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Abstract

Many activities are subsidized despite generating negative externalities. Examples include nee-
dle exchanges and energy production subsidies. We explain this phenomenon by developing a
model in which the policymaker faces constraints or costs. We highlight three examples. First,
it may be optimal to subsidize a harmful activity if the policymaker cannot set the first-best
tax on an externally harmful substitute. Second, it may be optimal to subsidize a harmful pro-
duction process if the activity mix at lower levels of output uses more harmful activities than
the activity mix at higher levels of output. Third, it may be optimal to subsidize a harmful
activity if there is a large administrative cost associated with taxing a harmful substitute. We
also show how the functional form of the cost of administering a Pigouvian tax affects the
optimal tax. When administrative cost is a function of only tax rates, the policymaker should
tax each activity. However, an increase in the tax presents a tradeoff: lower externality, but
higher administrative cost. A subsidy may be optimal for some externally harmful activities.
When administrative cost is a function of only activity levels, it may not be optimal to tax every
activity. If it is optimal to tax all of the activities, the policymaker should set the tax equal to
the externality plus the marginal administrative cost. If it is not optimal to tax every activity,
the complementarity between activities comes into play and it may be optimal to subsidize
externally harmful activities.

Keywords: Administrative cost, Corrective taxation, Externality, Optimal taxation, Optimal
tax systems, Pigouvian taxation, Second best
JEL Codes: H21, H23
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Taxes used to correct externality-generating behaviors are named for Arthur Cecil Pigou, who
first described many of their features (Pigou, 1920). Pigouvian taxes improve welfare by align-
ing private incentives with a notion of public wellbeing. A broad class of policies that influence
behavior—including carbon taxes, gasoline taxes, and toll roads—fit into a Pigouvian tax frame-
work.

This article focuses on cases in which harmful activities are subsidized. Important examples
include subsidies for proper waste disposal (Fullerton and Kinnaman, 1995), subsidies for nee-
dle exchanges, and subsidies for most types of energy production despite the fact that all energy
production processes generate negative externalities, as shown in the table below.1

Table 1: Energy technologies, externalities, and policies

Technology Externalities U.S. Policy

Coal Greenhouse gases, Acid rain, Hazardous waste, Tax & Subsidize

Airborne particulates, Risk of mining accidents

Oil Greenhouse gases, Hazardous waste, Tax & Subsidize

Airborne particulates, Risk of oil spills,

Natural Gas Greenhouse gases, Ecosystem destruction, Tax & Subsidize

Airborne particulates, Water contamination

Nuclear Hazardous waste, Risk of nuclear meltdown Subsidize

Hydropower Ecosystem destruction, Risk of dam failure Subsidize

Bioenergy Greenhouse gases Subsidize

Solar Toxic production process, Ecosystem destruction Subsidize

Geothermal Toxic gases released Subsidize

Wind Harm to wildlife, Eyesore Subsidize

To better understand the circumstances under which a policymaker might optimally subsidize
externally harmful activities, we develop a model with multiple externally harmful activities and
characterize optimal policy when the policymaker faces constraints and costs.2 Possible constraints

1This is a partial list of the external harms discussed in the World Energy Council’s 2016 World Energy Resource
Report. Energy subsidies exceeded $600 billion dollars globally in 2017 (Taylor, 2020).

2There are many different polluting activities, each of which releases different combinations of pollutants. The
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include technological limitations and political realities that place upper bounds on some taxes or
make some activities untaxable. Possible costs include resource expenditures to measure activity
levels, enforce tax laws, and maintain a tax bureaucracy. Crucially, when a policymaker faces con-
straints and costs, the complementarity between activities matters. We generalize previous work
that examines settings with a single externality and find plausible cases in which the policymaker
will optimally subsidize a harmful activity or output because of a constraint or cost.

When possible, the policymaker should use each instrument available to her up to the point at
which the marginal social harm of that instrument eclipses the marginal social benefit. In the first
best, a tax equal to marginal external harm optimally trades off private net benefit and external
harm. But the policymaker does not always have complete discretion to set taxes as she pleases.
When the policymaker faces constraints, some tax rates will not equal marginal external harm,
leaving some externalities uncorrected. When some taxes are constrained, the marginal benefit of
unconstrained taxes includes the change in external harm from activities with constrained taxes.
The policymaker should use unconstrained taxes to adjust the level of activities with constrained
taxes. As we show, at the social optimum, each unconstrained tax targets its own externality
and also the uncorrected externality of all constrained taxes adjusted for the relationship between
activities. The complementarity between activities matters, and if a substitutionary relationship
exists between an activity with a constrained tax and an activity with an unconstrained tax, a
subsidy on a harmful activity may be optimal. This generalizes Wijkander (1985), which studies
the case with one externally harmful and untaxable activity.3

Another second-best scenario emerges when the policymaker cannot directly tax externally
harmful activities but can tax output. As we show, an output tax is an activity tax subject to the
constraint that the tax on each activity be proportional to that activity’s marginal product. The
optimal output tax balances marginal external harm and marginal product. Even if all activities
are externally harmful, an output subsidy may be optimal depending on the relationship between
activities and the correlation between the activities’ marginal products and external harms.

When the policymaker has both constrained activity taxes and an output tax at her disposal, we
show that she should use the output tax to mitigate the uncorrected externality from the activities
with constrained taxes. This generalizes the the two-part instrument (Fullerton, 1997; Fullerton
and Mohr, 2003).

EPA requires factories to report on 650 chemicals, which are produced by several different productive activities, in a
Toxic Release Inventory report.

3Our analysis generalizes Wijkander (1985) in two ways. First, we allow an arbitrary number of externally harmful
activities, which makes an optimal subsidy on a harmful activity possible. Second, we allow the policymaker to face
arbitrary constraints on the taxes she may impose. In Wijkander (1985)’s model, the binding constraint on the tax is
equal to 0. Our model includes the cases in which the policymaker can tax externally harmful activities but is unable
to set the efficient tax because of, for example, distributional concerns or a powerful lobby.

4
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When levying taxes carries an administrative cost, the policymaker must trade off between the
net private benefit of the activities, their external harm, and the administrative cost of taxation.
The functional form of administrative costs plays an important role in determining the optimal
tax system. If administrative costs are a function of only tax rates, we show that the policymaker
should tax every activity. However, the administrative cost imposes a tradeoff on the policymaker.
Higher tax rates reduce the externality but increase the administrative cost. Administrative costs
that increase with tax rates lead to taxes which only partially correct external harm.

If administrative costs are a function of only activity levels, it may no longer be optimal to
tax every activity because the reduced external harm may be smaller than the administrative cost
and lost private benefit. When it is optimal to tax every activity, the policymaker should set the
tax equal to the externality added to the marginal administrative cost.4 At that tax rate, the private
market internalizes both the externality and the administrative cost. When it is not optimal to tax
every activity, the policymaker must choose the optimal tax base and tax rates. The analysis of
fixed costs follows a similar line of reasoning. An optimal subsidy on a harmful activity is possible
under each considered functional forms of administrative cost.

Relevant literature. Classical Pigouvian theory directs policymakers to tax activities that gen-
erate external harm, setting the tax equal to the marginal harm. Classical Pigouvian theory rejects
the idea that complements and substitutes affect the optimal Pigouvian tax. Sandmo (1976), for
example, contends that “the fact that a commodity involves a negative externality is not in itself an
argument for taxing other commodities which are complementary with it, nor for subsidizing sub-
stitutes.” Several other papers reaffirm the superiority of direct taxation in the first best, including
Kopczuk (2003).5

In the second best of Lipsey and Lancaster (1956), however, scholars—including Wijkander
(1985) and Parry (1998)—have found that complementarity may be relevant for optimally correct-
ing external harm.6 Fullerton and West (2002) study the indirect taxation of a single externality,

4Polinsky and Shavell (1982) develop a model with one externality in which administrative costs are fixed per firm
and the tax causes the number of firms to vary. Polinsky and Shavell (1982) do not, however, explore administrative
costs that are a function of taxes alone.

5Green and Sheshinski (1976) show that when there are heterogenous agents facing a congestion externality, it
is possible that individuals choose higher levels of the externally harmful activity the more external harm there is,
in which case indirect correction may be superior to direction correction. Congestion externalities cause no external
harm to the individual who generates them. We study atmosphere externalities, which harm everyone regardless of
who generates them.

6Our focus is on second-best environments that restrict the instruments available to the policymaker. However,
there is a large body of literature that studies the second-best question of how a policymaker should use corrective
taxation in the presence of other distortionary taxes, including Kaplow (1990), Bovenberg and De Mooij (1994),
Bovenberg and van der Ploeg (1994), Bovenberg and Goulder (1996), Parry (1997), Fullerton (1997), Pirttilä and
Tuomala (1997), Cremer, Gahvari and Ladoux (1998), Goulder (1998), Parry (1998), Goulder et al. (1999), Pirttilä
(2000), Cremer and Gahvari (2001), Kaplow (2012), Gahvari (2014), and Jacobs and de Mooij (2015). Many of these
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specifically when emissions are not taxable but the policymaker can tax gasoline consumption and
certain attributes of vehicles. Fullerton and Kinnaman (1995), Fullerton and Mohr (2003), and
Fullerton and Wolverton (2005) examine optimal policy when a two-part instrument must be used
in lieu of a direct tax on a harmful activity. Jacobsen et al. (2020) use a sufficient statistics approach
that enables comparison between imperfect corrective tax policies. Bennear and Stavins (2007) de-
scribe the many ways that environmental policy is in the second best. And Burtraw et al. (2003),
Groosman, Muller and O’Neill-Toy (2011), Ambec and Coria (2018), Fullerton and Karney (2018)
have shown empirically that taxes and regulations aimed at one external harm also affect others.

