ H.
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Since Hi is closed under inversion, H−1
i = Hi. Thus

Hi(H
−1
i ) = HiHi

=
2n−1∑
j=1

hj +Hi

=
2n−1∑
j=1

Hi

= 2n−1Hi.

Lemma 2.3. In group ring notation, HiH
−1
j = 2n−2E for two distinct hyperplanes Hi ̸=

Hj.

Proof: Let β be a basis for E that is a basis of Hi (which we will call βi) plus another
vector v. For Hj to be a distinct hyperplane, it must contain the vector v. Then we can
write a basis of Hj that contains v as a basis vector. Therefore (using the Gram-Schmidt
construction) we know that there exists an orthogonal basis βj of Hj that contains v.
Since Hj is n − 1 dimensional, there are n − 2 other vectors in Hj, all of which are
orthogonal to v.

Now, we know that the n−2 vectors in βj\{v} are orthogonal to v. Thus span(βj\{v})
is orthogonal to v. Therefore span(βj \ {v}) is in the complement of span(v). But we
know that the complement of span(v) is Hi, so span(βj \ {v}) is contained in Hi.

The intersection of two subspaces is itself a subspace. Furthermore, we know that the
intersection of Hi and Hj is at least n− 2 dimensional, since span(βj \ {v}) ⊆ Hi ∩Hj.
However, v /∈ Hi, so Hi ∩Hj is a proper subspace of Hi. Since Hi is n− 1 dimensional,
it therefore follows that Hi ∩Hj is exactly n− 2 dimensional.

Furthermore, we know that H−1
j = Hj because Hj is a subgroup. Additionally, for

hi ∈ Hi ∩Hj, we have that hi +Hj = Hj because Hj is closed under addition. Finally,
consider hi ∈ HC

j . If hi + hj ∈ Hj, where hi ∈ Hi and hj ∈ Hj, then this would imply
that hi ∈ Hj. This can’t be, so it must be the case that hi +Hj ∈ HC

j . But for fixed i,
we know that hi + hj = hi + hj′ if and only if j = j′. Thus hi + Hj is a subset of HC

j

with |Hj| = 2n−1 elements. But, since H has size 2n−1 and E has size 2n, we know that
|HC

j | = 2n−1. It therefore follows that hi +Hj = HC
j for hi /∈ Hj.

Therefore HiH
−1
j =

∑2n−1

k=1 hk + Hj =
∑

hk∈Hj
Hj +

∑
hk /∈Hj

HC
j = |Hi ∩ Hj|Hj +

|Hi ∩HC
j |HC

j . Now, Hi ∩Hj has dimension n− 2, so there are 2n−2 elements of Hi ∩Hj.
Furthermore, Hi has 2

n−1 elements and {Hi∩Hj, Hi∩HC
j } is a partition of Hi. Therefore

|Hi ∩HC
j | = |Hi| − |Hi ∩Hj| = 2n−1 − 2n−2 = 2n−2.

We then have that HiH
−1
j = 2n−2Hj + 2n−2HC

j = 2n−2(Hj +HC
j ) = 2n−2E.

Lemma 2.4. Each nonzero element of E appears in 2n−1 − 1 hyperplanes of E.

Proof: Consider an arbitrary nonzero element v ∈ E. We wish to know how many
hyperplanes contain a.

If v is in a hyperplane, we may fix it as a basis element. A given hyperplane is
therefore specified by the other n − 2 basis elements, which we know we may force to
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be orthogonal to v. Our question then becomes: how many choices of n − 2 other basis
vectors are there that give distinct hyperplanes?

Note that if two hyperplanes have v as a fixed basis element, they are distinct if and
only if their n− 2 dimensional subspaces not containing v are distinct. Furthermore, we
are forcing these vectors to be orthogonal to v, so we are choosing these n−2 vectors from
the n− 1 dimensional space that is span(v)⊥ (the complement of span(v)). Our question
is then to count the number of n − 2 dimensional subspaces of the n − 1 dimensional
span(v)⊥. This is exactly equivalent to our count of hyperplanes, only with n reduced
by 1. We therefore count 2n−1 − 1 distinct subspaces of dimension n − 2, so there are
2n−1 − 1 distinct hyperplanes containing v. Since v was an arbitrary nonzero element, it
therefore follows that each nonzero v appears in 2n−1 − 1 distinct hyperplanes.

Lemma 2.5. Given H,E as described above,
∑2n−1

i=1 Hi = (2n−1−1)(E−1E)+(2n−1)1E,
where 1E is the identity element of E.

Proof: The left hand side is a multiset that contains all of the nonzero elements of
all of the hyperplanes (counting multiplicity of elements). The above lemma tells us that
each nonzero element appears in 2n−1 − 1 hyperplanes, so each nonzero element appears
2n−1 − 1 times in the left hand sum. Since the left hand sum is some group ring element,
it can be written

∑2n−1
i=0 cihi, where the hi are the elements of E and ci is the number of

times that hi appears in the sum.
We just argued that ci = 2n−1 − 1 for every nonzero element, so the sum is

c01e +
∑2n−1

i=1 (2n−1 − 1)hi = (2n−1 − 1)(E − 1E) + c01E. Since 1E appears exactly once in

every hyperplane, we have that
∑2n−1

i=1 Hi = (2n−1 − 1)(E − 1E) + (2n − 1)1E.

Lemma 2.6. In group ring notation, where 1 ≤ i, j ≤ 2n − 1 and g0 = 1G is the identity
of G, we have that

∑
i̸=j gig

−1
j = (2n − 2)(G− 1G).

Proof: Fix gj and consider gig
−1
j where i ranges from 1 to 2n − 1. We know that

inverses are unique, so gig
−1
j ̸= 1G. Furthermore, we know that gi ̸= 1G, so gig

−1
j ̸= g−1

j .

Then gig
−1
j = G− 1G − g−1

j .

Then, when we let j range over all nonidentity elements of G, we will miss each g−1
j

exactly once. That is, each gj will appear exactly one time fewer than the number of
values that gj takes on. Since gj takes on 2n−1 values, each gj appears 2

n−1−1 = 2n−2
times.

But gj ranges over all values besides 1G, so the set of all gj values is G− 1G. Each of
these appears in the sum 2n − 2 times, so the whole sum must be (2n − 2)(G− 1G).

(In group ring notation: for a fixed gj, gig
−1
j = G− 1G− g−1

j . Therefore
∑

i̸=j gig
−1
j =∑2n−1

j=1 G−1G−g−1
j = (2n−1)G−(2n−1)1G−

∑2n−1
j=1 g−1

j = (2n−1)G−(2n−1)1G−(G−1) =
(2n − 2)(G− 1G) by the fact that each element has a unique inverse.)

We are finally prepared to prove the McFarland construction.

Theorem 2.7. The set D defined above is a (22n, 2n−1(2n−1), 2n−1(2n−1−1)) difference
set [7].

Proof: We will prove this using a group ring computation and our above lemmas. Fur-
thermore, since giHi is a shorthand for the more formal (gi, Hi), we have that giHiHjgj =
(gi + g + j,Hi +Hj) = (gigj)(HiHj). Furthermore, note that we are working over rings
of characteristic two, so addition and subtraction are the same. Therefore
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DD−1 = (
2n−1∑
i=1

giHi)(
2n−1∑
j=1

Hjg
−1
j )

=
2n−1∑
i=1

giHiHig
−1
i +

∑
i̸=j

giHiHjg
−1
j

=
2n−1∑
i=1

gig
−1
i HiHi +

∑
i̸=j

gig
−1
j HiHj

=
2n−1∑
i=1

1G|Hi|Hi +
∑
i̸=j

2n−2Egig
−1
j

= 1G2
n−1

2n−1∑
i=1

Hi + 2n−2E
∑
i̸=j

gig
−1
j

= 1G2
n−1[(2n−1 − 1)(E − 1E) + (2n − 1)1E] + 2n−2E(2n − 2)(G− 1G)

= 2n−1(2n−1 − 1)(1GE − 1E1G) + 2n−1(2n − 1)(1E1G) + 2n−2(2n − 2)(EG− 1GE)

= 2n−1(2n−1 − 1)(1GE − 1E1G) + 2n−1(2n − 1)(1E1G) + 2n−1(2n−1 − 1)(EG− 1GE)

= 2n−1(2n−1 − 1)EG+ 2n−1(2n − 1)1G1E.

