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ABSTRACT
We examine the prospects for measurement of the Hubble parameter 𝐻0 via observation of the secular parallax of other galaxies
due to our own motion relative to the cosmic microwave background rest frame. Peculiar velocities make distance measurements
to individual galaxies highly uncertain, but a survey sampling many galaxies can still yield a precise 𝐻0 measurement. We use
both a Fisher information formalism and simulations to forecast errors in 𝐻0 from such surveys, marginalizing over the unknown
peculiar velocities. The optimum survey observes ∼ 102 galaxies within a redshift 𝑧max = 0.06. The required errors on proper
motion are comparable to those that can be achieved by Gaia and future astrometric instruments. A measurement of 𝐻0 via
parallax has the potential to shed light on the tension between different measurements of 𝐻0.

Key words: Astrometry and Celestial Mechanics – Proper motions – Methods: Statistical – Parallaxes – Cosmology: Distance
Scale – Cosmology: Observations

1 BACKGROUND

The current benchmark model of cosmology is the ΛCDM con-
cordance model. This model describes an expanding, spatially flat
universe governed by the field equations of General Relativity (GR)
that begins in a hot big bang and undergoes an inflationary period
early in its existence. In this model, the mass-energy of the Uni-
verse is composed of matter, radiation, and dark energy. Early in
its existence, the Universe was dominated by electromagnetic ra-
diation; soon thereafter it was dominated by matter, and it is now
dominated by dark energy in the current epoch (Ryden 2016). The
dark energy component of this universe is consistent with a vac-
uum energy, incorporated into the model by adding a cosmological
constant Λ to the GR field equations. A small percentage (roughly
17%) of the matter is the baryonic matter described by the Standard
Model of particle physics; however, most of the matter is cold dark
matter (Planck Collaboration et al. 2020). While the exact nature
of this matter is unknown, it appears to have very weak electromag-
netic interactions (hence the matter being “dark”) and non-relativistic
speeds (hence the matter being “cold”) (Ryden 2016; Planck Collab-
oration et al. 2020). The physics of such a universe is captured by
six cosmological parameters and the field equations of GR. While
there is a choice of parameterization, a commonly used parameter
set is 𝜔𝑏 = Ω𝑏ℎ

2, 𝜔𝑐 = Ω𝑐ℎ
2, 𝐻0, 𝜏, 𝑛𝑠 , 𝑙𝑛(1010𝐴𝑠) (these are the

baryon density today, the cold dark matter density today, the expan-
sion rate of the Universe at the current point in spacetime 1, the
Thomson scattering optical depth due to reionization, scalar index
for the CMB power spectrum, and the logarithmic power of the pri-
mordial curvature perturbations) (Planck Collaboration et al. 2020).

The ΛCDM model has been remarkably successful at explaining
a wide range of cosmological observations. For example, an infla-
tionary period following a hot big bang predicts the existence and
statistical properties of a radiation background due to the emission
of photons immediately after the universe expanded and cooled suf-
ficiently to become transparent. This background has been redshifted
to the microwave and is therefore called the cosmic microwave back-
ground (CMB). A variety of experiments have measured the power
spectrum of the CMB and found it to be consistent with the theoret-
ical predictions of ΛCDM to a very high degree of precision. Other
observations supporting the ΛCDM model include the large-scale

1 We note that this parameter is often replaced with 100𝜃𝑀𝐶 , the angular
scale of the sound horizon (i.e., the distance sound could travel between the
big bang and recombination). In such a parameterization, 𝐻0 is treated as a
derived parameter. It is equally valid to treat 𝐻0 as fundamental and 100𝜃𝑀𝐶

as derived; since the parameter we are most interested in is 𝐻0, we will follow
this convention.

structure of the universe (i.e., the distribution of galaxies and galaxy
clusters), the rotation curves of galaxies (consistent with the pres-
ence of massive dark matter haloes), and the relative abundance of
baryonic elements in the observable universe (Ryden 2016; Planck
Collaboration et al. 2020).

However, despite its many successes, the ΛCDM model has sev-
eral theoretical and observational shortcomings. Only 4% of the
universe is composed of baryonic matter; the rest of the mass-energy
content is contributed by dark matter and dark energy (Planck Col-
laboration et al. 2020). Dark matter is not predicted by the Standard
Model, and the nature of such matter is almost entirely unknown.
Furthermore, despite decades of intense effort, no direct detections
of dark matter have been made. Similarly, the nature of dark energy
is poorly understood. While it is consistent with energy contributed
by the vacuum, the cosmologically inferred value for the vacuum en-
ergy density differs from the theoretical predictions of quantum field
theory by over 100 orders of magnitude (Adler et al. 1995). This
shocking discrepancy has been dubbed the “vacuum catastrophe”.
Finally, the past few decades have seen greatly increased precision in
several independent methods of measuring the Hubble constant 𝐻0.
Unfortunately, the leading two measurements (local measurements
of Type Ia supernovae and analysis of the CMB) differ from each
other by substantially more than their error bars, leading to a > 5𝜎
discrepancy known as the “Hubble tension” (Kamionkowski & Riess
2022).