Since our model includes multiple tax instruments, this paper also fits into the optimal tax
system literature. The policymaker must choose the optimal tax system (Slemrod, 1990; Slemrod
and Yitzhaki, 2002), selecting both the optimal tax base and the optimal tax rates (Yitzhaki, 1979).
As in Mayshar (1991), each implemented and unconstrained tax instrument is used up to the point
at which its marginal benefit falls below its marginal harm.

Roadmap. The next section introduces a simple and flexible model with multiple activities
each of which may have an associated externality. Unsurprisingly, the first-best Pigouvian tax on
each activity is equal to the marginal external harm from each activity. The remaining sections
explore Pigouvian taxation when the policymaker faces either constraints or costs, emphasizing
scenarios in which the policymaker should optimally subsidize a harmful activity.

Section two describes the optimal tax when the policymaker faces constraints. The policymaker
first faces an upper bound to the taxes she may impose. At the social optimum, the policymaker
will use unconstrained taxes to effect changes in the levels of activities with constrained taxes. If,
for example, a very harmful activity cannot be taxed at a high level, it may be optimal to subsidize a
substitute. The policymaker is then constrained to tax only output. Even if all production activities
are harmful, the policymaker should subsidize output if the activity mix at lower levels of output
uses more harmful activities than the activity mix at higher levels of output. Lastly, we explore
the case in which the policymaker faces an upper bound on the activity taxes she may impose but
also has recourse to an output tax. In this case, the policymaker should use the output tax and the
unconstrained activity taxes to effect changes in the levels of activities with constrained taxes.

Section three describes how the optimal tax changes when taxes are administratively costly.
Administrative costs may (1) be fixed, (2) be a function of tax rates, (3) be a function of activity
levels, or (4) some combination of (1) - (3). This generalizes Polinsky and Shavell (1982), which
considers only one activity and, therefore, cannot explore tradeoffs between externally harmful

papers also address distributional issues that we do not explore here. Notably, Bovenberg and Goulder (1996) show
that if the revenue from corrective taxes is lump-sum distributed and not used to reduce distortionary taxes, then—
when external harm is sufficiently small—it may be optimal for the policymaker to subsidize the externally harmful
activity.

6
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activities.7 Optimal subsidies arise in this context. For example, it may be optimal to subsidize the
substitute of an activity that is both very externally harmful and administratively costly to tax.

1 First-best Pigouvian taxation

This section introduces a model of Pigouvian taxation with multiple externalities and explores
optimal policy when the policymaker faces neither constraint nor cost. The result is as expected:
the optimal tax vector is equal to the optimal vector of externalities.

Let x be an n-dimensional vector of activity levels.8 Activities have both private costs and
private benefits and can only be performed in nonnegative quantities.9 LetX ⊆ Rn

+ be the possible
set of activity levels. We assume X is convex and has finite measure. We follow Polinsky and
Shavell (1982) and analyze activity levels, but x could alternatively be interpreted as a vector of
consumption goods, production inputs, or emission levels. However, the externality associated
with a good depends on how that good is consumed (Sandmo, 1976; Fullerton and West, 2002)
and produced (Plott, 1966; Cremer and Gahvari, 2001); similarly, the externality associated with a
production input depends on how that input is used; and mapping emissions to private net benefit
or utility requires additional assumptions. Thus we believe activity levels to be the most natural
and general interpretation.

Following Ramsey (1927), a net benefit function b : X → R maps activity levels to private
net benefit. We assume b is twice continuously differentiable and strictly concave and achieves its
maximum somewhere in the interior of X .10

Both external harm and tax burden are linear functions of activity levels. Let e be the n-
dimensional vector of external harm per unit of activity, and t be the n-dimensional vector of tax
per unit of activity. Both external harm and tax burden are measured in the same units as net private
benefit.

7As Table 2 describes, Polinsky and Shavell (1982) study a subset of the administrative cost functional forms that
we study here.

8An activity is defined as a specific action undertaken at a specific time and in a specific place—for example,
burning coal in San Fransisco on July 1st, 2020. With this level of specificity, each activity will have a well-defined
externality.

9Activities have private benefit either directly or—because they result in the production of valuable goods that
have a private benefit—indirectly. Thus activities would include both dancing and burning coal. Dancing would have
a direct private benefit and burning coal would be used in the production of a good. There are, of course, many goods
for which burning coal might be a part of the production process. The private market ensures that the goods with
the highest net private benefit are produced. As in Becker (1965), the private benefit of activities may vary with the
available goods.

10One way to ensure this outcome is to assume that limxi↘∂X
∂b
∂xi

=∞ and limxi↗∂X
∂b
∂xi

= −∞.
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This is a flexible model that generalizes many other settings.11 Notably, the widely used model
in which a representative agent optimizes strictly concave utility subject to a weakly convex pro-
duction possibility frontier—assuming one activity (say leisure) generates no external harm and
cannot be taxed—is a special case of the net benefit approach.

Proposition 1. Let u(x, xn+1) : Rn+1 → R be a strictly increasing, strictly concave utility function

of a representative agent over n+ 1 activities. Let p(x, xn+1) : Rn+1 → R be a strictly increasing,

weakly convex function, such that p(x, xn+1) = 0 defines a production possibility frontier. Then

(i) there exists a function f(x) : Rn → R such that p(x, xn+1) = 0 if and only if xn+1 = f(x);

(ii) u(x, f(x)) = b(x) defines a strictly concave net benefit function; and

(iii) assuming activity n+ 1 generates no external harm and is untaxed, the agent’s best response

function to a vector of activity taxes is the same under either the constrained utility maxi-

mization problem or the unconstrained net benefit maximization problem.

Proof. See appendix.

In our general framework, consumers and firms take t as given and make decisions to maximize
utility and profit, resulting in an equilibrium level of activities. For brevity, we say the private
market solves

max
x

b(x)− t>x (1)

which leads to the first order condition

b′(x)− t> = 0 (2)

Because b is strictly concave it has an invertible Hessian.12 Therefore, by the implicit mapping
theorem, there exists a continuously differentiable function, x(t) : Rn → Rn, such that b′(x(t))−
t> = 0. Note that b′′(x(t))x′(t) = I , the identity matrix, so x′(t) is invertible, x′(t)−1 = t′(x), and
x(t) is a bijection. These are useful properties of x(t) that we make use of.

The market equilibrium of activities changes with t; x(t) is the private market’s best response
function to t. x′(t) shows how the private market’s best response to t changes with t and reveals the

11The net benefit approach cannot generally model non-competitive settings because, as Buchanan (1969) shows,
market power changes the equilibrium level of activities, which may incidentally correct or exacerbate external harm.
If so, the relationship between taxes and uncorrected external harm would require additional assumptions to model.

12We use matrix calculus and the associated notation, including > to denote a matrix’s transpose
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complementarity between activities. Complementarity, in this context, means how the equilibrium
quantity of one activity changes in response to a change in the tax on another. An advantage of
the net benefit approach is that it encompasses complementarities that arise from both consumer
preferences and production technology, and as Ramsey (1927) notes, the net benefit approach also
allows the utility from consumption to vary with the method of production.

We now show that when there are no constraints or costs the policymaker should set tax rates
equal to marginal external harm.

Proposition 2. In the first best, with costless tax administration, t = e uniquely satisfies the first

order condition of the policymaker’s problem.

Proof. The policymaker solves

max
t
b(x(t))− e>x(t) (3)

which leads to the first order condition b′(x(t∗))x′(t∗)− e>x′(t∗) = 0. Substituting b′(x(t)) = t>,
the private market’s first order condition, yields (t∗ − e)>x′(t∗) = 0. t∗ = e is clearly a solution,
and the invertibility of x′(t∗) ensures that it is the unique solution.

This is Pigou (1920)’s remarkable result generalized to arbitrary dimensions. When t = e,
the private market fully internalizes every externality, and the policymaker need only know e to
set optimal policy. Using the tax on activity i to induce changes in activity j is not welfare im-
proving because there is no welfare gain from changing the activity level in a market that already
internalizes the externality.

Proposition 3. In the first best, with costless tax administration, t = e is a global maximizer.13

Proof. Consider two arbitrary activity tax vectors, v and w. The change in welfare caused by
moving from tax vector v to tax vector w is

∆b− e>∆x = b(x(w))− b(x(v))− e>[x(w)− x(v)] (4)

= b(x(γ(1)))− b(x(γ(0)))− e>[x(γ(1))− x(γ(0))] (5)

13This is true because the net benefit function is strictly concave, which rules out both perfect substitutes and perfect
complements relationships between activities.
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where γ : R→ Rn, γ(r) = v + r(w− v) and r ∈ [0, 1] is a scalar. By the fundamental theorem of
calculus

=

∫ 1

0

[b′(x(γ(r)))− e>]x′(γ(r))γ′(r)dr (6)

Recalling that b′(x(t)) = t>

=

∫ 1

0

(γ(r)− e)>x′(γ(r))γ′(r)dr (7)

Noting that γ′(r) = (w − v)

=

∫ 1

0

(v + r(w − v)− e)>x′(γ(r))(w − v)dr (8)

If v = e (i.e. the policymaker shifts away from the optimal activity tax), then

∆b− e>∆x = (w − e)>
[∫ 1

0

rx′(γ(r))dr

]
(w − e) (9)

=
n∑
i=1

n∑
j=1

(wi − ei)(wj − ej)
∫ 1

0

r ∂xi
∂tj

(γ(r))dr (10)

The integrand in (9) is a negative definite matrix and the expression is a quadratic form. Thus the
optimal activity tax is strictly superior to any other activity tax.