Therefore D is a (22n, 2n−1(2n − 1), 2n−1(2n−1 − 1)) difference set in G× E.
We should note that a similar analysis allows for a generalization of the McFarland

construction for any group G′ where |G′| = 22n and G′ contains a normal subgroup E that
is isomorphic to Zn

2 . We may then construct a difference set with McFarland parameters
in G′.

We will prove this generalized case using character theory. (Contrasting this with
the tedious group ring proof we have just presented is an excellent demonstration of the
power of character theory).

Theorem 2.8. LetG be a group with |G| = 22n that contains a normal subgroup E that is
isomorphic to Zn

2 . ThenD = ∪2n−1
i=1 (gi, Hi), where theHi are the distinct hyperplanes of E

and the gi are distinct coset representatives of E in G, is a (22n, 2n−1(2n−1), 2n−1(2n−1−1)
difference set in G.

Proof: Let p be a prime such that |E| = pn. (We are concerned with the case where
p = 2, but using this notation allows us to see how this might be generalized).

We know that the cosets of E partition the group G, so we have that for any x ∈ G,
there exists a g, e such that x = g + e, where e ∈ E.

Either χ : E → C is principal on E or it is not.
Suppose that χ is non-principal on E. Then it maps E onto the pth roots of unity.

That is, |χ(E)| = p. The kernel of this homomorphism is a subgroup of E; since the
character is non-principal, the kernel is therefore a subgroup of order pn

p
= pn−1. However,

the hyperplanes Hi are all subgroups of E of order pn−1, so exactly one of the hyperplanes
is the kernel of χ.

Call this hyperplane H ′ and the associated coset representative g′. For any Hi ̸= H ′,
we use the fact that χ : Hi → C is a non-principal character on an abelian group, so
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χ(Hi) = 0. Therefore the character sum over D is χ(D) =
∑

i χ(gi)χ(Hi) = χ(g′)χ(H ′)+∑
i:Hi ̸=H′ χ(gi)χ(Hi) = χ(g′)χ(H ′) = 2n−1χ(g′) (because χ(Hi) = 0 for every term in the

sum where Hi ̸= H ′). Since χ(g′) is a root of unity, we have that |χ(D)| = 2n−1.
Suppose instead that χ is principal on E. Let a, b ∈ G be two elements in the same

coset of E. Then there exists an e ∈ E such that a = b + e. Then χ(a) = χ(b + e) =
χ(b)χ(e) = χ(b). That is, χ(a) = χ(b) for any a, b in the same coset of E. We may
therefore define a homomorphism θ : G/E → C∗, which we will call the character on
G/E induced by χ. Define this mapping by θ(a + E) = χ(a). This is well defined,
since χ(a) = χ(b) for any a, b such that a + E = b + E. Furthermore, observe that
θ((a+E)+ (b+E)) = θ(a+ b+E) = χ(a+ b) = χ(a)χ(b) = θ(a+E)θ(b+E), using the
fact that χ is a homomorphism. This shows that θ is a homomorphism, as claimed.

Then
∑

i χ(giHi) =
∑

i χ(gi)(2
n−1) = 2n−1

∑
i χ(gi). We wish to evaluate

∑
i χ(gi).

Using our induced homomorphism, we observe that
∑

i χ(gi) =
∑

i θ(gi + E). Now, we
know that since G/E is a group,

∑
g+E∈G/E θ(g + E) = 0. But the sum χiθ(gi + E)

ranges from i = 1 to i = 2n − 1, which is one less than the size of the factor group
G/E. Furthermore, we know by hypothesis that the gi all correspond to different cosets
of E in G. We therefore conclude that {gi + E|1 ≤ i ≤ 2n − 1} is equal to G/E \ A,
where A is one of the distinct cosets. Then

∑
i θ(gi + E) = −θ(A) +

∑
g+E∈G/E θ(g +

E) = −θ(A) + 0 = −θ(A). But θ(A) is a root of unity, so we therefore conclude that∑
i χ(gi) is some root of unity ω. Therefore

∑
i χ(giHi) = 2n−1

∑
i χ(gi) = ω2n−1. Then

|χ(D)| = |
∑

i χ(giHi)| = |2n−1ω| = 2n−1.
Then we conclude that |χ(D)| = 2n−1 for any character that is not principal on G.

Furthermore, we can see that there are 2n−1(2n− 1) elements of D (since there are 2n− 1
hyperplanes, each with 2n−1 elements). Let k = 2n−1(2n−1) and λ = 2n−1(2n−1−1). Then√
k − λ =

√
2n−1(2n − 1)− 2n−1(2n−1 − 1) =

√
2n−1(2n − 1− 2n−1 + 1. Thus

√
k − λ =√

2n−1(2n − 2n−1) =
√

2n−1 · 2n−1(2− 1) = 2n−1. By theorem 6.1, it follows that D is a
(22n, k, λ) difference set in G.

2.2 S as a McFarland Difference Set

We have claimed that the S described in this section is a (16, 6, 2) difference set. Using
the McFarland construction, we can show that this is the case if we can show that S is
the union of three hyperplanes with different coset representatives.

Consider an element (1, a, b) ∈ S. For brevity, we express only the (a, b) part below.
We see that S may be written as the union of the hyperplanes (0, 0)+⟨(0, α)⟩, (1, 0)+

⟨(0, α + 1)⟩, and (α, α) + ⟨(0, 1)⟩. We can see that the three hyperplanes all have a zero
in the first component, and so are the hyperplanes of the subgroup E = {(0, a)|a ∈ F4}.
(We note that the first component does essentially nothing; since the additive group of
F4 is isomorphic to Z2 × Z2, this subgroup E satisfies the criterion in the generalized
McFarland construction). Furthermore, the coset representatives are distinct elements of
G/E. Thus, by the generalized McFarland construction, the set S is a (16, 6, 2) difference
set.

Similar arguments may be applied to αS and α2S, which are also (16, 6, 2) difference
sets.
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3 Dual PDS

We will now discuss a construction of another (512, 70, 6, 10) PDS. However, we will
seek to construct this PDS in the non-elementary abelian group Z3

4 × Z3
2. We begin by

constructing a (512, 196, 60, 84) PDS in this group.

3.1 A (512, 196, 60, 84) PDS

We will outline a construction presented by Davis and Xiang [3]. Let

K0 = {(0, 0, 0), (0, 2, 0), (2, 0, 0), (2, 2, 0)} ⊆ GR(4, 3)

and let h = (0, 1, 0). Define Ei = ∪6
j=0h

i + h2i−j + 2hj +Kj. It may be shown that this
is a Hadamard difference set in the additive group of GR(4, 3).

We now define D =
∑6

i=0(Ei, g
i) ⊆ GR(4, 3)×GR(2, 3), where g is the multiplicative

generator of GR(2, 3). It may also be shown that D is a (512, 196, 60, 84) PDS in the
additive group of GR(4, 3)×GR(2, 3) (which is isomorphic to Z3

4 × Z3
2).