Observations of Type IA supernovae allow for inference of the
Hubble constant via a calibration technique known as the “distance
ladder”. The distance ladder uses known distances of nearby Cepheid
variable stars to calibrate a period-luminosity relation for Cepheid
type stars. (These distances are generally obtained by statistical paral-
lax measurements, main sequence fitting of stellar clusters containing
Cepheids, the Baade-Becker-Wesselink method, geometric analysis
of eclipsing binary systems, or analysis of water masers in the active
galactic nuclei of nearby galaxies hosting a Cepheid population)2

(Yuan et al. 2022). This period-luminosity relation is then used in
conjunction with measurements of higher redshift Cepheids to cali-
brate the intrinsic luminosity of type Ia supernovae, which are known
as “standard candles”. Theoretical studies of this class of supernovae

2 Statistical parallax involves taking an average parallax measurement of a
stellar cluster, while main sequence fitting involves fitting color vs. observed
luminosity of a stellar cluster to the known color vs. intrinsic luminosity of the
main stellar sequence. The Baade-Becker-Wesselink method uses the color to
infer the temperature of the star and measures the radial velocity via doppler
shift. Using these and the Stefan-Boltzmann law, the distance to the star may
be inferred (Lazovik et al. 2019).
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2 Ferree and Bunn

conclude that the physical conditions causing this type of supernova
result in highly predictable intrinsic luminosities; since the luminos-
ity of these “standard candles” can be inferred physically, comparing
the observed luminosity to the intrinsic luminosity yields a distance
measurement to a supernova (Wright & Li 2018). This method allows
for distance measurements to a large sample of type Ia supernovae
independent of redshift measurements for these objects. Combining
these distance and redshift measurements therefore allows for estima-
tion of the Hubble constant from observations of the local universe.
The leading estimate of 𝐻0 using this method is 73.04±1.04 km s−1

Mpc−1, as determined by the SH0ES and Pantheon+ collaboration
(Riess et al. 2022).

The power spectrum of the CMB is very sensitive to a range of
cosmological parameters. The random fluctuations in the CMB are
acoustic in nature; detailed modeling of the conditions at the time of
last scattering (i.e., the time when the Universe became transparent)
therefore allows for a theoretical prediction of the physical size of
these fluctuations. The observed angular size of these fluctuations
depends on the physical size of the fluctuations and the distance be-
tween the CMB and the observer. Since the physical distance depends
on the redshift and the Hubble constant, measuring the redshift of
the CMB in combination with a knowledge of the physical size of
the fluctuations therefore allows for estimation of the Hubble con-
stant. The leading estimate of 𝐻0 using this method is 67.4 ± 0.5
km s−1 Mpc−1, as determined by the Planck collaboration (Planck
Collaboration et al. 2020).

A third, newer method to estimate 𝐻0 has been developed in recent
years. This technique uses stars on the tip of the red giant branch
(TTRGB) instead of supernovae as standard candles. A star at the tip
of the red giant branch has achieved sufficient core temperature to
cause the fusion of helium in an event known as a “helium flash”. The
luminosity of such a star is specified by the stellar physics of a helium
flash, so all stars on the TTRGB should have very similar intrinsic
luminosities (McQuinn et al. 2019). These stars may therefore be
used as standard candles in a manner similar to type IA supernovae,
first calibrating the intrinsic luminosity via observations of red giants
whose distance is known from neighboring Cepheids and then using
the derived intrinsic luminosity to infer distances to a larger catalogue
of red giants. The leading estimate of 𝐻0 using this method is 69.8±
0.8 ± 1.7 km s−1 Mpc−1, as determined by the Carnegie-Chicago
program (Freedman et al. 2019). (The 0.8 km s−1 Mpc−1 error is
statistical and the 1.7 km s−1 Mpc−1 error is systematic).

It is possible that these different measurements are simply a result
of systematic errors that have not yet been discovered. However,
if this tension is not due to systematics, it indicates a theoretical
failure ofΛCDM and demands novel physics to explain the difference
between early and late Universe measurements. Some suggestions for
theoretical modifications include making the dark energy equation of
state a function of cosmic time, introducing curvature to the model of
the Universe, introducing more relativistic degrees of freedom (i.e.,
allowing more species of particles to be relativistic), adding a massive
sterile neutrino component to the Universe, or adding a modification
term to the Poisson and lensing equations of general relativity (often
referred to as “modified gravity”) (DES Collaboration et al. 2022).

It is therefore of great interest to the cosmological community to
determine the source of this tension. In addition to further consider-
ation of systematic errors of already existing methods, the commu-
nity may proceed by making new, independent measurements of the
Hubble constant. In this paper, we investigate the feasibility of an
independent measurement of the Hubble constant via extragalactic
parallax. Parallax, the apparent motion of an object due to the actual
motion of the observer, is a purely geometric effect. This would allow

for an estimate of 𝐻0 from local measurements but would bypass the
assumptions and calibrations required of the distance ladder, pro-
viding a robust geometric measurement of 𝐻0 and yielding further
insight into the nature of the Hubble tension.

2 OVERVIEW OF EXTRAGALACTIC PARALLAX

Parallax is a common tool to measure distances to relatively nearby
astrophysical objects. Parallax distances to nearby stars form the first
rung of the “distance ladder” (e.g., Luri et al. 2018, and references
therein).

Because they depend only on geometry, parallax distances are par-
ticularly robust. As a result, it would be extremely desirable to use the
method on cosmological scales, bypassing the other steps in the lad-
der. Traditional parallax, using the Earth’s orbit as a baseline, results
in unmeasurably small parallax angles for sources at cosmological
distances. Kardashev (1986) noted that a larger signal could be ob-
tained by using the solar system’s motion relative to the cosmological
rest frame to produce a longer baseline. From the cosmic microwave
background dipole, we infer that our velocity relative to this frame
is 78 AU yr−1 (Hinshaw et al. 2009), leading to a secular proper
motion (i.e., change in angular position) of (78𝜇as yr−1)𝐷−1

Mpc sin 𝛽

for a source located at an angular diameter distance3 𝐷Mpc mega-
parsecs in a direction making an angle 𝛽 with the known CMB dipole
direction.

For the near future, the uncertainty in a single parallax measure-
ment is too high to be of use in determination of distances on a
cosmological scale; however, advances in telescope technology pro-
vide the possibility of using cosmological parallax in a statistical
analysis (Paine et al. 2020). Here, we analyze the usage of paral-
lax measurements to constrain the Hubble parameter 𝐻0. Should this
method be feasible in the near future, it would provide an independent
determination of 𝐻0 that might help to resolve the current ambiguity
in its value (Planck Collaboration et al. 2020; Riess et al. 2019).