We may approximate the change in welfare caused by moving from tax vector v to tax vector
w by assuming that the average activity level over the affine path between v and w is equal to the
average of activity levels at v and w.14 Starting from (7)

∆b− e>∆x =

∫ 1

0

(γ(r)− e)>x′(γ(r))γ′(r)dr (11)

Integrating by parts

= (w − e)>x(w)− (v − e)>x(v)− (w − v)>
∫ 1

0

x(γ(r))dr (12)

14Some papers, for example Jacobsen et al. (2020), use the stronger assumption that x′(γ(r)) is constant for r ∈
[0, 1]. Under this stronger assumption 1

2 (w − e)>∆x = 1
2 (w − e)>x′(e)(w − e).
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Assuming that
∫ 1

0
x(γ(r))dr = 1

2
(x(w) + x(v)) and rearranging

=
1

2
(w + v − 2e)>∆x =

1

2

n∑
i=1

(wi + vi − 2ei)∆xi (13)

which is the sum of n Harberger trapezoids. To see the welfare lost compared to the first best, set
v = e

=
1

2
(w − e)>∆x =

1

2

n∑
i=1

(wi − ei)∆xi (14)

which is the sum of n Harberger (1964) triangles.

2 Second-best Pigouvian taxation

We now consider a second-best environment, in which the policymaker faces a constraint that pre-
vents the implementation of the first-best tax regime. We use the term constrained activity taxation

to refer to the case in which the policymaker cannot set activity taxes above a certain level.15 The
policymaker might face constrained activity taxation if a powerful lobby or distributional concerns
prevented her from raising activity taxes above a certain level. A special case arises when the pol-
icymaker is constrained to leave some activities untaxed because, for example, the measurement
of some activities is technologically impossible, prohibitively expensive, or hopelessly susceptible
to evasion.16 Even if no activities can be taxed, the policymaker may be able to tax output, which
is easier to measure because of the record keeping associated with market transactions. We use
the term output taxation to refer to the case in which the policymaker is constrained to tax only
output. This section first analyzes constrained activity taxation, then output taxation, and lastly the
combined case in which the policymaker has at her disposal both constrained activity taxes and an
output tax.

2.1 Constrained activity taxation

There are three possible cases when a policymaker faces constraints on the activity taxes she may
set. At the social optimum, (1) the constraints on none of the taxes bind, (2) the constraints on all
of the taxes bind, or (3) the constraints on some of the taxes bind. If none of the constraints bind,

15We omit analysis of the similar case in which the policymaker must set activity taxes above a certain level.
16An common example is undetectable illegal dumping (Fullerton and Kinnaman, 1995).
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the policymaker is effectively in the first best. If all the constraints bind, the optimal tax system
is defined by the constraints. The non-trivial case, in which some constraints bind, is the one we
consider here.

Whenever a tax constraint binds, the external harm of the activity subject to that tax is not
corrected. The tax will not set the marginal social benefit of the activity on which it is levied equal
to the marginal social cost of that activity. In that case, using taxes with non-binding constraints to
change the levels of activities with bound taxes improves welfare. At the optimum, the marginal
social benefit of each unbound tax is equal to that tax’s marginal social cost, where the marginal
social benefit of an unbound tax is the reduction in total external harm and the marginal social cost
is the lost private benefit.

To model constrained activity taxation, assume that the policymaker may tax all activities as
before but now faces a vector of upper limits, T , on the taxes she may impose. The policymaker’s
optimization problem is a Lagrangian with a vector of Lagrange multipliers λ:

max
t
b(x(t))− e>x(t) + λ>(T − t) (15)

The first order condition is

b′(x(t∗))x′(t∗)− e>x′(t∗)− λ> = 0 (16)

After substituting the private market’s first order condition, b′(x(t)) = t>, we have

(t∗ − e)>x′(t∗)− λ> = 0 (17)

Before analyzing the case with an arbitrary number of activities, we consider the case with two
activities to gain intuition.

Example 1. Let xs be the quantity of solar power plant activity and xc be the quantity of coal
power plant activity. The policymaker’s first order conditions are

(t∗s − es)∂xs∂ts
+ (t∗c − ec)∂xc∂ts

− λs = 0 (18)

and

(t∗s − es)∂xs∂tc
+ (t∗c − ec)∂xc∂tc

− λc = 0 (19)

Now assume that the constraint on the coal tax binds but the constraint on the solar tax does not.

12

Electronic copy available at: https://ssrn.com/abstract=2831563



Then λs = 0 and t∗c = Tc, and (18) may be written

(t∗s − es)∂xs∂ts
+ (Tc − ec)∂xc∂ts

= 0 (20)

(20) states that, at the optimum, the marginal net benefit from an increase in ts must be 0. Because
tc is constrained, the policymaker can no longer use corrective taxes to set the marginal benefit
of xc equal to its marginal cost, but the policymaker can increase welfare by using ts to induce
changes in xc. In other words, the optimal policy should take advantage of the complementarity
between activities. The policymaker will opt to under or overcorrect the externality on xs to reduce
the external harm from xc.

Because tc is constrained,
∂xc
∂ts/

∂xs
∂ts

= dxc
dxs

, which is the tradeoff between xs and xc the poli-
cymaker faces given the private market’s best response function and the binding constraint on tc.
Thus

(t∗s − es) + (Tc − ec)
dxc
dxs

= 0 (21)

(21) states that the marginal net private benefit of xs should equal the marginal external harm from
xs. In the second best, the marginal net private benefit is t∗s + Tc

dxc
dxs

, and the marginal external
harm from xs is es + ec

dxc
dxs

. In the first best, tc = ec which makes the complementarity between
the activities irrelevant, but in (21) Tc < ec and thus the complementarity matters. In other words,
when Tc < ec, xc has a net marginal social loss, meaning that reductions in xc result in a social
gain. The policymaker should use ts to attain this gain up to the point at which this gain is offset
by the net marginal social loss from under or over correcting xs.

With some algebraic manipulation, we can isolate t∗s.

t∗s = es + (ec − Tc)
dxc
dxs

(22)

which shows that, at the social optimum, the tax on solar activity is equal to the externality of solar
activity added to the uncorrected externality on coal adjusted for the tradeoff between xs and xc.
(22) also shows the conditions under which the policymaker should optimally subsidize solar plant
activity. By assumption both activities are externally harmful, but the tax constraint binds only
for coal. Thus, es > 0 and (ec − Tc) > 0. Since ∂xs

∂ts
< 0, the sign of dxc

dxs
depends on ∂xc

∂ts
, the

complementarity between the activities. If the activities are substitutes, then ∂xc
∂ts

> 0, in which
case it is possible that es + (ec − Tc)dxcdxs

< 0, making a subsidy on solar plant activity optimal. As
(22) highlights, the case for a subsidy on solar strengthens when the marginal external harm from
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solar plant activity is smaller, the uncorrected externality on coal plant activity is larger, the effect
of the solar tax on solar plant activity is smaller, and solar and coal are more substitutable.17

This example generalizes to n activities, m non-binding tax constraints, and n−m binding tax
constraints, but before doing so it will be helpful to define some additional notation and explore the
relationship between tax-constrained and tax-unconstrained activities in the second best. Without
loss of generality, assume that the taxes with binding constraints are tm+1 . . . tn. Separate the
Jacobian x′(t) into four partitions as follows.

x′(t) =



∂x1
∂t1

. . . ∂x1
∂tm

∂x1
∂tm+1

. . . ∂x1
∂tn

... . . . ...
... . . . ...

∂xm
∂t1

. . . ∂xm
∂tm

∂xm
∂tm+1

. . . ∂xm
∂tn

∂xm+1

∂t1
. . . ∂xm+1

∂tm

∂xm+1

∂tm+1
. . . ∂xm+1

∂tn

... . . . ...
... . . . ...

∂xn
∂t1

. . . ∂xn
∂tm

∂xn
∂tm+1

. . . ∂xn
∂tn


=

 Dxu Dxc

Dxc
> Dxb

 (23)

Dxu is the submatrix comprised of all ‘unbound’ partials ∂xi
∂tj

, with i, j ∈ 1, . . . ,m, Dxb is the
submatrix comprised of all ‘bound’ partials ∂xi

∂tj
, with i, j ∈ m+ 1, . . . , n, andDxc is the submatrix

comprised of all ‘bound crossed with unbound’ partials ∂xi
∂tj

, with i ∈ 1, . . . ,m, j ∈ m+ 1, . . . , n.

Since ∂xi
∂tj

=
∂xj
∂ti

, the fourth submatrix is Dxc>. Similarly, separate all relevant vectors into two
partitions

v =

(
v1 . . . vm vm+1 . . . vn

)
=

(
vu vb

)
(24)

such that u again denotes ‘unbound’ and b denotes ‘bound’.
Note that for a vector dt of small changes to t the resulting changes to x would be

dx =x′(t)dt (25)

17The net benefit approach allows a flexible relationship between activities even when there are only two. This can
be reconciled to utility maximization by noting that net benefit maximization may be interpreted as utility maximiza-
tion with an additional activity that is untaxed and causes no external harm (see the appendix). As a consequence,
when using a net benefit function, there is no requirement that activities be Hicksian substitutes when there are only
two.
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which may be rewritten using the partitions defined in (23) and (24) as

dxu =Dxudtu +Dxcdtb (26)

and

dxb =Dxc
>dtu +Dxbdtb (27)

Because Dxu is a principal submatrix of a negative definite matrix it is invertible. In the second
best, where taxes tm+1, . . . , tn are constrained, dtb = 0. Thus

dtu =[Dxu]
−1dxu (28)

and therefore

dxb =Dxc
>[Dxu]

−1dxu (29)

In the first best, the policymaker faces no restrictions on the marginal changes to activity levels
that she is able to induce with the appropriate marginal changes to tax rates. When some of the
activity taxes face binding constraints, the policymaker cannot induce arbitrary marginal changes
to activity levels. If the policymaker induces arbitrary changes to the activities with unbound taxes,
(29) shows the required changes to the activities with bound taxes that ensure the tax constraints
and the private market’s best response function remain satisfied. In other words, given the tax
constraints, Dxc>[Dxu]

−1 is the matrix of partial derivatives below that maps dxu to dxb.