3.2 Duality Example

Before we proceed with the construction of our (512, 70, 6, 10) PDS, we will describe a
construction of a PDS using PDS duality.

Consider the set {(0, 1), (0, 2), (0, 3), (1, 1), (2, 2), (3, 3), (1, 0), (2, 0), (3, 0)} ⊂ Z4×Z)4.
Note that this is a union of three subgroups (with the identity element subtracted from
each), so the partial congruence partition construction tells us that this is a (16, 9, 4, 6)
PDS in Z4×Z4. We may also verify this by straightforward computation of the character
sums; we write out the character table below. For compactness of notation, a group
element (a, b) is notated by ab. These appear as column labels. Similarly, a character χ
with χ((1, 0)) = α and χ((0, 1)) = β is denoted by αβ; these appear as row labels on the
left. That is, the i, j entry is the character label of row i acting on the group element
label of column j. For ease of viewing, the elements in the PDS have been written in red
text. The right hand column indicates the character sums over the PDS D; that is, the
right hand column entry of row i is the character sum of the character label of row i over
the set D. We note that these sums are always +1 or −3 for non-principal characters, as
expected from our character sum theorem.
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

00 01 02 03 10 11 12 13 20 21 22 23 30 31 32 33
00 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 9
01 1 i −1 −i 1 i −1 −i 1 i −1 −i 1 i −1 −i 1
02 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1 −1 1
03 1 −i −1 i 1 −i −1 i 1 −i −1 i 1 −i −1 i 1
10 1 1 1 1 i i i i −1 −1 −1 −1 −i −i −i −i 1
11 1 i −1 −i i −1 −i 1 −1 −i 1 i −i 1 i −1 −3
12 1 −1 1 −1 i −i i −i −1 1 −1 1 −i i −i i −3
13 1 −i −1 i i 1 −i −1 −1 i 1 −i −i −1 i 1 1
20 1 1 1 1 −1 −1 −1 −1 1 1 1 1 −1 −1 −1 −1 1
21 1 i −1 −i −1 −i 1 i 1 i −1 −i −1 −i 1 i −3
22 1 −1 1 −1 −1 1 −1 1 1 −1 1 −1 −1 1 −1 1 1
23 1 −i −1 i −1 i 1 −i 1 −i −1 i −1 i 1 −i −3
30 1 1 1 1 −i −i −i −i −1 −1 −1 −1 i i i i 1
31 1 i −1 −i −i 1 i −1 −1 −i 1 i i −1 −i 1 1
32 1 −1 1 −1 −i i −i i −1 1 −1 1 i −i i −i −3
33 1 −i −1 i −i −1 i 1 −1 i 1 −i i 1 −i −1 −3


Now, we have considered this table as representing the character determining the row

acting on the group element determining the column. However, the output of such a
calculation is e2πi∗

∑
j cjχ(gj), where cj is the coefficient on the generator gj and χ(gj) is

the image of the generator under the character. Define cj = a and χ(gj) = b. Since
multiplication of real numbers is commutative, we may just as well think of ab as ba;
that is, we will let cj be the image of the generator and χ(gj) be the coefficient on the
generator. Note that this both implies that our table is symmetric and is equivalent to
interchanging the role of the group element and the character.

Recall that the character group is isomorphic to the group G. Furthermore, the
difference set D is the set of elements whose character sums are one of two values. An
analogous structure when we interchange the roles of characters and elements (which we
will refer to as the dual of D) is the set of characters whose sum on the set D is some
number n. Since the character group is isomorphic to G, we might suspect that the dual
of D should itself be a PDS.

In our example, we identify the set of characters whose character sum on D is 1.
These are labeled in the left hand column in blue text for ease of viewing. This set is
{(0, 1), (0, 2), (0, 3), (1, 0), (2, 0), (3, 0), (1, 3), (3, 1), (2, 2)}.

One may use character theory, brute computation, or the partial congruence partition
theorem to confirm that this is indeed a (16, 9, 4, 6) partial difference set. Indeed, it may
be proven that this construction will always work: the isomorphism of the two groups
will imply that the dual of a partial difference set is itself a partial difference set [6].

Note, then, that a partial difference set will always come as a family of four: given a
PDS D ⊆ G, we know that G\D, dual(D), and G\ dual(D) will also be partial difference
sets.

3.3 A (512, 70, 6, 10) PDS

Let G be the group of characters on Z3
4 ×Z3

2 and D be the (512, 196, 60, 84) PDS defined
previously in this chapter. Let D′ = {χ ∈ G|χ(D) = −28}. It may be shown that D′

is a PDS with 70 elements. In fact, we know that the character group is isomorphic to
Z3

4 × Z3
2, so this isomorphism gives us a (512, 70, 6, 10) PDS in Z3

4 × Z3
2.
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Closer inspection of this PDS in fact reveals a structure similar to that of our
(512, 70, 6, 10) PDS in the elementary abelian group. The PDS D′ may be written as
a union of seven sets of ten elements that all have the same Z3

2 part. Furthermore, each
set of ten elements may be decomposed into a set of four whose Z3

4 part is isomorphic
to Z4 and a set of six elements that forms an additive coset of a (16, 6, 2) Hadamard
difference set in a subgroup of Z3

4.
Note the similarity to the PDS with the same parameters in the elementary abelian

group: that PDS could be written as seven sets of ten elements, with each set of ten
being the union of a Z2 × Z2 subgroup and a (16, 6, 2) Hadamard difference set.

3.4 Computations

Even with the powerful theoretical tools we have developed, the computations required to
implement character theory are daunting in a group of 512 characters. (We are generally
interested in knowing all characters of all elements of a group G, which is a set of |G|2
numbers. This is prohibitively time consuming to do by hand.)

To perform the analysis in this thesis, we have developed a Python implementation
of basic galois ring calculations. We will briefly describe these below; a sample of code
may be found in the appendix.

Our implementation relies on the fact that any element of an abelian group may be
thought as a list of coefficients of the generators of the group. In our implementation, a
group element is an object that stores a list of coefficients and a galois ring object, as well
as overloading basic arithmetic operators with the correct calculations using the group
ring coefficients. Multiplication is done by using a numpy package to perform polynomial
multiplication of coefficients. This process yields temporary coefficients. Coefficients of
sufficiently high powers are written as nontrivial linear combinations of lower powers
using a “power table” in the galois ring stored by the element, which are then combined
with the lower power coefficients to find the coefficients describing the appropriate group
element to output. This code is found in “galois-rings.py”.

The galois ring object is constructed using given m,n values (such that the additive
group is Zn

m) and an irreducible polynomial. A “power table” is constructed by recursively
computing hn (where h is the multiplicative generator of the ring) for 0 ≤ n < 2n − 1
using the irreducible polynomial. This code is also found in “galois-rings.py”.

For example: we are primarily interested in GR(4, 3). This ring is constructed as
described above using the polynomial x3+2x2+x+3, which is represented as the vector
(1, 2, 1, 3) (note that coefficients go in descending order). Suppose we wish to construct
the element x2 + x. We would input the vector (1, 1, 0) into the constructor for the
Element class. Addition and subtraction are performed using numpy built-in modular
vector arithmetic; multiplication (such as squaring the element) is done by numpy built-in
polynomial multiplication. The resulting polynomial (which, in the case of squaring our
example element, would be x4+2x3+x2) is then reduced via the power table (which stores
values for any power of x that can be achieved by multiplying two elements in reduced
form). In our example, the x4 and x3 are converted to reduced polynomials, which are
then multiplied by the correct coefficients and summed with x2 to get the result.