In this paper, we will explore the space of design parameters for
a survey of galaxy parallax measurements. We use both a Fisher
formalism and simulations to determine the error in a measurement
of 𝐻0 from a given survey, taking into account both proper motion
measurement errors and the peculiar velocities (i.e., velocities not due
to the expansion of the universe) of the source galaxies. For redshift-
limited surveys with varying numbers of galaxies and redshift limits,
we determine the required precision with which proper motions need
to be measured in order to yield an 𝐻0 measurement with a given
error.

Our purpose in this paper is to perform a preliminary study of the
feasibility of an observation program of this sort. The calculations
are based on approximations, in particular regarding the peculiar
velocity field, that will have to be replaced with more sophisticated
methods if and when such a survey is actually performed. We will
argue below that our approach is adequate to give an initial estimate
of the required errors and of the optimum survey design. The error
forecasts we present are, of course, not as precise as those that would
arise from a detailed simulation of a specific survey design. We regard
such a detailed calculation as premature at this stage, although it will

3 We will assume a cosmologically flat Universe throughout this paper. In
a spatially curved universe, there is a distinction between the parallax dis-
tance and the angular diameter distance (Hogg 1999, and references therein).
Because we focus on sources at low redshift, any corrections due to spatial
curvature would be extremely small and would not affect our conclusions.
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certainly be required at a later stage if attempts to measure 𝐻0 via
this method are actually made.

Some previous explorations of this possibility have focused on
observations of quasars (Ding & Croft 2009; Bachchan et al. 2016).
Other work, like ours, has focused on closer sources for which the
predicted signal is larger (Croft 2021; Paine et al. 2020; Hall 2019).
Hall (2019) develop a harmonic-space formalism for modeling the
galaxy peculiar velocities, whereas we have chosen to work in real
space. Croft (2021) and Paine et al. (2020) consider data sets modeled
on particular present or future observing campaigns, whereas we have
chosen to adopt an exploratory approach, asking what observing
strategy would be optimal for this particular measurement.

We focus specifically on measuring 𝐻0, but extragalactic proper
motion surveys can be used to study a number of additional inter-
esting questions (e.g., Darling et al. 2018, and references therein).
Of particular note is the ability to measure the acceleration of our
solar system’s motion via secular aberration drift (Truebenbach &
Darling 2017), which is the proper motion of sources due to the
solar system’s rotational motion around the galactic center. Probing
the connection between the galaxy proper motion field and the mat-
ter power spectrum is also potentially of great interest (Darling &
Truebenbach 2018).

The remainder of this paper is structured as follows. Section 2
contains the details of our methods, including the computation of
marginalized likelihoods needed for both Fisher calculations and
maximum-likelihood estimation in our simulations, along with nu-
merous other details. Section 3 contains a summary of our results,
and a discussion is found in Section 4.

3 METHODS

3.1 Assumptions

We wish to measure 𝐻0 using parallax. Suppose that we have a
sample of galaxies, each of which has a measured angular position,
redshift, and proper motion.

From redshift alone, we are only able to determine a combination
of 𝐻0 and the distance to a galaxy (with some uncertainty due to the
galaxy’s unknown radial peculiar velocity). We then use the proper
motion of the galaxy to constrain the distance alone, allowing us to
separate the distance from 𝐻0.

We begin with some simplifying assumptions. First, we assume
that the error in angular position measurements is negligible com-
pared to other errors, so we treat the angular position of each galaxy
as perfectly known. Second, we assume that the velocity of the solar
system with respect to the cosmic microwave background has been
measured with a high degree of accuracy, so we treat it too as being
perfectly known. Third, we assume that galaxies’ peculiar velocities
are uncorrelated and that each component of the peculiar velocity
is drawn from a normal distribution with mean zero and standard
deviation 𝜎𝑣 . While actual galaxy peculiar velocities are correlated,
we will show in Section 4.5 that the error introduced by this approx-
imation is acceptable. Fourth and finally, we assume that all noise is
normally distributed with mean zero.

3.2 Likelihood Function and Priors

We place the Earth at the center of our coordinate system and suppose
that our survey has 𝑁 galaxies. Since the angular position of each
galaxy is assumed to be known perfectly, we may associate with each
galaxy 𝑗 an orthonormal basis of vectors �̂� 𝑗 , 𝜃 𝑗 , 𝜙 𝑗 . We denote the

peculiar velocity of the galaxy as ®𝑣 𝑗 , the peculiar velocity of the
solar system as ®𝑣0, and the relative peculiar velocity of the galaxy
as ®𝑉 𝑗 = ®𝑣 𝑗 − ®𝑣0. Therefore 𝑉 𝑗𝑟 = ®𝑉 𝑗 · �̂� 𝑗 , 𝑉 𝑗 𝜙 = ®𝑉 𝑗 · 𝜙 𝑗 , and
𝑉 𝑗 𝜃 = ®𝑉 𝑗 · 𝜃 𝑗 . We denote the angular diameter distance 4 to the 𝑗 th

galaxy as 𝑅 𝑗 𝐴 and the comoving distance to the 𝑗 th galaxy as 𝑅 𝑗 .
Finally, we let 𝑍 (𝐻0, 𝑅 𝑗 ) denote the cosmological redshift (i.e., the
redshift in the absence of peculiar velocity) of a galaxy at distance
𝑅 𝑗 for a given value of 𝐻0.