Dxc
>[Dxu]

−1 =


∂xm+1

∂x1
. . . ∂xm+1

∂xm

... . . . ...

∂xn
∂x1

. . . ∂xn
∂xm

 (30)

(30) will prove useful for interpreting optimal tax expressions. With this background, we return
now to our generalization of example 1.

Proposition 4. If tax administration is costless, at the social optimum, each unconstrained tax ti
will equal the marginal externality of activity i added to the uncorrected externality of all activities

with bound taxes weighted by the responsiveness of the activity to changes in activity i.

Partitioning (17) using the partitions in (23) and (24), the policymaker’s first order conditions
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may be written

(tu
∗ − eu)>Dxu + (tb

∗ − eb)>Dxc> − λu> = 0 (31)

and

(tu
∗ − eu)>Dxc + (tb

∗ − eb)>Dxb − λb> = 0 (32)

Now since the constraint on tb binds but the constraint on tu does not, λu = 0 and t∗b = Tb, and
thus (31) is equivalent to

(tu
∗ − eu)>Dxu + (Tb − eb)>Dxc> = 0 (33)

(33) states that, at the optimum, the marginal net benefit from an increase in ti with i ∈ {1, . . . ,m}
must be 0. Again, the optimal policy should take advantage of the complementarity between activ-
ities. The policymaker will opt to under or overcorrect the externality on activities with unbound
taxes to better trade off external harm and private net benefit. Applying the invertibility of Dxu,
we arrive at

(tu
∗ − eu)> + (Tb − eb)>Dxc>[Dxu]

−1 = 0 (34)

Interpreting Dxc>[Dxu]
−1 as a matrix of partials as in (30), we have for each unconstrained tax,

i ∈ {1, . . . ,m},

(ti
∗ − ei) +

n∑
j=m+1

(Tj − ej)∂xj∂xi
= 0 (35)

(35) shows how the policymaker must trade off the uncorrected externality of each activity with a
non-binding tax constraint against the uncorrected externality of all the tax-constrained activities.
In the first best, t∗j = ej , which makes the complementarity between the activities irrelevant, but in
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(35) Tj 6= ej for all j ∈ {m+ 1, . . . , n} and thus complementarity matters.18 Isolating t∗i yields

ti
∗ = ei +

n∑
j=m+1

(ej − Tj)∂xj∂xi︸ ︷︷ ︸
second-best modification

(36)

which shows how the optimal tax compares to the first best. At the social optimum, for taxes
without binding constraints, the tax on each activity is equal to the direct marginal external harm
of that activity added to the uncorrected externality of all activities with constrained taxes, adjusted
for the relationship between activities. (36) also shows the conditions under which the policymaker
should optimally subsidize a harmful activity. An optimal subsidy on activity i requires that ei +∑n

j=m+1(ej − Tj)∂xj∂xi
< 0, meaning that (ej − Tj) and ∂xj

∂xi
must have opposite signs for at least

one j. This requires a substitutionary relationship between at least one of the activities with bound
taxes and i. As before, the case for a subsidy on an harmful activity strengthens when the marginal
direct external harm from that activity is smaller, the uncorrected externality on activities with
binding tax constraints is larger, and small increases of the activity level cause larger increases in
the levels of activities with binding tax constraints.19

It is instructive to decompose the welfare lost, relative to the first best, when the policymaker
faces a binding constraint on some activity taxes. From (9) we know that the lost welfare for an
arbitrary activity tax vector w is

∆b− e>∆x = (w − e)>
[∫ 1

0

rx′(γ(r))dr

]
(w − e) (37)

18Consider a very harmful activity with a low binding constraint. Optimal policy would require the policymaker to
tax any complement above the marginal externality of that complement. But the complement might too face a binding
constraint. Thus, with more than two externally harmful activities, it is possible to have a binding constraint Tj > ej ,
and technically possible to have a knife edge case with a binding constraint Tj = ej .

19A special case of this model occurs when some activities are untaxable, in which case those activities have taxes
with a binding constraint equal to 0. The uncorrected externality of the untaxable activities is equal to the marginal
externality. If all binding constraints are equal to 0, (36) becomes

ti
∗ = ei +

n∑
j=m+1

ej
∂xj

∂xi

Wijkander (1985) studies this problem when there are three activities, one of which is externally harmful but untaxable.
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which may be partitioned using (23) into

=
m∑
i=1

m∑
j=1

(t∗i − ei)
[∫ 1

0

r ∂xi
∂tj
dr

]
(t∗j − ej) (38)

+
m∑
i=1

n∑
j=m+1

(t∗i − ei)
[∫ 1

0

r ∂xi
∂tj
dr

]
(Tj − ej) (39)

+
n∑

i=m+1

m∑
j=1

(Ti − ei)
[∫ 1

0

r ∂xi
∂tj
dr

]
(t∗j − ej) (40)

+
n∑

i=m+1

n∑
j=m+1

(Ti − ei)
[∫ 1

0

r ∂xi
∂tj
dr

]
(Tj − ej) (41)

Because x′(t) is negative definite, its principal submatrices must also be negative definite. Thus
(38) and (41), which are quadratic forms, must be negative. (41) is the welfare lost because of
the uncorrected externality on all activities with bound taxes. (38) is the welfare lost because
the policymaker under or overcorrects the externalities on activities with non-binding taxes. The
policymaker sacrifices (38) in order to gain (39) and (40)—the welfare increase from optimally
using the complementarity between activities. Note that by the symmetry of x′(t), (39) is equal
to (40). The larger the uncorrected externality and the larger the magnitude of the cross partial
derivatives in (39) and (40), the larger the welfare gain from using the complementarity between
activities optimally.

2.2 Output taxation

An output tax cannot generally induce the private market to select the socially optimal combination
of activities. Consider, for example, producing electricity from either coal or solar energy. Assume
using coal is privately cheaper (by an arbitrarily small amount) but also has a larger externality.
If coal and solar energy are perfect substitutes, then coal will be preferred at any output tax rate.
Moreover, an output tax may be detrimental if, for example, the externality is generated by an infe-
rior technology, in which case an output tax will increase external harm (Plott, 1966). Nonetheless,
given a set of externally harmful activities that generate output, an output tax or subsidy may be a
useful tool depending on the marginal products and marginal external harms of the various activi-
ties and the relationship between activities. This section formalizes this intuition and analyzes the
optimal output tax.

The model used in the previous section is also used here, albeit with some modification. In the
previous section, the model made no explicit reference to output. In fact, the model could implicitly
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include many different outputs.20 In this section, we restrict the model to one output and introduce
the strictly increasing and weakly concave function q(x) : X → R which maps the vector of
activity levels to the quantity of output produced.21 We interpret q(x) to map activities to quantity
of goods, but there are other potentially useful interpretations.22 For example, carbon output is an
increasing function of burning coal and burning natural gas. A carbon tax will affect both activities
but cannot perfectly correct their external harm because both activities cause external harm beyond
what a carbon tax captures, including, for example, non-carbon harmful gas emissions. But if the
policymaker is constrained to tax carbon output, as opposed to the individual activities, then the
intuitions in this section apply.

Let τ be the tax on output. Then the private market’s problem is

max
x

b(x)− τq(x) (42)

with first order condition b′(x(τ)) − τq′(x(τ)) = 0, where x(τ) : R → Rn is the private market’s
best response function to τ .23 Taking the derivative of the private market’s first order condition
with respect to τ yields

b′′(x(τ))x′(τ)− τq′′(x(τ))x′(τ)− q′(x(τ))
>

= 0 (43)

which after some manipulation is equivalent to

x′(τ) = Aq′(x(τ))
> (44)

where A = [b′′(x(τ))− τq′′(x(τ))]−1 which is a negative definite matrix.24 x′(τ) shows how the
private market’s best response changes with the output tax, which is central to the optimal output
tax.

Proposition 5. An increase in the output tax decreases output.
20One possible interpretation of a tax on a single output is a tax on income or consumption.
21As discussed in the appendix, we assume private benefit is a function of output, and private cost is a function of

activity levels. There is, thus, a relationship between private net benefit and output.
22As noted previously, many activities do not directly increase private benefit but do so indirectly as part of a

production process for goods. For example, burning coal does not directly have a private net benefit (in most instances),
but the energy derived from burning coal is used for many things that do have a private benefit.

23The appendix shows that x(τ) is well defined.
24See the appendix for a proof that A is negative definite. Recall that x′(t) = [b′′(x)]−1. x′(τ) is related but, instead

of keeping marginal private net benefit equal to the tax vector, it ensures that the marginal private net benefit of each
activity is proportional to its marginal product. Moreover, the vector of marginal products play a roll in x′(τ) because
a change in τ effectively changes the tax on each activity in proportion to its marginal product.
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Proof. q′(x(τ))x′(τ) = q′(x(τ))Aq′(x(τ))> < 0 because A is negative definite and q′(x(τ))Aq′(x(τ))>

is a quadratic form.

Proposition 6. An arbitrary output tax τ causes the same private market behavior as an activity

tax equal to τq′(x(τ)).