We also implement character evaluation on an arbitrary abelian group
G = Zm1 × ... × Zmn . First, we create a function that generates a list of all elements
of the group. This is done by recursively appending all allowed values in Zmk+1

to the
current list of vectors, which is Zm1 × ...× Zmk

.
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Next, we implement evaluation of character sums. Homomorphism properties tell us
that a character is uniquely defined by the images of the generators of G. We further
know that the generators gj must be mapped to roots of unity; define θj such that
χ(gj) = e2πiθj/mj . Then we have that χ(y) = e2πi

∑
j(cgθj)/mj , where cj is the coefficient

of gj in y. Our character evaluation is done by using this formula and numpy’s complex
arithmetic given a vector of the mj and a vector of the coefficients cj (and rounding
to eliminate the effects of floating point precision). A version of this is found in the
“get-character-sum” function in “PDS-list-generator2.py”. To find the character sum, we
simply range over all the characters in the group and sum the results.

An example of a character computation is as follows. Suppose we are evaluating
characters on Z3

4. A character is defined by the images of the generators; let us consider
the character that sends the first generator to the first of the complex fourth roots of
unity, the second generator to the second of the complex roots of unity, and the third
generator to the third of the complex roots of unity. We represent this character by
(1, 2, 3). Let the element we wish to evaluate the character for be (1, 1, 1); then the

character evaluates to e2πi(
1∗1
4

+ 2∗1
4

+ 3∗1
4

). This evaluation is done using built-in complex
multiplication in the numpy package.

This implementation of characters was used to calculate the 70 element PDS described
previously in this chapter. To confirm that these computations were done correctly, we
computed the character sums over the proposed PDS.

We also created a function to check if a given set was a difference (which appears
in “checking-diff-set.py”. This checker works by computing every pairwise difference
and storing the difference in a vector along with a counter that was updated for the
number of times each difference appeared. This allowed for computational exploration
of the properties of the (16, 6, 2) difference sets appearing in the 70 element PDS. These
properties are discussed in the following section.

3.5 Linking Systems

We will notate the order four subgroups making up our (512, 70, 6, 10) PDS as Hi and
the (16, 6, 2) difference sets as Di (such that Ei = Hi ∪Di).

We know that our PDS D is, in group ring notation, D =
∑6

i=0 Hi+Di. Then DD−1

will yield some terms of the form Di−Dj. Since D is a PDS, DD−1 is highly structured;
we may explore this structure by considering the Di − Dj terms. Indeed, [5] explores
various applications of “linking systems” to partial difference sets.

Before we proceed, let us formally define a linking system.

Definition 3.1 (Linking Systems). Let G be a finite group of order v and let ℓ ≥ 1. A
collection of {Dij|0 ≤ i, j ≤ ℓ} of (v, k, λ) difference sets in G is a (v, kλ; ℓ + 1) linking
system if there exist α, β ∈ Z such that Dij = D−1

ji for all i ̸= j and for all distinct
h, i, j ∈ {0, ..., ℓ}, we have that Dhi +Dij = αDhj + β(G−Dhj).

Note that since D
(−1)
ij = Dji, the second condition says that taking the pairwise

differences between two of the difference sets always produces a third difference set α
times and its complement β times.

To explore the possibility of a linking structure in our Di, we computed all possible
Di −Dj. Note that each of these has 36 total differences.

Each Di − Dj was found to yield 30 distinct elements, with 24 of them appearing
exactly once and 6 of them appearing exactly twice. Furthermore, each set of 6 repeated
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elements was computationally verified to be an additive coset of a (16, 6, 2) difference set.
However, none of them were able to be expressed as an additive coset of one of the Di.
That is, our set of Di is not a linking system as defined in definition 3.1.

However, the existence of these repeats and the fact that they form a difference set
appears to be evidence that the Di form some generalization of a linking system. To
better understand this structure, it is useful to think of the Di as McFarland difference
sets formed from three hyperplanes. In this case, the hyperplanes are additive subgroups
generated by order two elements (i.e., subgroups isomorphic to Z2).

For clarity, we will consider only the Z3
4 part of each element (since the GF (8) part

of all elements in Ei is xi, where x is the generator of the multiplicative group). For
notational convenience, the element (a, b, c) ∈ Z4 will be written as abc below.

Viewed in this manner, we may write the Di as

D0 = (012 + ⟨020⟩) ∪ (132 + ⟨220⟩) ∪ (102 + ⟨200⟩)
D1 = (011 + ⟨022⟩) ∪ (103 + ⟨202⟩) ∪ (130 + ⟨220⟩)
D2 = (010 + ⟨020⟩) ∪ (101 + ⟨202⟩) ∪ (113 + ⟨222⟩)
D3 = (021 + ⟨002⟩) ∪ (120 + ⟨200⟩) ∪ (123 + ⟨202⟩)
D4 = (013 + ⟨022⟩) ∪ (100 + ⟨200⟩) ∪ (111 + ⟨222⟩)
D5 = (201 + ⟨002⟩) ∪ (210 + ⟨020⟩) ∪ (211 + ⟨022⟩)
D6 = (001 + ⟨002⟩) ∪ (110 + ⟨220⟩) ∪ (131 + ⟨222⟩).

Note that all seven non-identity order two elements appear as generators for hyper-
planes. Indeed, let us consider these order two elements as points on a graph. We will
define lines on this graph as follows: given two points a and b, there exists a line through
a, b, and a third point c if and only if the generators of a and b sum to the generator
of c. (Note that all generators are order two elements, so addition and subtraction are
the same and therefore any two points on the line a, b, c will define the same line through
a, b, c).

Figure 1: The Fano Plane

The graph shown in figure 1 is an important geometric object known as the Fano plane.
The Fano plane is the projective plane of order 7 and has many useful symmetries. In
particular, we note that any two points determine a line and any two lines intersect in
one point. Likewise, each line has three points, and each point lies on three lines. Indeed,
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these symmetries allow us to map the points to lines and lines to points in an isomorphic
way; for this reason, we say that the Fano plane is “self-dual.”

Note that each of these lines corresponds to one of the seven Di difference sets that
make up our PDS (in the sense that each Di is a union of additive cosets of three
hyperplanes that lie on a line in figure 1).

Let us now consider Di −Dj from this perspective. We know that Di, Dj correspond
to distinct lines on the Fano plane. They therefore have one coset in common; let the
generator of this coset be h1. We may therefore write

Di = (g1 + ⟨h1⟩) + (g2 + ⟨h2⟩) + (g3 + ⟨h3⟩)

and
Dj = (g′1 + ⟨h1⟩) + (g′2 + ⟨h′

2⟩) + (g′3 + ⟨h′
3⟩).

Furthermore, we know that

h1 = h2 + h3 = h′
2 + h′

3. (7)

Since these are all order two elements, it follows that h2 + h′
3 = h′

2 + h3 and that
h2 + h′

2 = h3 + h′
3.

We now consider Di − Dj as a sum of terms of the form (ga − gb) + (⟨ha⟩ − ⟨hb⟩).
Since ⟨ha⟩ = {0, ha} and ⟨hb⟩ = {0, hb}, we have that ⟨ha⟩−⟨hb⟩ = {0, hb, ha, ha−hb}. In
particular, when ha ̸= hb, we may view this as ⟨ha⟩− ⟨hb⟩ = {ha, hb}∪ ⟨ha−hb⟩ (because
ha − hb will always be an order two element).