We may now write a function 𝜆 = −2ln(𝐿) = −2ln(L) + const,
where L is the likelihood function for our model and 𝐿 is an unnor-
malized function proportional to the likelihood:

𝜆 =

𝑁∑︁
𝑗=1

©«
[
𝑧 𝑗 − 𝑐𝑍 (𝐻0 ,𝑅 𝑗 )+𝑉𝑗𝑟

𝑐

]2

𝜎2
𝑧 𝑗

+

[
¤𝜙 𝑗 − 𝑉𝑗 𝜙

𝑅 𝑗𝐴sin(𝜃 𝑗 )
]2

𝜎2
¤𝜙 𝑗

+

[
¤𝜃 𝑗 − 𝑉𝑗 𝜃

𝑅 𝑗𝐴

]2

𝜎2
¤𝜃 𝑗

ª®®¬ (1)

As usual, the likelihood is the probability density of the observed
data, given a set of theoretical parameters. In the above expression,
the observed data are 𝑧 𝑗 (the redshift) and ¤𝜙 𝑗 and ¤𝜃 𝑗 (which de-
scribe the proper motion). The theoretical parameters are the Hubble
parameter 𝐻0, the comoving distances {𝑅 𝑗 }, and the peculiar veloc-
ities {®𝑣 𝑗 }. (The angular diameter distances {𝑅 𝑗 𝐴} are determined by
{𝑅 𝑗 } and 𝐻0 so are not independent parameters.) The other quantities
appearing in this expression, specifically the measurement uncertain-
ties 𝜎 ¤𝜃 𝑗

, 𝜎 ¤𝜙 𝑗
, 𝜎𝑧 𝑗 , are assumed to be known. Recall that 𝜃 𝑗 and 𝜙 𝑗 ,

measurements of the angular position, are assumed to be known per-
fectly. We therefore treat all of these values as constants. This leaves
𝐻0, {𝑅 𝑗 }, and {®𝑣 𝑗 } as the parameters in our model.

Our model considers all of the galaxies to be independent of each
other, so the likelihood function for a given galaxy and set of param-
eters depends only on the measurements for that galaxy. Thus,

𝐿 (𝐻0, {𝑅 𝑗 }, {®𝑣 𝑗 }) =
𝑁∏
𝑗=1

𝐿 𝑗 (𝐻0, 𝑅 𝑗 , ®𝑣 𝑗 ), (2)

where 𝐿 𝑗 = 𝑒−
1
2𝜆 𝑗 and 𝜆 𝑗 is the 𝑗 th term in the sum 𝜆.

To determine our prior, we assume that the proper volume density
of galaxies is uniform and that peculiar velocities have independent
components drawn from a normal distribution with mean zero and
standard deviation 𝜎𝑣 .

Since we assume that galaxies are drawn at random within our
survey volume, the prior 𝑃 𝑗 (𝐻0, 𝑅 𝑗 ) on 𝐻0 and 𝑅 𝑗 satisfies 𝑑𝑃 𝑗 ∝
𝑛𝑅2

𝑗𝑑𝑅 𝑗 , where 𝑛 is the number density of galaxies in redshift space.
This density is proportional to 𝐻3

0 in real space, so 𝑑𝑃 ∝ 𝐻3
0𝑅

2
𝑗𝑑𝑅 𝑗 .

Our model assumes that all of the galaxies are independent of each
other, so the prior on 𝐻0 and {𝑅 𝑗 } is the product of the individual

4 The angular diameter distance is the distance to an object such that the
usual geometric relation 𝑠 = 𝑑𝜃 is obeyed, where 𝑑 is the angular diameter
distance, 𝜃 is the angular size, and 𝑠 is the physical size. The comoving
distance is a distance in coordinates that are chosen to compensate for the
expansion of the Universe - i.e., a galaxy’s comoving distance is unchanged if
and only if the relative velocity between the galaxy and the observer is solely
due to the expansion of the Universe. For cosmological distances, these two
values may not be the same.

MNRAS 000, 1–10 (2021)



4 Ferree and Bunn

priors:

𝑑𝑃(𝐻0, {𝑅 𝑗 }) =
𝑁∏
𝑗=1

𝑑𝑃 𝑗 (𝐻0, 𝑅 𝑗 ) ∝
𝑁∏
𝑗=1

𝐻3
0𝑅

2
𝑗𝑑𝑅 𝑗 . (3)

Furthermore, our assumptions about the distribution of peculiar
velocity components lead to a peculiar velocity prior

𝑃({®𝑣𝑘}) =
𝑁∏
𝑗=1

𝑃 𝑗 (®𝑣 𝑗 ) =
𝑁∏
𝑗=1

𝑒

−|| ®𝑣𝑗 | |2

2𝜎2
𝑣 . (4)

(See Section 4.5 for further discussion of galaxy peculiar velocities.)
Therefore the unnormalized posterior probability distribution for the
survey becomes

𝐴(𝐻0, {𝑅 𝑗 }, {®𝑣 𝑗 }) ∝
𝑁∏
𝑗=1

𝐻3
0𝑅

2
𝑗𝑒

−|| ®𝑣𝑗 | |2

2𝜎2
𝑣 𝐿 𝑗 (𝐻0, 𝑅 𝑗 , ®𝑣 𝑗 ). (5)

The peculiar velocities {®𝑣 𝑗 } are nuisance parameters, so we per-
form an analytic marginalization. The marginalized likelihood is∏

𝑗 𝐵 𝑗 , where

𝐵 𝑗 (𝑅 𝑗 , 𝐻0) ∝ 𝐻3
0𝑅

2
𝑗

+∞∭
−∞

𝑒

−|| ®𝑣𝑗 | |2

2𝜎2
𝑣 𝐿 𝑗 𝑑𝑣 𝑗𝑟 𝑑𝑣 𝑗 𝜙 𝑑𝑣 𝑗 𝜃 . (6)