Proof. Recall that the private market’s best response to an activity tax is defined by b′(x(t))−t> =

0 and the private market’s best response to an output tax is defined by b′(x(τ)) − τq′(x(τ)) = 0.
Thus an activity tax t> = τq′(x(τ)) induces the same private market response as the output tax
τ .25

Intuitively, for any output tax, the private market will respond as if there were a tax on each
activity equal to the output tax times the marginal product of that activity. The effective output tax
on each activity is proportional to that activity’s marginal product, and thus an output tax cannot
target activity externalities unless the external harm of each activity is also proportional to its
marginal product.

Proposition 7. If the only instrument available to the policymaker is an administratively costless

output tax, at the social optimum the output tax will be equal to the marginal external harm of the

output tax divided by the marginal product of the output tax.

Proof. The policymaker’s problem is

max
τ

b(x(τ))− e>x(τ) (45)

with first order condition b′(x(τ ∗))x′(τ ∗) − e>x′(τ ∗) = 0, which sets the marginal benefit of the
tax equal to the marginal cost of the tax, where the benefit is reduced external harm and the cost is
reduced private net benefit. Substituting in the private market optimum results in

τ ∗q′(x(τ ∗))x′(τ ∗) = e>x′(τ ∗) (46)

Dividing both sides by q′(x(τ ∗))x′(τ ∗) yields

τ ∗ =
e>x′(τ ∗)

q′(x(τ ∗))x′(τ ∗)
=

∑n
i=1 ei

∂xi
∂τ∑n

i=1
∂q
∂xi

∂xi
∂τ

(47)

25This is somewhat abusive notation. x(t) is the mapping from activity taxes to activity levels and x(τ) is the
mapping from output tax to activity levels.
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At the social optimum, the output tax is equal to a ratio. The numerator of the ratio is the
marginal external harm of an increase in the output tax and may be either positive or negative. The
denominator is the marginal output attributable to an increase in the output tax, which as shown
above, must be negative.

With a single activity, x′(τ ∗) is a negative scalar, which cancels out from the numerator and
the denominator, leaving τ ∗ = e/q′(x(τ ∗)). The optimal output tax achieves the first best because
the policymaker can set the output tax such that the marginal harm from the activity is equal to the
marginal private net benefit of that activity, b′(x′(τ ∗)) = τ ∗q′(x(τ ∗)) = e.

With an arbitrary number of activities, x′(τ) is vector valued and does not cancel out. The
optimal output tax depends on b and q. For intuition, we return to our two activity example.

Example 2. Let xs be the quantity of solar power plant activity and xc be the quantity of coal
power plant activity. Both activities produce electricity. Assume that the policymaker may tax
neither activity but may tax the total quantity of electricity. From (47), the optimal output tax is

τ ∗ =
es
∂xs
∂τ

+ ec
∂xc
∂τ

∂q
∂xs

∂xs
∂τ

+ ∂q
∂xc

∂xc
∂τ

(48)

As noted before, the numerator, which is the marginal external harm of the output tax, determines
the sign of the optimal output tax. If the numerator is positive, then an output subsidy will be
optimal. An increase in the output tax cannot increase both activity levels—at least one of ∂xs

∂τ
and

∂xc
∂τ

must be negative—and an optimal subsidy requires that one be positive.
Intuitively, an output tax will increase the level of an activity, say coal, if coal is relatively

more privately beneficial at lower levels of output. As the appendix shows, ∂xc
∂τ

> 0 if, for exam-
ple, (1) solar activity has a large marginal product and scales well, (2) coal has a small marginal
product, and (3) either the private marginal cost of coal activity increases with solar activity or the
marginal product of coal activity decreases with solar activity or both.26 Under these conditions,
an increase in the output tax would decrease the amount of solar activity, which would either make
coal privately cheaper or increase coal’s marginal product, making coal more attractive.

If ∂xc
∂τ

> 0, then a subsidy will be optimal if ec is sufficiently large so that an increase in the
output tax increases total external harm. Stated differently, ec ∂xc∂τ

> −es ∂xs∂τ , the increased external
harm from higher coal use outweighs the decreased external harm from lower solar use as the
output tax increases.

26(3) is a necessary condition. Moreover, since the Hessians of b and q are symmetric, this is the same as saying that
either the private marginal cost of solar activity increases with coal activity or the marginal product of solar activity
decreases with coal activity or both.
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Generally, two intuitive factors influence the optimal output tax. The first is the relationship
between the marginal product and the marginal external harm of each activity. If each activity’s
marginal external harm is exactly proportional to its marginal product, then an output tax can
achieve the first best because the optimal output tax implicitly fully corrects the marginal external-
ity of each activity. The weaker the relationship between the marginal external harm and marginal
product, the less effective an output tax is in correcting external harm.

The second factor that influences the optimal output tax is x′(τ). For at least one activity,
∂xi
∂τ

< 0. It is not possible that a marginal increase in the output tax increases all activity levels.
More generally, as (44) shows, the properties of x′(τ) are pinned down by q′(x), b′′(x), and q′′(x).
The non-diagonal entries in b′′(x) and q′′(x) are particularly important.

Applying (9), the welfare lost if the policymaker is constrained to tax only output is

∆b− e>∆x = (τ ∗q′(x(τ ∗))− e)>
[∫ 1

0

rx′ (γ(r)) dr

]
(τ ∗q′(x(τ ∗))− e) (49)

where γ(r) = e> + r(τ ∗q′(x(τ ∗)) − e>). At the optimal activity tax there are no uncorrected
externalities. At the optimal output tax the uncorrected externality vector is (τ ∗q′(x(τ ∗)) − e).
Note that the uncorrected externality is small if activities with large external harms also have
high marginal products because the output tax discourages activities with high marginal products
relatively more.

2.3 Constrained activity taxation with output taxation

When the policymaker faces constrained activity taxation, she may be able to improve welfare by
using an output tax to reach the activities with bound taxes. This generalizes the intuition behind
the two-part instrument (Fullerton, 1997; Fullerton and Mohr, 2003).

Facing both activity taxes and an output tax, the private market’s problem is

max
x

b(x)− t>x− τq(x) (50)

with first order condition

b′(x(t, τ))− t> − τq′(x(t, τ)) = 0 (51)

where x(t, τ) : Rn+1 → Rn is the private market’s best response function to t and τ . The policy-
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maker’s problem is the Lagrangian

L = b(x(t, τ))− e>x(t, τ) + λ>(T − t) (52)

with a vector of Lagrange multipliers λ. For ease of exposition, let

Dτx =


∂x1
∂τ

...

∂xn
∂τ

 and Dtx =


∂x1
∂t1

. . . ∂x1
∂t1

... . . . ...

∂x1
∂t1

. . . ∂x1
∂t1

 (53)

Proposition 8. If the policymaker may levy constrained activity taxes and an output tax, at the

social optimum the output tax will be equal to the marginal uncorrected external harm of the

output tax from the activities with bound taxes, divided by the marginal product of the output tax

from the activities with bound taxes.

The policymaker’s first order conditions are

b′(x(t∗, τ ∗))Dtx− e>Dtx− λ> = 0 (54)

and

b′(x(t∗, τ ∗))Dτx− e>Dτx = 0 (55)

Assume, as before, that at the optimum the constraints on taxes {m+ 1, . . . , n} bind. After substi-
tuting the private market’s first order condition, (51), and applying the partitions described in (23)
and (24), the policymaker’s first order conditions with respect to t may be written

(t∗u
> + τ ∗q′u(x(t∗, τ ∗))− e>u )Dtxu + (t∗b

> + τ ∗q′b(x(t∗, τ ∗))− e>b )Dtxc
> − λ>u = 0 (56)

and

(t∗u
> + τ ∗q′u(x(t∗, τ ∗))− e>u )Dtxc + (t∗b

> + τ ∗q′b(x(t∗, τ ∗))− e>b )Dtxb − λ>b = 0 (57)

The first order condition with respect to τ may be written

(t∗u
> + τ ∗q′u(x(t∗, τ ∗))− e>u )Dτxu + (t∗b

> + τ ∗q′b(x(t∗, τ ∗))− e>b )Dτxb = 0 (58)
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Because λu = 0, t∗b = Tb, and Dtxu is invertible, (56) is equivalent to

(t∗u
> + τ ∗q′u(x(t∗, τ ∗))− e>u ) = −(Tb

> + τ ∗q′b(x(t∗, τ ∗))− e>b )Dtxc
>[Dtxu]

−1 (59)

which we can substitute into (58) to arrive at

(Tb
> + τ ∗q′b(x(t∗, τ ∗))− e>b )y = 0 (60)

where y = Dτxb − Dtxc
>[Dtxu]

−1Dτxu maps a small change in τ to a change in xb given the
private market’s best response function, the tax constraint the policymaker faces, and the policy-
maker’s first order condition with respect to t. Dτxb is the direct effect of τ on xb, but changing τ
also changes xu, which given the policymaker’s constraint and the private market’s best response
causes an indirect change to xb equal to −Dtxc

>[Dtxu]
−1Dτxu. For all j ∈ {m+ 1, . . . , n}:

yj =
dxj
dτ

=
∂xj
∂τ
−

m∑
i=1

∂xj
∂xi

∂xi
∂τ

(61)

Rearranging (60) we arrive at

τ ∗ =
(eb − Tb)>y
q′b(x(t, τ))y

=

∑n
j=m+1(ej − Tj)dxjdτ∑n

j=m+1
∂q
∂xj

dxj
dτ

(62)

For intuition, we return to our two activity example.