Recalling h2 + h′
3 = h′

2 + h3 and that all h are order two, we have that

h2 − h′
3 = h2 + h′

3 = h′
2 + h3 = h3 − h′

2. (8)

Likewise, recalling that h2 + h′
2 = h3 + h′

3, we have that

h2 − h′
2 = h3 − h′

3. (9)

Then it follows that ⟨h2−h′
3⟩ = ⟨h3−h′

2⟩ is a subset of both ⟨h2⟩−⟨h′
3⟩ and ⟨h3⟩−⟨h′

2⟩.
Similarly, ⟨h2 − h′

2⟩ = ⟨h3 − h′
3⟩ is a subset of both ⟨h2⟩ − ⟨h′

2⟩ and ⟨h3⟩ − ⟨h′
3⟩.

Now suppose that the coset representatives on our hyperplanes obey similar subtrac-
tion laws: g2 − g′3 = g3 − g′2 and g2 − g′2 = g3 − g′3. Then we have (g2 − g′3) + ⟨h2 − h′

3⟩
appearing twice, once in the ⟨h2⟩−⟨h′

3⟩ term and again in the ⟨h3⟩−⟨h′
2⟩ term. Similarly,

we will have (g2 − g′2) + ⟨h2 − h′
2⟩ appearing in both ⟨h2⟩ − ⟨h′

2⟩ and ⟨h3⟩ − ⟨h′
3⟩.

We know of one other hyperplane that will be repeated for a total of two times in the
subtraction of Di − Dj: the shared hyperplane ⟨h1⟩. We know that
⟨h1⟩ − ⟨h1⟩ = {0, h1, h1, 0} = 2⟨h1⟩. It will appear with the coset representative g1 − g′1.

Finally, we now observe that the first repeated hyperplanes have generators h2 − h′
3

and h2 − h′
2. The sum of these generators is h2 − h′

3 + h2 − h′
2. But since these are all

order two, addition and subtraction are the same. Then the sum must in fact be equal to
h′
2+h′

3 = h1, so the three repeated hyperplanes form a line in our Fano plane. In fact,we
know which line it is. This line must contain ⟨h1⟩; furthermore, the fact that Di and Dj

are distinct means that ⟨h2 − h′
3⟩ and ⟨h2 − h′

2⟩ cannot be points in either Di or Dj. The
only possible line is thus Dk, the third distinct line through the intersection point of Di

and Dk.
We have therefore shown that if the additive cosets obey the stated subtraction laws,

then (g1−g′1)+⟨h1⟩∪(g2−g′3)+⟨h2−h′
3⟩∪(g2−g′2)+⟨h2−h′

2⟩ will be repeated for a total

31



of two times. Furthermore, we know that these three hyperplanes form a line in our Fano
plane and are therefore distinct. We then have a set of cosets of distinct hyperplanes,
so the McFarland construction tells us that this set of six elements is in fact a (16, 6, 2)
difference set.

We have therefore shown that if the additive cosets obey the subtraction laws, then
there will be six repeated elements that form a (16, 6, 2) difference set.

We note that the coset representatives listed above are not the only possible way to
write D. Indeed, given a coset representative g and a hyperplane ⟨2g⟩, we know that 3g
is also a possible coset representative. The above analysis of the subtraction law begs
the question: is there a set of coset representatives that simultaneously obey the stated
subtraction laws for all possible combinations?

A spot check of a few Di −Dj indicate that there seem to be choices of coset repre-
sentatives that will do this for any particular i, j. Furthermore, the appealing properties
of the analysis above (and the natural representation of Di as lines on the Fano plane)
suggest that such a choice likely exists. However, verifying this proposition (and then
analyzing the structure of these coset representatives) is an important next step for the
project.

We note another interesting observation that suggests the Fano plane is crucial to the
structure of this PDS. By writing the hyperplanes as points on a Fano plane, we see that
each hyperplane appears in exactly three different Di. There is a coset rep gi associated
with the hyperplane in each of these. Computation shows that if you take the sum of
these three gi and call it s, the additive subgroup ⟨s⟩ is one of the Z4 subgroups that
is contained within an Ei. Furthermore, the order two element of this subgroup is the
generator of the hyperplane that we started with. In fact, this condition is sufficient to
guarantee reversibility. Suppose that x is a coset representative for a hyperplane H and
that 2x ∈ H. Suppose the coset rep has at least one odd component. We know that the
generators of the hyperplane are order two; the only other element of the hyperplane is the
identity, so we may write an arbitrary hyperplane element as 2y. Let x+2y ∈ x+H; then
−(x+2y) = 3x+2y = x+(2x+2y). But 2y ∈ H and 2x ∈ H, so x+(2x+2y) ∈ x+H.
Thus x+H contains −(x+ 2y), the additive inverse of our arbitrary element. Therefore
x + H is reversible; that is, if x is a coset representative and 2x ∈ H, then x + H
is reversible. Since we ultimately wish to build a PDS out of such unions of cosets of
hyperplanes, and we know that a PDS must be reversible, this is a desirable property.

In summary: empirical observations and initial analysis suggest that the Fano plane
is key to the structure of this PDS. If we know which coset representatives to attach to
the hyperplanes in the Fano plane, we are able to use the McFarland construction to
get the seven (16, 6, 2) difference sets that appear in the PDS, which we have called Di.
Furthermore, the coset representatives for a given hyperplane sum together to generate
each of the seven Z4 subgroups Hj. Taken together, these Di and Hj (with appropriate
GF (8) parts associated) form our 70 element PDS.

4 Conclusion and Future Work

In this thesis, we have explored several useful ways to analyze partial difference sets,
including group rings and character theory. With these tools, we have taken two known
examples of a partial difference set of size 70 in an abelian group of order 512. We
discovered that in each case, the PDS may be thought of as a union of (16, 6, 2) difference
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sets and order four subgroups.
We further found that the projective plane of order seven (i.e., the Fano plane) is

a natural way to describe the PDS in the non-elementary abelian case. We introduced
some exploratory theoretical analysis as well as some interesting empirical observations.
Together, these motivate further study of how the Fano plane can provide a way to
deeply understand this PDS. We made several conjectures and outlined several promising
lines of inquiry. We discuss these in more detail below; the desirable combinatorial and
geometric properties of the Fano plane give reason to suspect that these questions will
help us achieve the project’s ultimate goal of understanding the underlying structure of
our non-elementary 70 element PDS and generalizing this structure to construct new
partial difference sets.

To this end, our work suggests the following questions and conjectures.
A construction of this PDS using the Fano plane does not obviously suggest a relation

between the (16, 6, 2) Di and which Hi it should correspond to. How do we know how to
pair the Di and Hi?

We speculated that there is a representation of D as a set of coset representatives and
hyperplanes such that the coset representatives simultaneously satisfy our subtraction
laws. Is this true? If so, what are those coset representatives?

We showed that given coset representatives that obey the required subtraction laws,
a (16, 6, 2) difference set would be a subset of the repeated elements in Di − Dj. Com-
putationally, we know that these are all such elements. How can we prove this?

The coset representatives obey a subtraction law and interact in such a way that the
lines in the Fano plane exhibit a behavior that can be regarded as a generalization of a
linking system. What is the best way to define such a generalization of linking? How
can we know a priori what the coset representatives should be? Once we have the set of
coset representatives, how do we know which ones to associate with which lines? (I.e.,
given a coset representative, we know which point on the Fano plane corresponds to this
element. However, each point has three such representatives associated with it. How do
we know which three coset representatives should form a line?)

Once these questions are understood, it seems plausible that a geometric construction
of the 70 element non-elementary abelian PDS will become apparent. (This is particularly
appealing since our present understanding is that the Fano plane is the fundamental
structure behind this PDS. The Fano plane is a projective plane of order 7, and there are
several known constructions of finite projective planes).