This yields

𝐵 𝑗 (𝑅 𝑗 , 𝐻0) ∝ 𝐻3
0𝑅

2
𝑗𝑒

− 1
2 𝛽 𝑗 , (7)

where

𝛽 𝑗 (𝑅 𝑗 , 𝐻0) = −ln ©«
𝑅4
𝑗 𝐴

(𝜎2
𝑣 + 𝑅2

𝑗 𝐴
𝜎2

¤𝜃 𝑗 ) (𝜎
2
𝑣csc2 (𝜃 𝑗 ) + 𝑅2

𝑗 𝐴
𝜎2

¤𝜙 𝑗
)
ª®¬

+ (−𝑐𝑍 (𝐻0, 𝑅 𝑗 ) + 𝑣0𝑟 + 𝑐𝑧 𝑗 )2

𝜎2
𝑣 + 𝑐2𝜎2

𝑧 𝑗

+ ( ¤𝜃 𝑗𝑅 𝑗 𝐴 + 𝑣0𝜃 )2

𝜎2
𝑣 + 𝑅2

𝑗 𝐴
𝜎2

¤𝜃 𝑗

+ ( ¤𝜙 𝑗𝑅 𝑗 𝐴 + csc(𝜃 𝑗 )𝑣0𝜃 )2

csc2 (𝜃 𝑗 )𝜎2
𝑣 + 𝑅2

𝑗 𝐴
𝜎2

¤𝜙 𝑗

. (8)

The distances {𝑅 𝑗 } are also nuisance parameters, so we marginal-
ize over them as well. This integral cannot be done analytically, so
we resort to numerical methods. Fortunately, the independence of
the galaxies means that we can write the 𝑁-dimensional integral as a
product of 𝑁 one-dimensional integrals. Thus, our final expressions
for the posterior probabilities {L 𝑗 } have only 𝐻0 as a parameter:

L 𝑗 (𝐻0) ∝
∞∫

0

𝐵 𝑗 (𝑅 𝑗 , 𝐻0)𝑑𝑅 𝑗 (9)

Therefore

L(𝐻0) ∝
𝑁∏
𝑗=1

L 𝑗 (𝐻0), (10)

so we now have an expression for our posterior probability distribu-
tion L marginalized over all nuisance parameters.

3.3 Fisher Information

The Fisher information of a set of random variables is a measure
of how much information these variables contain about an unknown
parameter. It therefore provides a useful way to quantify the uncer-
tainty of a method of parameter estimation. Indeed, for unbiased

estimators, the Cramér-Rao inequality (discussed below) uses the
Fisher information to set a strict lower bound on the variance of the
estimator.

For a single parameter 𝐻0 and posterior probability distribution
L(𝐻0), the Fisher information 𝐹 (𝐻0) is given by

𝐹 (𝐻0) =
〈
− 𝑑2ln(L(𝐻0))

𝑑𝐻2
0

〉
. (11)

Since the measurements for different galaxies are independent, we
know that the Fisher information for a sample of 𝑁 galaxies is
𝐹𝑁 (𝐻0) = 𝑁𝐹 𝑗 (𝐻0), where 𝐹 𝑗 (𝐻0) is the Fisher information for a
single galaxy. Thus, we may concern ourselves with calculating only
𝐹 𝑗 (𝐻0), which is

𝐹 𝑗 (𝐻0) =
〈
− 𝑑2ln(L 𝑗 (𝐻0))

𝑑𝐻2
0

〉
. (12)

We therefore wish to compute〈
− 𝑑2ln(L 𝑗 (𝐻0))

𝑑𝐻2
0

〉
=

〈
−
L 𝑗 (𝐻0) 𝑑

2L 𝑗

𝑑𝐻2
0
−
(
𝑑L 𝑗

𝑑𝐻0

)2

L 𝑗 (𝐻0)2

〉
. (13)

We compute this value via Monte-Carlo integration: for a fixed set
of experimental parameters, we randomly generate many sets of data
(with a uniform proper volume density) and find − 𝑑2ln(L 𝑗 (𝐻0 ) )

𝑑𝐻2
0

for
each, taking the mean as the expected value. This yields the Fisher
information for a single galaxy, which we then multiply by 𝑁 to find
the Fisher information for a survey of 𝑁 galaxies. To simplify this
calculation, we use the low-redshift approximation 𝑐𝑍 (𝐻0, 𝑅 𝑗 ) =

𝐻0𝑅 𝑗 .
Given the expected value of the Fisher information, we then com-

pute a lower bound on 𝜎𝐻0 , the standard deviation of the maximum-
likelihood estimator of 𝐻0, via the Cramér-Rao Inequality:

𝜎𝐻0 ≥ 1√︁
𝐹𝑁 (𝐻0)

. (14)

This inequality applies to any unbiased estimator of 𝐻0. In Section
4.3, we will compare it to the maximum-likelihood estimator.

While the maximum-likelihood estimator is biased (as we will see
in Section 4.3), the bias is typically small. Furthermore, the correct
expression for the Cramér-Rao inequality for a biased estimator 𝜃 of
a parameter 𝜃 is

var(𝜃) ≥ (1 + 𝑏′ (𝜃))2

𝐹 (𝜃) , (15)

where 𝑏(𝜃) is the bias and 𝐹 (𝜃) is the Fisher information (Jaynes
2003). In the case where 𝑏′ (𝜃) is small, this lower bound is well-
approximated by 1/𝐹 (𝜃). We will show in Section 4.3 that the
maximum-likelihood estimator of 𝐻0 is in such a regime, and there-
fore equation (14) is approximately true.

3.4 Simulation

We also compute the uncertainty in𝐻0 via simulation. The simulation
has the advantage of allowing all redshifts and angular diameter
distances to be calculated from a numerical solution of the Friedmann
equation, so the low-redshift approximation does not enter into the
simulation.

Given the maximum redshift of the survey, we use an interpolation
of our numerical solution of the Friedmann equation to find the
comoving distance that corresponds to a cosmological redshift equal
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to the maximum survey redshift. We then randomly generate galaxies
with a uniform proper volume density throughout a sphere whose
radius is twice that of the calculated comoving distance. Each galaxy
is then given a random peculiar velocity, with each component drawn
from a normal distribution with mean zero and standard deviation
𝜎𝑣 . Galaxies whose resulting redshifts exceed the redshift limit of the
survey are then discarded. This process is iterated until the desired
number of galaxy observations have been generated. We then assume
that the two components of each galaxy’s proper motion have been
measured with some uncertainty 𝜎𝑝 . We generate the observed data
by adding noise with this standard deviation to the “true” proper
motion components corresponding to the given distance and peculiar
velocity.