Example 3. Let xs be the quantity of solar power plant activity and xc be the quantity of coal
power plant activity. Both activities produce electricity. Assume that the policymaker may tax
both activities and the total quantity of electricity but faces a binding constraint Tc on the coal tax.
From (62), the optimal output tax is

τ ∗ =
(ec − Tc)dxcdτ

∂q
∂xc

dxc
dτ

=
(ec − Tc)

∂q
∂xc

(63)

One binding constraint is a special case because it allows y to cancel out. Moreover, the effective
activity tax on coal is Tc + τ ∗ ∂q

∂xc
= ec, which means that the combination of the output tax and

constrained activity tax achieve the first best. If there is no uncorrected externality on coal, solar
will also achieve the first best because the tax on solar is unconstrained. The standard two-part
instrument is a special case in which only the activity with the bound tax is externally harmful and
Tb = 0.
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Generally, (62) shows that the optimal output tax trades off the uncorrected externality of all
activities with bound taxes against the private net benefit from those activities. The output tax
allows the policymaker to increase the tax on all activities with binding tax constraints but only
in proportion to those activities’ marginal products. The policymaker can undo the effect of the
output tax on all the unbound taxes by changing the activity tax. Note that the optimal output tax
cannot be a subsidy because, if a subsidy were optimal, then then bound activity taxes would have
been set too high, but since they are binding at the constraint they cannot have been set too high.

3 Costly Pigouvian taxation

Even when the policymaker’s choice over taxes is unconstrained, optimal tax policy may depend
on the relationships between activities if corrective taxes carry an administrative cost, including
expenditures on measurement, enforcement, collections, legislation, and litigation. This section
highlights how the optimal tax system is influenced by the functional form of administrative cost
and the complementarities between activities. We consider both fixed and variable administrative
costs.

3.1 Fixed administrative costs

If there are fixed administrative costs, it may not be optimal to tax every activity, in which case
the policymaker faces the constrained activity tax optimization problem discussed in the previous
section with binding constraint tj = 0 for all untaxed activities. At the optimum each tax must
account not only for the externality on the activity it is levied on but also the externality on every
untaxed activity. Optimal subsidies on harmful activities are possible.

If each activity tax has its own fixed cost, the policymaker faces 2n possible combinations of
taxes. Let the fixed cost for the tax on activity i be fi, the power set of {1, ..., n} be Θ, and θ an
element in Θ. Then the policymaker’s problem is

max
θ∈Θ

{
max
t
b(x(t))− e>x(t)−

∑
i∈θ

fi, subject to tj = 0∀j /∈ θ

}
(64)

No closed form solution exists, but the policymaker should choose θ∗, the set of taxes which if set
optimally will maximize welfare.
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3.2 Variable administrative costs with one activity

In this section, the policymaker must construct an administrative apparatus to collect taxes and en-
force tax law. Let cmap the activity level and tax rate to administrative cost. Formally c is continu-
ously differentiable and weakly convex and arg min(c) = (0, 0). These assumptions are consistent
with a policymaker who employs the most effective tax collecting and enforcement resources first.
Administrative cost and marginal administrative cost with respect to x are both increasing in ac-
tivity level. A subsidy should also be costly to administer, so administrative cost is increasing in
the tax rate above 0 and decreasing in the tax rate below 0, and marginal administrative cost with
respect to t is increasing for all t.

We call the case in which administrative cost increases with activity levels measurement costs.
Measurement costs arise because it is costly to determine the level of pollution generating activi-
ties, regardless of who is making these measurements and even if all parties are behaving honestly.
Specific examples of these costs include the monitoring devices and the labor required to design
and operate them. We call the case in which administrative cost increases with tax rates enforce-

ment costs. Enforcement costs arise if the incentive to evade increases with tax rates and the
government prevents this evasion by pouring more resources into tax enforcement, including more
auditors, more lawyers, and more evasion detection software. More enforcement resources may
be optimal when the policymaker is unable to implement an arbitrarily large penalty for evasion
(Cremer and Gahvari, 1993) or large penalties introduce distortions (Kaplow, 1990).27 We call the
case in which administrative cost increases with tax revenue collected bureaucracy costs. Bureau-
cracy costs resemble the Flypaper effect (Hines and Thaler, 1995)—larger revenues induce larger
bureaucracies—for whatever reason the money sticks.

The policymaker solves

max
t
b(x(t))− ex(t)− c(x(t), t) (65)

which leads to the first order condition b′(x(t∗))∂x
∂t
− e∂x

∂t
− c1

∂x
∂t
− c2 = 0, where ci denotes the

partial derivative of c with respect to its ith argument. At the social optimum, the marginal social
benefit of the tax (reduced externality and decreased administrative cost) is equal to the marginal
social cost of the tax (reduced private benefit and increased administrative cost). Increasing the tax
has an ambiguous effect on administrative cost because increasing the tax increases the enforce-

27Although more enforcement requires a resource cost that higher rates do not, there are important cases in which
more enforcement is optimal. First, when there are some taxpayers that completely evade and some that do not,
then there is an increased distortion because of the higher effective tax rate on those that pay. Second, when evading
requires resources (and more resources are spent at higher tax rates), more enforcement may be optimal.
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ment cost but decreases the measurement cost. Substituting b′(x(t∗)) = t∗, dividing by ∂x
∂t

, and
rearranging yields

t∗ = e+ c1 + c2
∂t
∂x

(66)

The following table presents the necessary condition for the socially optimal tax for several possi-
ble functions of administrative cost.

Table 2: Single activity optimal taxes

Case Cost function Optimal Pigouvian tax Previous Reseach

No cost 0 t∗ = e Pigou (1920)

Enforcement costs c(t) t∗ = e+ ∂c
∂t

∂t
∂x

Measurement costs c(x) t∗ = e+ ∂c
∂x

Polinsky & Shavell (1982)28

Bureaucracy costs c(xt) = c(R) t∗ = e+ ∂c
∂R

(
t∗ + x(t∗) ∂t

∂x

)
Polinsky & Shavell (1982)

Arbitrary costs c(x, t) t∗ = e+ c1 + c2
∂t
∂x

When administrative cost takes the c(t) functional form, the marginal administrative cost at
t = 0 is 0. Thus the policymaker will always implement a tax. However, the optimal tax is not
equal to the externality, and at the optimum the marginal social benefit of the activity is smaller
than the marginal social cost of the activity. This is because when administrative cost is a function
of tax rates, higher taxes reduce the external harm but increase administrative cost. The marginal
benefit of a higher tax is lower external harm, and the marginal cost of a higher tax is lower private
net benefit and higher administrative cost. Thus the tax rate is always lower than the case with no
administrative cost, and there remains an uncorrected externality.29 This shows up in the model
because ∂c

∂t
/∂x
∂t
< 0.30

When administrative cost takes the c(x) functional form, there is a discrete jump in the admin-
istrative cost if the policymaker increases the tax from 0—i.e. when the policymaker decides to
implement a tax. It is possible that b(x(0))−ex(0) > b(x(t∗))−ex(t∗)−c(x(t∗)) in which case the

28Polinsky and Shavell (1982) consider (1) both intensive and extensive margin responses to taxes, (2) administra-
tive costs that are borne by either firms or the government, and (3) administrative costs that are fixed per firm and
administrative costs that are a function of total tax revenue. The intuition behind their result for fixed costs per firm
that are borne by the government is similar to our measurement costs case.

29Similarly, if there is a positive externality the subsidy rate is always lower than the case with no administrative
cost.

30For positive externalities ∂c
∂t/

∂x
∂t > 0. In either case the optimal tax will never be 0 because the marginal admin-

istrative cost is 0 at t = 0.
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optimal tax is t = 0, and the externality is uncorrected. When implementing a tax is optimal, the
optimal tax is not equal to the externality. If administrative cost is a function of x, the policymaker
should raise the tax until the marginal social benefit of the activity equals the marginal social cost
of the activity. Because administrative cost increases only with x, the administrative cost may be
interpreted as an additional social cost of the activity that may be corrected just as an external
harm. Thus the optimal tax induces the private market to fully internalize the externality and the
administrative cost. The tax rate is always higher than the case with no administrative cost.31 This
shows up in the model because ∂c

∂x
> 0.

We plot an example of the one-activity case in both x space and t space to provide intuition.

0 x∗cx x∗fb x∗ct x

b(x)
e(x)

ct(x)
cx(x)

Figure 1: Net benefit, external harm, and administrative cost in x space

In Figure 1, net benefit, external harm, and measurement costs (costs that are a function of x)
are 0 when there is no activity. Net benefit increases with the activity up to the point at which
private cost exceeds private benefit, and then it decreases. External harm increases in proportion to
the activity. And measurement costs increase convexly with the activity. To plot enforcement costs
(costs that are a function of t) in x space, we map each activity level to the tax that would result
in the private market choosing that activity level and thus map each activity level to enforcement
cost. Enforcement costs are 0 when there is no tax which occurs when private net benefit is at its
highest. Increasing or decreasing the activity level would imply, respectively, a subsidy or a tax
that would incur an enforcement cost.

31However, the optimal subsidy is always smaller than the case with no administrative cost.
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The first-best activity level, x∗fb, occurs where private net benefit less external harm is max-
imized. This happens at an activity level below the private maximum because the optimal tax
causes the private market to internalize the external harm. If there are measurement costs, the op-
timal activity level, x∗cx, occurs where private net benefit less external harm and measurement cost
is maximized. This happens at an activity level below the first best because measurement costs
increase with the activity level, giving the policymaker additional incentive to decrease activity
levels. The optimal tax causes the private market to internalize the external harm and the adminis-
trative cost. If there are enforcement costs, the optimal activity level, x∗ct, occurs where private net
benefit less external harm and enforcement cost is maximized. This happens at an activity level
above the first best because, from the first-best activity level, enforcement costs decrease with ac-
tivity giving the policymaker an incentive to increase activity levels to lower administrative cost.
When the policymaker faces both measurement and enforcement costs, the optimal activity level
may be above or below the first best.