Finally, we know of a Denniston partial difference set of size 70 in the elementary
abelian group of order 512. It has a similar structure to the non-elementary Denniston
case in that it is a union of seven sets of ten, each of which are themselves a (16, 6, 2)
difference set plus a subgroup of order four. Does the Fano plane appear as a natural way
to understand this partial difference set? If so, how does the description of this PDS in
terms of projective planes relate to the description of the non-elementary abelian case?
Does this relationship suggest anything about a larger family of partial difference sets?
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6 Appendix

6.1 Elementary (512, 70, 6, 10) PDS

Here, we list the elements of our Denniston (512, 70, 6, 10) PDS in Z9
2
∼= Z3

2 × Z6
2. These

appear in tables that list the Z6
2 components for each Ei. The Z3

2 component for each
element in Ei is αi, where α is the generator for the multiplicative group of the field
GF (23).

H0 D0

(0,0,0,0,0,0) (0,1,0,1,0,0)
(0,0,0,0,0,1) (0,1,0,1,1,0)
(0,0,1,0,0,0) (1,1,0,0,1,0)
(0,0,1,0,0,1) (1,1,0,1,0,0)

(1,0,0,0,1,0)
(1,0,0,1,1,0)

Table 2: Elements of E0.

H1 D1

(0,0,0,0,0,0) (1,0,0,0,1,1)
(0,0,0,0,1,0) (1,0,0,0,1,1)
(0,1,0,0,0,0) (0,1,1,1,0,0)
(0,1,0,0,1,0) (0,1,1,1,1,1)

(1,1,1,1,0,0)
(1,1,1,0,1,1)

Table 3: Elements of E1.

H2 D2

(0,0,0,0,0,0) (0,1,1,1,1,0)
(0,0,0,1,0,0) (0,1,1,1,0,1)
(1,0,0,0,0,0) (1,1,0,0,1,1)
(1,0,0,1,0,0) (1,1,0,1,0,1)

(1,0,1,0,1,1)
(1,0,1,1,1,0)

Table 4: Elements of E2.
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H3 D3

(0,0,0,0,0,0) (1,1,0,1,1,1)
(0,0,0,0,1,1) (1,1,0,0,0,1)
(0,1,1,0,0,0) (1,1,1,1,1,0)
(0,1,1,0,1,1) (1,1,1,0,0,1)

(0,0,1,1,1,0)
(0,0,1,1,1,1)

Table 5: Elements of E3.

H4 D4

(0,0,0,0,0,0) (1,1,1,1,0,1)
(0,0,0,1,1,0) (1,1,1,0,1,0)
(1,1,0,0,0,0) (1,0,1,1,1,1)
(1,1,0,1,1,0) (1,0,1,0,1,0)

(0,1,0,1,1,1)
(0,1,0,1,0,1)

Table 6: Elements of E4.

H5 D5

(0,0,0,0,0,0) (1,0,1,0,0,1)
(0,0,0,1,1,1) (1,0,1,1,0,0)
(1,1,1,0,0,0) (0,0,1,1,0,1)
(1,1,1,1,1,1) (0,0,1,1,0,0)

(1,0,0,1,0,1)
(1,0,0,0,0,1)

Table 7: Elements of E5.

H6 D6

(0,0,0,0,0,0) (0,0,1,0,1,0)
(0,0,0,1,0,1) (0,0,1,0,1,1)
(1,0,1,0,0,0) (0,1,0,0,0,1)
(1,0,1,1,0,1) (0,1,0,0,1,1)

(0,1,1,0,0,1)
(0,1,1,0,1,0)

Table 8: Elements of E6.

6.2 Non-Elementary (512, 70, 6, 10) PDS

Here, we list the elements of our (512, 70, 6, 10) PDS in Z3
2 × Z3

4. These appear in tables
that list the Z3

4 components for each Ei. The Z3
2 component for each element in Ei is α

i,
where α is the generator for the multiplicative group of the field GF (23).
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H0 D0

(0,0,0) (0,1,2)
(0,0,2) (0,3,2)
(2,2,1) (1,0,2)
(2,2,3) (3,0,2)

(1,3,2)
(3,1,2)

Table 9: Elements of E0.

H1 D1

(0,0,0) (0,1,1)
(2,1,2) (0,3,3)
(0,2,0) (1,0,3)
(2,3,2) (3,0,1)

(3,1,0)
(1,3,0)

Table 10: Elements of E1.

H2 D2

(0,0,0) (0,1,0)
(1,2,2) (0,3,0)
(2,0,0) (1,0,1)
(3,2,2) (3,0,3)

(1,1,3)
(3,3,1)

Table 11: Elements of E2.

H3 D3

(0,0,0) (0,2,1)
(2,1,3) (0,2,3)
(0,2,2) (1,2,0)
(2,3,1) (3,2,0)

(1,2,3)
(3,2,1)

Table 12: Elements of E3.

H4 D4

(0,0,0) (0,1,3)
(1,1,2) (0,3,1)
(2,2,0) (1,0,0)
(3,3,2) (3,0,0)

(1,1,1)
(3,3,3)

Table 13: Elements of E4.
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H5 D5

(0,0,0) (2,0,1)
(1,3,3) (2,0,3)
(2,2,2) (2,1,0)
(3,1,1) (2,3,0)

(2,1,1)
(2,3,3)

Table 14: Elements of E5.

H6 D6

(0,0,0) (0,0,1)
(1,2,1) (0,0,3)
(2,0,2) (1,1,0)
(3,2,3) (3,3,0)

(1,3,1)
(3,1,3)

Table 15: Elements of E6.

6.3 Additional Theorems: Difference Sets

Theorem 6.1. Let G be an abelian group of order v andD a subset of G of order k. Then
D is a (v, k, λ) difference set in G if and only if k2 = λ(v − 1) + k and |χ(D)| =

√
k − λ

for any nonprincipal character χ : G → C∗.

We will give a proof that essentially follows the proofs of theorems 1.15 and 1.15. How-
ever, the simpler expression for the character sum makes this argument more straightfor-
ward.

To begin, we note that we can make a counting argument about difference sets similar
to theorem 1.7. All possible differences of elements of a (v, k, λ) difference set D is a set of
k2 possible differences simply by the size of D. However, we know that these differences
produce the v − 1 nonidentity elements λ times and the identity element k times. Thus
k2 = λ(v − 1) + k.

We will now prove the theorem at hand.
Proof: Suppose that D is a (v, k, λ) difference set in G and χ is an arbitrary non-

principal character. In group ring notation, this means that DD(−1) = λ(G−1G)+k1G =
λG+ (k − λ)1G. Then we have that χ(DD(−1)) = λχ(G) + (k − λ)χ(1G). But we know
that χ(1G) = 1 and χ(G) = 0, so χ(DD(−1) = k − λ.

Unlike a PDS, a difference set need not be reversible. However, we know that
χ(g−1) = χ(g), so we have that χ(D(−1)) = χ(D). Then it follows that χ(DD(−1)) =
χ(D)χ(D(−1) = χ(D)χ(D) = |χ(D)|2. Therefore |χ(D)| =

√
k − λ.

Conversely, suppose that |χ(D)| =
√
k − λ for any nonprincipal character χ. Then

we have that |χ(D)|2 = k − λ. But we have just argued that χ(D(−1)) = χ(D), so
|χ(D)|2 = χ(D)χ(D) = χ(D)χ(D(−1)) = χ(DD(−1)).

Therefore χ(DD(−1)) = k−λ for any nonprincipal character χ. Now consider the group
ring element D = λ(G−1G)+k1G = λG+(k−λ)1G. Then χ(D) = χ(λG+(k−λ)1G) =
λχ(G) + (k − λ)χ(1G) = k − λ for any nonprincipal character χ.