Then, given a set of data, we numerically optimize L to find
the maximum-likelihood estimate of 𝐻0. We repeat this for many
randomly generated surveys in order to compute the expected value
and standard deviation of the maximum-likelihood estimator of 𝐻0.
We take the standard deviation of the estimator to be the uncertainty
in the measurement of 𝐻0.

3.5 Velocity Field Reconstruction

The procedure described above assumes that galaxy peculiar veloc-
ities are uncorrelated and unknown. As we will describe below, we
consider hypothetical surveys in which galaxies are spaced farther
apart than the velocity correlation length, to reduce the effect of cor-
related peculiar velocities. In order to further assess the effect of these
assumptions, we perform simulations in a subset of our parameter
space for models in which galaxy peculiar velocities are correlated
but reconstructed with some uncertainty.

The likelihood function and structure of the simulation remains
essentially the same. However, in our primary tests, when we gen-
erate the peculiar velocities of the galaxies, we consider two parts:
a correlated component due to a velocity field that is a realization
of a Gaussian random process with a given coherence length, and
an uncorrelated component where each component is drawn inde-
pendently from a normal distribution. We further imagine that the
correlated component is known and the uncorrelated component is
unknown. These assumptions are meant to approximate the idea that
reconstructions of peculiar velocities will do much better at deter-
mining the large-scale coherent component of the velocity field, so
the unknown residual will be much less correlated.

Given the importance of velocity correlations in the actual Uni-
verse, we conducted secondary tests to verify that our treatment of
velocity correlations is reasonable. The worst-case scenario for our
analysis is an experiment in which the actual peculiar velocities are
correlated but the analysis in the future experiment treats them as
uncorrelated. We analyze this case by generating a peculiar veloc-
ity field that is a realization of a Gaussian random process with a
coherence length of 50 Mpc and using this field to generate data
as described in Section 3.4. We then fit 𝐻0 to this data exactly as
described in Section 3.4, as if the simulated peculiar velocities had
no correlations.

3.6 Extragalactic Statistical Parallax

In most cases of interest, the most useful proper motion signal comes
from the motion of the Earth with respect to the CMB, since we
consider this to be perfectly known. However, there is in principle
another effect in the signal, which we will describe as extragalactic
statistical parallax. This effect is due to the peculiar velocities of the

observed galaxies; while each peculiar velocity is unknown, we have
assumed that we know the distribution they are drawn from. This
knowledge of a typical peculiar velocity lets us estimate a typical
distance for a galaxy (given its proper motion). With this distance
and the redshift, we can then estimate 𝐻0.

This effect necessarily has a large uncertainty (due to the fact that
peculiar velocities are unknown). As a result, the effect is often small
compared to the signal provided by the known motion of the Earth.

However, in some cases, this statistical effect is as important as (or
even more important than) the proper motion due to actual parallax.
For example, in cases where the proper motion due to the Earth’s
motion is small compared to the uncertainty in proper motion mea-
surements (either because of high uncertainty or large distances), the
signal due to Earth’s motion is weak. As a result, the signal is domi-
nated by this extragalactic statistical parallax effect, and an increase
in the peculiar velocity dispersion actually leads to a decrease in the
uncertainty on the measurement of 𝐻0. This is discussed further in
Section 4.6.

4 RESULTS

4.1 Cosmological Parameters

We used the following cosmological parameters in the Fisher infor-
mation analysis and in the simulation.

The current radiation energy density parameter was set to Ω𝑅 =

9 × 10−5. The current matter energy density parameter was set to
Ω𝑀 = 0.31. The current dark energy density parameter ΩΛ was set
to 1 − Ω𝑅 − Ω𝑀 , rendering the Universe flat (Ryden 2016; Planck
Collaboration et al. 2020).

In this section, we analyze a survey of a universe with Hub-
ble parameter equal to 𝐻0 = 70 km s−1 Mpc−1, galaxy peculiar
velocity dispersion equal to 𝜎𝑣 = 660√

3
km/s (Padilla & Lambas

1999), and speed of the solar system relative to the CMB equal
to ⟨25.8 km/s, 246 km/s, 271 km/s⟩ in standard Galactic coordinates
(Gordon et al. 2008).

Throughout this analysis, we hold the fractional uncertainty in
measured redshift fixed at 0.001. Each galaxy is assumed to have the
same uncertainty 𝜎𝑝 in both components of its proper motion.

4.2 Trials

To relate comoving distances to cosmological redshifts, we numer-
ically solved the Friedmann equation at fifty evenly spaced redshift
values between 0 and 1 and then used these points to interpolate the
relationship throughout the simulation.

The Monte Carlo integration in the Fisher analysis was performed
with 1 00000 points.

The simulation generated between 1000 and 10000 surveys for
a given set of experimental parameters (depending on the point in
parameter space). From these surveys, the standard deviation of the
maximum-likelihood estimates of 𝐻0 was taken as the uncertainty
in 𝐻0 and the mean value of the maximum-likelihood estimates was
taken as the expected value of 𝐻0.

All numerical optimizations were performed with SciPy’s Powell
optimization method, and all numerical integrations were performed
with SciPy’s quadrature integration method.

To ensure that each simulation generated enough surveys for reli-
able results, we ran the simulation twice for each point in parameter
space and compared the percent error in the uncertainty estimates of
the two runs. The maximum percent error was 4.92%. The minimum
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percent error was 2.05×10−6%. The mean percent error was 1.30%,
and the standard deviation of the percent errors was 1.14%.