0 t∗ct t∗fb t∗cx t

b(t)
e(t)

ct(t)
cx(t)

Figure 2: Net benefit, external harm, and administrative cost in t space

In Figure 2, net benefit, external harm, and measurement costs (costs that are a function of x)
are plotted in t space by mapping each tax to the activity level that the private market would choose
at that tax rate and then mapping tax to net benefit, external harm, and measurement costs. At a
high tax, there is no activity and thus no private net benefit, no external harm, and no measurement
cost. As taxes are lowered, private net benefit, external harm, and measurement costs increase.
Private net benefit reaches its maximum at a tax of 0. Enforcement costs (costs that are a function
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of t) are minimized at a tax of 0 and increase with larger taxes or subsidies.32

The first-best tax, t∗fb, occurs where private net benefit less external harm is maximized. This
happens at a tax above the private maximum because the optimal tax causes the private market to
internalize the external harm. If there are measurement costs, the optimal tax, t∗cx, occurs where
private net benefit less external harm and measurement cost is maximized. This happens at a
tax above the first best because measurement costs decrease with the tax giving the policymaker
additional incentive to increase the tax. If there are enforcement costs, the optimal tax, t∗ct, occurs
where private net benefit less external harm and enforcement cost is maximized. This happens
at a tax below the first best because, from the first-best tax, enforcement costs increase with the
tax giving the policymaker an incentive to decrease the tax to lower administrative cost. When
the policymaker faces both measurement and enforcement costs, the optimal tax may be above or
below the first best.

3.3 Variable administrative costs with multiple activities

When there are multiple externally harmful activities and administrative costs, the policymaker
must trade off between private net benefit, external harm, and administrative cost. The policymaker
may use the complementarities between activities to minimize particularly externally harmful or
administratively costly activities, potentially resulting in the optimal subsidization of a harmful
activity.

The cost function c(x, t), c : X × Rn → R, is the multidimensional analogue of the sin-
gle activity case. We assume that c(x, t) is continuously differentiable, weakly convex, and has
arg min(c) = (0, 0). The private market problem is the same as in the multiple activity, complete
taxation, costless administration case. The policymaker solves

max
t
b(x(t))− e>x(t)− c(x(t), t) (67)

which leads to the first order condition b′(x(t∗))x′(t∗)−e>x′(t∗)−c1(x(t∗), t∗)x′(t∗)−c2(x(t∗), t∗) =

0, where c1 denotes the partial derivative of c with respect to its first vector argument and c2 is the
partial derivative of c with respect to its second vector argument. Substituting in the private market
first order condition and applying x′(t∗)’s invertibility yields

t∗> = e> + c1 + c2x
′(t∗)−1 (68)

32Subsidies distort the private market in the same way that taxes do. Interpreting the net benefit model as a utility
maximization problem in which one activity does not appear in b (see the appendix), the subsidy inefficiently increases
x and decreases the implicit activity.
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The table below lists special cases.

Table 3: Multiple activity optimal taxes

Case Cost function Optimal Pigouvian tax Optimal Pigouvian tax

matrix notation element notation

No administrative cost c = 0 t∗> = e> t∗i = ei

Enforcement costs c = c(t) t∗> = e> + c′(t∗)x′(t∗)−1t∗i = ei +
∑

j
∂c
∂tj

∂tj
∂xi

Measurement costs33 c = c(x) t∗> = e> + c′(x(t∗)) t∗i = ei + ∂c
∂xi

For intuition, we return to our two activity example considering both the enforcement cost and
measurement cost cases.

Example 4. Let xs be the quantity of solar power plant activity and xc be the quantity of coal
power plant activity. Assume that the policymaker may tax both activities but that doing so carries
an administrative cost that is a function of t. From Table 3, at the social optimum

t∗s = es + ∂c
∂ts

∂ts
∂xs

+ ∂c
∂tc

∂tc
∂xs

(69)

and

t∗c = ec + ∂c
∂ts

∂ts
∂xc

+ ∂c
∂tc

∂tc
∂xc

(70)

The tax on solar activity increases with es and decreases with ∂c
∂ts

because ∂ts
∂xs

< 0. This is the
intuition from the single activity case: the higher the marginal administrative cost of taxing solar
activity, the lower the optimal tax on solar activity. The effect of ∂c

∂tc
on the solar tax depends

on whether solar and coal are complements or substitutes. If ∂tc
∂xs

< 0, then solar and coal are
substitutes, in which case the optimal tax on solar decreases with ∂c

∂tc
.34 If coal and solar are

substitutes, then the higher the marginal administrative cost of taxing coal activity, the lower the
optimal tax on solar activity because a lower tax on solar discourages the use of substitutes. The
policymaker should use a lower solar tax to avoid the marginal cost of taxing coal. If coal and
solar are complements, then the higher the marginal administrative cost of taxing coal activity,
the higher the optimal tax on solar activity because a higher tax on solar discourages the use of

33This assumes it is optimal to tax all activities.
34Because t′(x)−1 = x′(t), the sign of ∂tc

∂xs
will be the opposite of the sign of ∂xc

∂ts
. If the policymaker wishes to

marginally increase xc holding xs constant and the two are substitutes, she must decrease both taxes. Thus ∂tc
∂xs

< 0 if
solar and coal are substitutes.
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complements. The policymaker will use the relationship between the activities to optimally trade
off external harm, administrative cost, and private net benefit. Note also that the external harm
of coal may have an effect on the optimal solar tax. An exogenous increase in ec would increase
the optimal tax on coal. If administrative cost is strictly convex with respect to the coal tax, then
a higher coal tax would increase the marginal administrative cost of the coal tax, which would
change the optimal solar tax.35

(69) shows under what conditions a subsidy on solar would be optimal. An optimal subsidy
requires that es + ∂c

∂ts
∂ts
∂xs

+ ∂c
∂tc

∂tc
∂xs

< 0. If there is a subsidy on coal, then ∂c
∂ts

< 0 because
decreasing the subsidy (increasing the tax) reduces administrative cost. Thus an optimal subsidy
requires that solar and coal be substitutes. The case for a subsidy on solar strengthens when the
marginal external harm from solar is smaller, the marginal administrative cost of the solar tax
is smaller, the private market solar activity response to the tax on solar is smaller, the marginal
administrative cost of the coal tax is larger, and the private market coal activity response to the tax
on solar is larger. As noted before, if c(t) is strictly convex, the case for a solar subsidy strengthens
when the marginal external harm of coal is larger.

Example 5. Now assume that the policymaker may tax both activities but that doing so carries an
administrative cost that is a function of x. From Table 3, assuming it is optimal to tax all activities,
at the social optimum

t∗s = es + ∂c
∂xs

(71)

and

t∗c = ec + ∂c
∂xc

(72)

Just as in the single activity case, the administrative cost may be interpreted as an additional social
cost of the activity which can be corrected like an external harm. Thus the optimal tax induces the
private market to fully internalize the externality and the administrative cost. Both taxes will be
greater than in the case with no administrative costs, and a subsidy on a harmful activity will never
be optimal.

However, when administrative cost is a function of only activity levels, it may not be optimal
to tax every activity. This is most apparent when the administrative cost of taxing an activity is
avoidable when that activity is untaxed. If the policymaker decides to tax a particular activity,

35Depending on the third derivative of b, there are other dynamics in the model by which changes in the marginal
external harm of one activity would affect the optimal tax on another.
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there will be a discrete increase in the administrative cost. There are four possible cases: tax both,
tax neither, tax solar only, and tax coal only. If the policymaker taxes only one of the activities,
then she is optimizing under a binding constraint, and the earlier analysis applies. Just as before,
the complementarities between activities are relevant factors in determining the optimal tax, and a
subsidy may be optimal.

Both of these examples generalize. When administrative cost is a function of tax rates only,
the optimal tax on each activity is equal to the externality generated by that activity plus the sum
of all the marginal administrative costs weighted by the responsiveness of the tax rate to changes
in activity. The policymaker should tax each activity because the marginal cost of increasing or
decreasing a tax of 0 is 0.36 However, just as as in the single activity case, an increase in the tax
presents a tradeoff: lower externality, but higher administrative cost. Thus, optimal taxes do not
induce the private market to fully internalize the externality. The policymaker should raise (or
lower) taxes until the marginal social benefit of the tax is equal to the tax’s marginal social harm.
In particular, the policymaker should use taxes with low marginal administrative cost to change
other activity levels. A subsidy may be optimal for some externally harmful activities.37 c′ will
have negative entries whenever there is a subsidy because the cost of administration will decrease
the less negative the tax becomes.

When administrative cost is a function of only activity levels, it may not be optimal to tax every
activity. Just as in the fixed cost case, the policymaker must optimize 2n different problems, each
with a different variable cost function, depending on which activities are taxed. If it is optimal
to tax all of the activities, the policymaker should set the tax equal to the externality plus the
marginal administrative cost. At this tax, the private market internalizes both the externality and
the administrative tax. If it is not optimal to tax every activity, the complementarity between
activities comes into play, and it may be optimal to subsidize externally harmful activities.

This section could be generalized to study the optimal tax system when the policymaker may
implement activity taxes and an output tax, both of which carry administrative costs. Intuitively,
the policymaker should choose the bundle of taxes that best trade off private net benefit, external
harm, and administrative cost. If the administrative cost of the output tax were low relative to
the administrative cost of the activity taxes, the policymaker might optimally tax output to reach
taxes with particularly high activity administrative costs and selectively tax or subsidize a subset
of activities.