Then χ(D) = χ(DD(−1) for any nonprincipal character χ. For the principal character
χ0, we can see that χ0(DD−1) = k2 and that χ0(λ(G − 1G) + k1G) = λχ0(G − 1G) +
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kχ0(1G) = λ(v − 1) + k. But we know that k2 = λ(v − 1) + k by hypothesis, so we have
that χ(DD(−1)) = χ(λ(G−1G)+k1G) for any character χ. By corollary 1.17.1, it follows
that DD(−1) = λ(G−1G)+k1G. This is the character ring criterion for D to be a (v, k, λ)
difference set in G.

6.4 Additional Theorems: Paley Squares

We examined small cases of the Paley squares as examples of partial difference sets. We
will now prove that these objects form an infinite family of partial difference sets.

Theorem 6.2. The set D of nonzero quadratic residues of Zp where p is prime is a partial
difference set.

Note: If x is a group element, I will use −x to denote the additive inverse and x−1 to
denote the multiplicative inverse. Since p is prime, we know that every nonzero element
has a multiplicative inverse. Every element has an additive inverse by definition of a
group.

Lemma 6.3. 0 /∈ D, where D is as described above.

Proof: Suppose that there exists an integer a such that 0 < a < p but a2 = 0. Then
p | a2. By Euclid’s Lemma, p | a. But a > 0, so p ≤ a. This is a contradiction. Thus we
conclude that if 0 < a < p, it must be the case that a2 ̸= 0.

Lemma 6.4. There are p−1
2

distinct squares in Zp.

Proof: Define S = 12, 22, ..., (p−1
2
)2. We claim that this is the set of all of the squares.

Let p−1
2

< x < p. Then p − x = y, where 0 < y < p−1
2
. Therefore x = p − y. But

p − y = −y, so x = −y. Thus x2 = (−y)2 = y2, so x2 ∈ S. Thus the set of squares is a
subset of S.

Now we will show that all of the elements of S are distinct. Suppose that there exist
x, y ∈ S that are not distinct: then there exist 0 < a, b ≤ p−1

2
such that a > b but a2 = b2.

Then p|a2 − b2, so p|(a− b)(a+ b). By Euclid’s Lemma, either p|a− b or p|a+ b.
Suppose that p|(a− b). Then, since a− b > 0, it follows that p ≤ a− b ≤ p−1

2
− 0 < p.

This is a contradiction.
Suppose then that p|(a+ b). But a, b ≤ p−1

2
, so a+ b ≤ p−1

2
+ p−1

2
= p− 1 < p. Since

a+ b > 0 and p|(a+ b), we know that p < a+ b < p. This is a contradiction.
Therefore a2 ̸= b2, so all elements of S are distinct and S is therefore the set of all of

the quadratic residues. Thus there are p−1
2

squares mod p.

Corollary 6.4.1. There are p−1
2

nonzero nonsquares.

Lemma 6.5. If a2, b2 are squares, then a2b2 is also a square.

Proof: Let ab = c. Then (ab − c)(ab + c) = a2b2 − c2. Furthermore, since c = ab, it
must be the case that p | ab− c. Therefore p | (ab− c)(ab+ c) = a2b2 − c2, so a2b2 = c2.
That is, D is closed under multiplication.

Lemma 6.6. The set of squares S and the set of nonzero nonsquares N are both closed
under multiplicative inversion.
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Proof: Since all of the nonzero elements are relatively prime to p, we know that each
nonzero element has a multiplicative inverse.

For any group element, a−2 = (a−1)2. Since a−1 is also a group element, it follows
that a−2 = (a−1)2 is a square. Thus the squares are closed under multiplicative inversion.

Since the squares are closed under multiplicative inversion, none of the multiplicative
inverses of the elements of N are in S. Since each multiplicative inverse is nonzero, the
inverses not in S must be in N . Thus all of the inverses are in N , so N is closed under
multiplicative inversion.

Lemma 6.7. If x ∈ S and y ∈ N , the xy ∈ N . If g, h ∈ N , then gh ∈ S.

Proof: Let x ∈ S and y ∈ N . We know that xy ̸= 0: if it were, Euclid’s lemma would
imply that one of them is zero. Suppose then that xy ∈ S. Then there exists a g ∈ Z such
that xy = g2. Therefore y = x−1g2. Since the squares are closed under multiplicative
inversion, this is a product of two squares, which must also be square. Thus y ∈ S. This
is a contradiction, so xy ∈ N .

Now, for a given square, define the set F (a2) = {a2g|g ∈ N}. By cancellation, a2g is
distinct for each g. Since we have p−1

2
distinct nonsquares, there are p−1

2
distinct elements

in F (a2). We know that zero is not in the set, since neither a2 nor g is zero. Furthermore,
we know that a product of a square and a nonsquare is a nonsquare, so each element
of F (a2) is a nonsquare. Then we have p−1

2
distinct nonzero nonsquares in F (a2), so it

follows that F (a2) = N .
Then for every square a2 and nonsquare h, there is exactly one g ∈ N such that

a2g = h. Thus hg−1 = a2.
Fix a nonsquare h. For each of the p−1

2
squares, the nonsquare g such that a2 = hg−1

is distinct (since inverses are unique and products are well defined). Thus there are p−1
2

distinct nonsquares g such that hg−1 ∈ S. But there are only p−1
2

distinct nonsquares, so
for all nonsquares h, g, it follows that hg−1 ∈ S. Since N is closed under multiplicative
inversion, g−1 ∈ N . Thus h, g−1 ∈ N , so h(g−1)−1 = hg ∈ S. Thus the product of two
nonsquares is always square.

With these lemmas, we are now equipped to prove the main theorem.
Proof: Suppose that there exist a, b ∈ Z such that 1 = a2 − b2. Then for any square

g2, we have that g2 = g2a2 − g2b2. But D is closed under multiplication, so g2a2 − g2b2

is a difference of squares. Then each difference of squares solution for one generates a
difference of squares solution for each g2.

Let g2 be fixed. Then, by the cancellation property, g2a2 = g2a′2 if and only if a = a′.
Therefore each distinct difference of squares solution for one corresponds to a distinct
difference of squares solution for g2.

Now let g2 again be an arbitrary nonzero square. Suppose that there exist x, y such
that g2 = x2 − y2. Then, since D is closed under multiplication, it must be true that
1 = g2g−2 = g−2x2 − g−2y−2 is a difference of squares equal to one. Therefore each
difference of squares solution for an arbitrary g2 generates a difference of squares solution
for 1.

Let g2 be fixed. Then, by the cancellation property, g−2x2 = g−2x′2 if and only if
x = x′. Therefore each distinct difference of squares solution for g2 corresponds to a
distinct difference of squares solution for g2.

Thus we have that each element d0 of D has the same number of solutions d0 = d1d
−1
2 ,

where d1, d2 ∈ D. This proves that the parameter λ exists.
Fix an h ∈ N . Suppose that there exist a, b ∈ Z such that h = a2 − b2.
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Then for each g ∈ N , we have that g = gh−1h = (gh−1)a2−(gh−1)b2. Since gh−1 ∈ S,
this is a difference of squares solution for g. By the cancellation property, the solutions
for g generated in this way are distinct so long as the solutions for h are distinct. Thus
each nonsquare g has at least as many difference of squares solutions as h does.

But h was an arbitrary element of N . Therefore no element h′ of N could have more
difference of squares than any other element of N ; if it did, we could simply let h = h′,
and this would give us a contradiction.

Thus every element in N has the same number of difference of squares solutions, so
the parameter µ exists. Thus D is a PDS.

6.5 Sample Code

Here, we include some sample code as described in section 3.4. More complete code is
available by request to the author.