4.3 Fisher Analysis Results

As mentioned in Section 3.3, the Cramér-Rao Inequality requires
an unbiased estimator to be guaranteed. Figure 1 shows that the
maximum-likelihood estimator has a slight negative bias, which is
always small compared to the uncertainty. The ratio of the bias in
estimated 𝐻0 to the error in 𝐻0 ranges from −0.03 to −0.2, with a
median of −0.08. However, this ratio is smaller for low Δ𝐻0 values
than for higher ones, typically by a factor of roughly 2. The bias is
therefore relatively small for the results of interest.

A possible explanation for this bias is the volume element in our
prior and our assumption about uniform volume density of galaxies.
All else being equal, our model prefers larger distances for galaxies.
This is simply because there is more volume at larger distances - if we
know nothing else about a galaxy, it is more likely to be found at larger
distances because of the higher volume and uniform density. The
estimator therefore tends to select the largest distance compatible with
the redshift observation. For a fixed redshift, increasing the distance
corresponds to a reduced 𝐻0, producing the effect we observe. While
this is a reasonable explanation for the effect, one should also bear in
mind that an estimator has no guarantee of being unbiased. An exact
explanation of the source of the bias does not necessarily exist.

As discussed in Section 3.3, the Cramér-Rao lower bound for
a biased estimator is well approximated by the reciprocal of the
Fisher information when the derivative of the bias with respect to
the estimator is low. This is typically the case for our estimator;
for example, we numerically estimated the derivative of the bias at
𝐻0 = 70 km s−1 Mpc−1 with 𝜎𝑝 = 0.211 𝜇as yr−1, 𝑁 = 216, and
a maximum survey redshift of 0.070, finding it to be approximately
𝑏′ (𝐻0) = 0.0088. Since 𝑏′ (𝐻0) ≪ 1, the correct value for the
Cramér-Rao lower bound is very close to the reciprocal of the Fisher
information. We therefore use the unbiased version of the Cramér-
Rao inequality to quantify the standard deviation of our estimator,
taking the reciprocal of the square root of the Fisher information to
be the estimate of the uncertainty in 𝐻0.

For each point that we simulated in parameter space, we estimated
the uncertainty in 𝐻0 using the Fisher information. The set of ratios
of simulation uncertainty estimation to Fisher uncertainty estimation
(as given by equation (14)) had a minimum of 0.926, a maximum
of 1.151, a mean of 1.042, and a standard deviation of 0.029. In
summary, the uncertainty in the maximum-likelihood estimator is
always extremely close to the Cramér-Rao bound.

4.4 Simulation Results

We imagine a survey with a fixed number of galaxies, a maximum
survey redshift, and desired error tolerance in the determination of
𝐻0. We then use the results of the simulation to interpolate the
necessary precision of proper motion measurement (𝜎𝑝) required to
meet this error tolerance.

For each redshift limit, we limit the number of galaxies such that
the average distance between galaxies in the simulation is greater
than or equal to the velocity coherence length, which we take to be
50 Mpc.

We chose this value based on data from the Galacticus simulation
from the CosmoSim suite of simulations (Knebe et al. 2017; Benson
2012). Peculiar-velocity correlations in these simulations appear to
be broadly consistent with observational data (Wang et al. 2018).
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Figure 1. This plot displays the bias for a set of survey parameters with the
maximum survey redshift held fixed at 0.058, where 𝜎𝑝 is the proper motion
uncertainty. The red triangles mark the true value of 𝐻0 in the simulation, 70
km s−1 Mpc−1. The blue points mark the expected value of the maximum-
likelihood estimator of 𝐻0 for the simulation of a given parameter set. The
magenta stars mark the mean value minus the standard deviation and the mean
value plus the standard deviation. The different points for the same proper
motion uncertainty correspond to surveys with different numbers of galaxies
ranging from 50 to 125.

For our purposes, a simulation-based estimate is cleaner than an
observational result, as we are interested in knowing the correlation
function of arbitrary components of the 3D peculiar velocity field.
Due to both cosmic variance and the fact that only radial components
can typically be measured, the relationship between this quantity and
observational data is complicated. In any case, for present purposes
a reasonable estimate of the coherence length is all that is required.

To be specific, we computed the two-point velocity correlation
function for each component of galaxy velocities for a cubic neigh-
borhood of CosmoSim data and found the distance by which the
two-point correlation function had dropped by approximately one 𝑒-
fold. This cubic neighborhood had a proper side length of 150 Mpc
and roughly 35000 galaxies of mass at least 1012𝑀⊙ within it.

Figure 2 displays the required sensitivity in term of a figure of
merit,

FOM =
𝜎𝑝

𝑁1/2 , (16)

where 𝜎𝑝 is the proper motion uncertainty and 𝑁 is the number
of galaxies surveyed. Under the assumption that the precision of a
proper motion measurement improves in proportion to the square
root of the observing time, this FOM is proportional to 𝑇−1/2, where
𝑇 is the total observing time devoted to the survey.5 Larger FOMs
therefore correspond to “easier" surveys.

4.5 Velocity Field Reconstruction Results

As described in Section 3.5, we compared the results of the uncor-
related survey to the results of the survey with velocity field recon-

5 Note that 𝑇 is the telescope time, not the total elapsed time, for the survey.
Proper motion measurements will improve in direct proportion to the total
elapsed time. Our figure of merit assumes that the latter is fixed.
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Figure 2. The figure of merit is graphed versus number of galaxies for a specified error tolerance in 𝐻0, where 𝜎𝑝 is the proper motion uncertainty and 𝑁

is the number of galaxies surveyed. The different colors of lines correspond to different maximum survey redshifts as follows: 0.035 (magenta), 0.046 (gray),
0.058 (purple), 0.070 (olive), 0.081 (red), 0.093 (blue), 0.104 (green), 0.116 (orange), 0.128 (yellow), 0.139 (cyan), 0.151 (black), 0.162 (pink), 0.174 (brown).
For each maximum redshift, the maximum value of 𝑁 is determined by the requirement that galaxy separations exceed the velocity correlation length.