36Theoretically, the knife-edge case in which t∗i = ei +
∑

j
∂c
∂tj

∂tj
∂xi

= 0 is possible.
37The matrix t′(x(t∗)) = b′′(x(t∗)) describes the effect of a change in the activity vector on tax rates at the optimal

tax rate. Because b is concave, this matrix is negative definite, so the diagonals are all negative. An increase in ti will,
thus, reduce xi although it may increase or have no effect on xj . This implies that t∗ may have negative entries.
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4 Conclusion

Pigou’s seminal insight demonstrated that in a first-best world taxes can fully correct externali-
ties. This paper extends his insight into a world in which the policymaker faces constraints and
costs. In this world, the policymaker must trade off the administrative cost of the tax instruments
available to her against external harm and lost private net benefit, and she must take advantage of
complementarities to achieve optimal tax outcomes. As we show, there are several cases in which
an externality cannot or should not be fully corrected and even cases in which a harmful activity
should be subsidized.

Our paper also suggests that optimal policy requires more than determining marginal external
harm. When taxes are constrained or costly, the net private benefit function and administrative cost
function are necessary for policy decisions. While the examples of subsidizing harm noted above
suggest that policymakers may intuitively understand how to set optimal policy, our hope is that
this paper helps formalize that intuition. Ideally, policymakers will collect the relevant market and
administrative cost data to be able to set optimal policy more precisely. Future work could estimate
the relevant parameters to determine whether the many current subsidies on harmful activities are
indeed optimal.
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Pirttilä, Jukka, and Matti Tuomala. 1997. “Income tax, commodity tax and environmental pol-
icy.” International Tax and Public Finance, 4(3): 379–393.

Plott, Charles R. 1966. “Externalities and corrective taxes.” Economica, 33(129): 84–87.

Polinsky, Mitchell, and Steven Shavell. 1982. “Pigouvian taxation with administrative costs.”
Journal of Public Economics, 19(3): 385–394.

Ramsey, Frank P. 1927. “A contribution to the theory of taxation.” Economic Journal,
37(145): 47–61.

Sandmo, Agnar. 1976. “Direct versus indirect Pigovian taxation.” European Economic Review,
7(4): 337–349.

Slemrod, Joel. 1990. “Optimal taxation and optimal tax systems.” Journal of Economic Perspec-

tives, 4(1): 157–178.

Slemrod, Joel, and Shlomo Yitzhaki. 2002. “Tax avoidance, evasion, and administration.” Hand-

book of Public Economics, 3: 1423–1470.

Taylor, Michael. 2020. “Energy Subsidies Evolution in the Global Energy Transformation to
2050.” International Renewable Energy Agency Staff Technical Paper.

Wijkander, Hans. 1985. “Correcting externalities through taxes on/subsidies to related goods.”
Journal of Public Economics, 28(1): 111–125.

Yitzhaki, Shlomo. 1979. “A note on optimal taxation and administrative costs.” American Eco-

nomic Review, 69(3): 475–480.

37

Electronic copy available at: https://ssrn.com/abstract=2831563



A Net benefit and utility maximization

Let u(x, xn+1) : Rn+1 → R be a strictly increasing, strictly concave representative agent’s utility
function over n + 1 activities. Let p(x, xn+1) : Rn+1 → R be a strictly increasing, weakly convex
function, such that p(x, xn+1) = 0 defines a production possibility frontier. Then

(i) There exists a function f(x) : Rn → R such that p(x, xn+1) = 0 if and only if xn+1 = f(x);

(ii) u(x, f(x)) = b(x) defines a strictly concave net benefit function; and

(iii) Assuming activity n+ 1 generates no external harm and is untaxed, the agent’s best response
to a vector of activity taxes is the same under either the constrained utility maximization
problem or the unconstrained net benefit maximization problem.

Proof. (i) Under the implicit mapping theorem, there exists a function f such that p(x, xn+1) = 0

if and only if xn+1 = f(x) and fi = −pi/pn+1.
(ii) First, the weak convexity of p implies the weak concavity of f .

p(y, yn+1)− p(x, xn+1) ≥
n+1∑
i=1

pi(x, xn+1)(yi − xi) (73)

Thus ∀(x, xn+1), (y, yn+1) such that p(x, xn+1) = p(y, yn+1) = 0, we have

0 ≥
n+1∑
i=1

pi(x, xn+1)(yi − xi) =⇒ (74)

−pn+1(x, xn+1)(yn+1 − xn+1) ≥
n∑
i=1

pi(x, xn+1)(yi − xi) =⇒ (75)

(yn+1 − xn+1) ≤
n∑
i=1

(−pi(x, xn+1))/(pn+1(x, xn+1))(yi − xi) =⇒ (76)

f(y)− f(x) ≤
n∑
i=1

fi(x)(yi − xi) (77)
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Second, the weak concavity of f and strict concavity of u imply the strict concavity of b.

∀θ ∈ [0, 1] : b (θx+ [1− θ]y) = u(θx+ [1− θ]y, f(θx+ [1− θ]y)) (78)

≥ u(θx+ [1− θ]y, θf(x) + [1− θ]f(y)) (79)

= u(θx+ [1− θ]y, θxn+1 + [1− θ]yn+1) (80)

> θu(x, xn+1) + [1− θ]u(y, yn+1) (81)

= θb(x) + [1− θ]b(y) (82)

(iii) With a vector of taxes t, the agent’s utility maximization problem is a Lagrangian with La-
grange multiplier µ,

L = u(x, xn+1)− t>x− µp(x, xn+1) (83)

with first order conditions

ui − ti − µpi = 0 for all i ∈ {1, . . . , n} and un+1 − µpn+1 = 0 (84)

which may be combined to yield

ui − ti − un+1
pi
pn+1

= 0 (85)

With a vector of taxes t, the agent’s net benefit maximization problem is maxx u(x, f(x)) − t>x
with first order conditions

ui + un+1fi − ti = 0 for all i ∈ {1, . . . , n} (86)

From (i) fi = −pi/pn+1. Thus

ui − ti − un+1
pi
pn+1

= 0 (87)

Since the two problems have the same first order conditions, they imply the same agent best re-
sponse function.
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B Private net benefit and output

A rigorous investigation of the optimal output tax requires a formal relationship between private
net benefit and output. We assume that private net benefit is the benefit of output less the cost of
activities. Thus when output is explicitly incorporated into the model, we require two additional
functions. Strictly increasing, strictly concave v maps output to private benefit. Strictly increasing,
strictly convex g maps the activities to private cost. Thus b(x) = v(q(x)) − g(x) and the private
market’s problem is

max
x

v(q(x))− g(x)− τq(x) (88)

with first order condition

v′(q(x(τ))q′(x(τ))− g′(x(τ))− τq′(x(τ)) = 0 (89)

Under the implicit mapping theorem, x(τ) exists and is continuously differentiable everywhere that
the derivative of first order condition with respect to x has a non-zero determinant. The derivative
of first order condition with respect to x is

v′(q(x))q′′(x) + (q′(x))>v′′(q(x))q′(x)− g′′(x)− τq′′(x) (90)

=[v′(q(x))− τ ]q′′(x) + v′′(q(x))(q′(x))>q′(x)− g′′(x) (91)

v′(q(x)) − τ > 0 under the first order condition. q′′(x) is negative semidefinite by assumption.
v′′(q(x)) < 0 by assumption. (q′(x))>q′(x) is positive semidefinite because for any vector v,
(v>q′(x)>)(q′(x)v) ≥ 0. And g′′(x) is positive definite by assumption. Thus

= [v′(q(x))− τ ]︸ ︷︷ ︸
+

q′′(x)︸ ︷︷ ︸
NSD

+ v′′(q(x))︸ ︷︷ ︸
−

(q′(x))>q′(x)︸ ︷︷ ︸
PSD

− g′′(x)︸ ︷︷ ︸
PD

(92)

Because a positive (semi)definite matrix multiplied by a negative scalar is a negative (semi)definite
matrix and since the sum of a negative definite matrix and a negative semidefinite matrix is a
negative definite matrix, the sum here is negative definite. Since a negative definite matrix has a
non-zero determinant, x(τ) exists and is continuously differentiable. We have shown that b′′(x)−
τq′′(x) is negative definite. Thus, its inverse, A, is also negative definite.

The additional structure that v and g provide to the problem make it clearer under what circum-
stances the level of an activity increases with the output tax. In our solar and coal power example
we have
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x′(τ) =Aq′(x(τ))> (93)

=
1

det(A−1)

 (v′ − τ)qcc + v′′qcqc − gcc −(v′ − τ)qsc − v′′qsqc + gsc

−(v′ − τ)qcs − v′′qcqs + gcs (v′ − τ)qss + v′′qsqs − gss


 qs

qc


(94)

=
1

det(A−1)

 qs(v
′ − τ)qcc + qsv

′′qcqc − qsgcc − qc(v′ − τ)qsc − qcv′′qsqc + qcgsc

−qs(v′ − τ)qcs − qsv′′qcqs + qsgcs + qc(v
′ − τ)qss + qcv

′′qsqs − qcgss


(95)

∂xc
∂τ

=
1

det(A−1)
(−qs(v′ − τ)qcs + qsgcs + qc(v

′ − τ)qss − qcgss) (96)

Since 1
det(A−1)

> 0, ∂xc
∂τ

> 0 requires

−qs(v′ − τ)︸ ︷︷ ︸
negative

qcs + qs︸︷︷︸
positive

gcs + qc(v
′ − τ)qss︸ ︷︷ ︸

negative

+−qcgss︸ ︷︷ ︸
negative

> 0

We know that (v′ − τ) > 0, qi > 0, qss < 0, and gss > 0. Thus for ∂xc
∂τ

> 0 we require either
qsc < 0 or gsc > 0. Having qs be large, qc be small, qss be small, and gss be small will also help
push ∂xc

∂τ
above zero.
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