Figure 2: A code sample from “galois-ring.py”.
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import numpy as np 
from collections import Counter 

class Error (Exception ): 
111111 Base class for other exceptions 111111 

pass 
class ReducibilityError (Error ): 

pass 
class LengthError (Error ): 

pass 

class Element : 
def _init_ (self,coefficients,ring): 

self. n' = ring. ~ 
self. n = ring. n 
coefficients = np. array (coefficients) 
if len (coefficients) '= ring. n: 

raise LengthError ("The coefficient vector does not match the\\ 
expected length for the given ring.") 

float_coefficients = coefficients %self. m 
self. coctt1c1cnts = float_coefficients. astype (int) 

□ 



Figure 3: A code sample from “galois-ring.py”.

Figure 4: A code sample from “galois-ring.py”.
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class Element : 
def _init_ (self,coefficients,ring): 

self. m = ring. m 
self. 17 = ring. 17 
coefficients = np. array (coefficients) 
if len (coefficients) ! = ring. 17: 

raise LengthError ("The coefficient vector does not match the\\ 
expected length for the given ring.") 

float coefficients = coefficients %self. m 
self. coefficiellts = float_coefficients. astype (int) 
self. r~i17g = ring 

def str (self): 
return str (self. coefficiellts ) 

def _add_ (self,other): 
return Element ((self. coefficiellts +other. coefficiellts )%self. m,self. ri17g) 

def _sub_ (self,other): 
return Element ((self. coefficiellts - other. coefficiellts )%self. m,self. ri17g) 

def _eq_ (self,other): 
return np. array_equal (self. coefficiellts ,other. coefficiellts ) 

def _mul_ (self,other): 
result = np. zeros ( len (self. coefficiellts )) 
unreduced_coefficients_temp = np. polymul (self. coefficiellts ,other. coefficiellts )%self. m 
if len (unreduced_coefficients_temp) < 2*self. 17- l : 

def _mul_ (self,other): 
result = np. zeros ( len (self. coefficiellts )) 
unreduced_coefficients_temp = np. polymul (self. coefficiellts ,other. coefficiellts )%self. m 
if len (unreduced_coefficients_temp) < 2*self. 17- l : 

unreduced_coefficients = np. concatenate ((np. zeros (2*self. 17- l ­
len (unreduced_coefficients_temp)), unreduced_coefficients_temp)) 

else : 
unreduced_coefficients = unreduced_coefficients_temp 

for i in range (2*self. 17- l ): 
result += (unreduced_coefficients[i] *self. rillg . power_table [2* (self. 17- l )- i]) 

return Element (result %self. m,self. rillg ) 
def _pow_ (self,exp): 

identity = np. zeros ( len (self. coefficiellts )) 
identity[ len (self. coefficiellts )- 1] = 1 
result = Element (identity,self. rillg ) 
for i in range (exp): 

result = result *self 
return result 



Figure 5: A code sample from “galois-ring.py”.

Figure 6: A code sample from “galois-ring.py”.

Figure 7: A code sample from “galois-ring.py”.
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class Galois_Ring : 
def _init_ (self,m,n,irreducible_poly): 

self. 1rreducible_poly = np. array (irreducible_poly) 
self. 111 = m 
self. 11 = n 
if self. n != len (irreducible_poly) - 1: 

raise LengthError ("The size of this irreducible polynomial does not agree with n.") 

for i in range (self. 111): 
output = 0 
for j in range ( len (irreducible_poly)): 

output += irreducible_poly[j] * (i ** ( len (irreducible_poly) - 1- j)) 
if output %self. 1n == 0 : 

raise Reducibi lityE rro r ( "This polynomial is reducible mod " + 
str (m) + ". It has " + str (i) +" as a root.") 

x n - irreducible_poly[ l :] %self. 1n 

self. power_table = np. zeros (( 2*n- 1,n)) 
self. power_table [0 ,n - 1] = 1 

self. power_table = np. zeros (( 2*n- 1,n)) 
self. power_table [0 ,n - 1] = 1 

for i in range (l , 2*n- 1): 
self. power_table [i] = (np. concatenate ((self. power_table [i - 1, 1:],np. array ( [0]))) 
+self. power_table [i - 1, 0]*x_n) %self. rn 

self. elernents = [] 
element_vectors = self. element_builder (self. 111,self. n) 
for vector in element_vectors: 

self. elernents . append (Element (vector,self)) 

def element_builder (self,m,n): 
big_ list = [] 

if n > 1 : 

little_list = self. element_builder (m,n- 1) 

for i in range ( len (little_list)): 

if n==l : 

for j in range (m): 
new_list = little_list[i] . copy () 
new_list. append (j) 
big_list. append (new_list) 

for i in range (m): 
big_ list. append ( [ i] ) 

return big_list 



Figure 8: A code sample from “galois-ring.py”.

Figure 9: A code sample from “galois-ring.py”.
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def make_Ei (i,power_table,myring): 
Ei = [] 

m = 4 

order = 7 
K0 = (Element (np. array ( [0 , 0 , 0]) ,my ring), Element (np. array ( [0, 2, 0]) ,myring), 
Element (np. array ( [2, 0 , 0]) ,my ring), Element (np. array ( [2, 2 , 0]) ,my ring)) 
for j in range (7) : 

coset_vec = (power_table[i] +power_table[( 2*i - j) %order] +2*power_table[j]) %m 
for element in K0: 

kj = element *Element (power_table[j],myring) 
Ei. append (Element (coset_vec,myring) +kj) 

return Ei 

def make_Ej_inv (j,power_table,myring): 
Ej = make_Ei (j,power_table,myring) 
Ej_inv = [] 
zero = Element (np. zeros (3),myring) 
for element in Ej: 

Ej_inv. append (zero - element) 
return Ej_inv 

def compute_sum (i,j,power_table,myring): 
Ei = make_Ei (i,power_table,myring) 
Ej_inv = make_Ej_inv (j,power_table,myring) 
sum_list = [] 
for elementl in Ei: 

for element2 in Ej_inv: 
sum_list. append (elementl +element2) 

return sum_list 



Figure 10: A code sample from “PDS-list-generator2.py”.

Figure 11: A code sample from “PDS-list-generator2.py”.

45

import numpy as np 
from galois_rings import* 

def abelian_group_builder (vector): 
element_list = [] 
if len (vector) >l : 

V_sub = abelian_group_builder (vector[ l :]) 
for i in range (vector[ 0]): 

for subvector in V_sub: 
element_list. append ( [i] +subvector) 

else : 
for i in range (vector[ 0]): 

element_list. append ( [i]) 
return element_list 

def get_character_sum (character,indices,set): 
sum = 0 
for element in set: 

product = 1 
for i in range ( len (element)): 

product *= np. exp (2*np. *lj *character[i] *element[i] / indices[i]) 
sum += product 

return round (np. real (sum)) + round (np. imag(sum)) 



Figure 12: A code sample from “PDS-list-generator2.py”.

Figure 13: A code sample from “structure-explorer-v2.py”.
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def ds_check (elements): 
m = 4 

n = 3 

diffs = [] 

for i in range ( len (elements)): 
for j in range (l en (elements)): 

if i != j: 

diffs. append (np. array ((elements[i] - elements[j]) %m)) 
diffs = np. array (diffs) 

full_group = element_builder (m,n) 

buckets = np. zeros ((m**n,n +l )) 

for i in range (m**n): 
buckets[i, 0 :n] = full_group[i] 

for i in range ( len (diffs)): 
for j in range (l en (buckets)): 

if np. array_equal (diffs[i], buckets[j, 0 :n]): 
buckets[j,n] += 1 

count 0 

for bucket in buckets: 
if bucket[n] == 2 : 

count += 1 
print (bucket) 

if count == 15: 
print ("hadamard DS") 

else : 
print ("not a hadamard DS") 
print ("count", count) 
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