Table 1. Ratios of error estimates based on the assumption of uncorrelated
errors to those based on the assumption that 75% of the peculiar velocity
variance is correlated and has been reconstructed, as described in Section
3.5.

Max Redshift Min Max Mean Standard
Redshift Ratio Ratio Ratio Deviation

0.035 1.15 1.59 1.38 0.16
0.046 1.17 1.60 1.39 0.14
0.058 1.17 1.62 1.40 0.14

structions. For the subset of parameter space with redshift limits of
0.058 and below, we compute the uncertainty in 𝐻0 via simulations
in which 0.25, 0.5, and 0.75 of the variance of peculiar velocity com-
ponents is due to this known and correlated velocity field. The 𝜎2

𝑣
used in the likelihood function is therefore the fraction of the variance
attributable to the random component of the velocity.

We found the ratio of the error estimate of the uncorrelated simu-
lation to the error estimate of the simulation with 0.75 of the velocity
having been reconstructed. We then computed the maximum, mini-
mum, mean, and standard deviation of these ratios. The results are
found in Table 1.

Figure 3 shows FOM plots under the assumptions that the fraction
of peculiar velocities that are correlated and reconstructed is 0.25,
0.50, and 0.75.

The differences resulting from peculiar velocity reconstruction are
small, providing evidence that peculiar velocity correlations do not
dramatically affect our results.

In addition to the primary tests described above, we performed
additional tests as described in Section 3.5. We now detail the results
of these additional tests.

Given the peak in Figure 2, we are primarily interested in the lower
redshift surveys. We therefore analyzed the worst-case scenario (of
correlated velocities with correlation completely ignored in the fitting

of 𝐻0) for the same survey sizes and proper motion uncertainties as
the original data set for the lower redshift surveys. For the subset of
the parameter space which we analyzed in this worst case scenario,
the ratio of Δ𝐻0 in the worst case scenario to Δ𝐻0 in the original
analysis had a mean of 1.85, a minimum of 1.04, a maximum of 3.41,
and a standard deviation of 0.60.

Figures 4 and 5 display 𝐻0 error estimates as a function of pa-
rameter space for both our original and worst case analysis. Figure 4
shows these estimates for a slice of parameter space, while 5 shows
these estimates for all points in parameter space which were ana-
lyzed using both methods. The comparison of these results shows
that while our approximation of uncorrelated velocities is not a neg-
ligible error, it still gives us both the correct shape of the parameter
space and estimates of the 𝐻0 uncertainty that are typically within a
factor of two. These similarities support our claim that our approx-
imation is good enough to draw useful conclusions about the order
of magnitude of errors involved in a future parallax survey and about
the optimal design of such a survey.

4.6 Extragalactic Statistical Parallax Results

To illustrate the information obtainable from “statistical parallax,”
we performed simulations in which the Earth’s peculiar velocity was
set to zero, so that there is no overall secular parallax. The results are
shown in Figure 6.

Comparison of Figure 6 to Figure 2 shows that in the simulation
with uncorrelated velocities, a significant fraction of the signal is due
to statistical parallax. However, this comparison presumably overes-
timates the effect of statistical parallax in relation to actual secular
parallax. First, the assumption that peculiar velocities are completely
unknown causes an underestimation of the signal due to well-known
motions. See Figure 3 and note that as the fraction of reconstructed
peculiar velocity increases, the uncertainty in 𝐻0 decreases. Second,
the assumption that peculiar velocities are uncorrelated most likely
causes an overestimation of the signal due to statistical parallax.
Since all of the information in statistical parallax is due to knowl-
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Figure 3. The figure of merit is graphed versus number of galaxies for an error tolerance in 𝐻0 of 9 km s−1 Mpc−1, where 𝜎𝑝 is the proper motion uncertainty
and 𝑁 is the number of galaxies surveyed. The upper left panel has 0 of the peculiar velocity reconstructed, the upper right panel has 0.25 of the peculiar velocity
reconstructed, the lower left panel has 0.5 of the peculiar velocity reconstructed, and the lower right panel has 0.75 of the peculiar velocity reconstructed. The
colors are as in Figure 2.

Figure 4. The uncertainty in 𝐻0 is graphed versus number of galaxies for various values of 𝜎𝑝 (corresponding to the different curves). The blue curves
correspond to the original analysis; the red curves correspond to the worst case scenario analysis. Each 𝜎𝑝 value is associated with a specific indicator, so the
red and blue curves with the same indicators are for the same 𝜎𝑝 values.

edge of the statistical distribution of peculiar velocities, correlating
the velocities presumably results in less information from the same
number of galaxies.

Unfortunately, statistical parallax in the actual Universe would be
significant in the case where velocity correlations are important but
unknown. This scenario is not well approximated by either of the
simulations: the first simulation has uncorrelated peculiar velocities,
while the second simulation has known correlations. We therefore
cannot test a more realistic case of statistical parallax using this
model, so we cannot test the hypothesis that uncorrelated peculiar

velocities leads to an overestimate of the usefulness of statistical
parallax.

5 DISCUSSION

The plots in Figure 2 have the same general features, several of
which are to be expected. For each error tolerance, the FOM has a
clear peak at a maximum redshift between 0.045 and 0.058, caused
by competing effects. If the redshift limit is small, there is not enough
volume to survey a large number of galaxies while maintaining the
constraint that galaxy separation exceed the correlation length. (This
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Figure 5. The uncertainty Δ𝐻0 in the measurement of the Hubble constant is plotted as a function of the survey parameters. The proper motion uncertainty 𝜎𝑝

and the maximum survey redshift are displayed on the axes. In the left plot, different survey sizes for these parameters are indicated by different colored dots.
These results are for the entirety of parameter space in the original analysis. In the right plot, the blue points correspond to the original analysis while the red
points correspond to the worst case analysis. These results are for the subset of parameter space analyzed via both methods. The multiple points occurring at any
given 𝜎𝑝 and maximum redshift correspond to different survey sizes.
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Figure 6. The figure of merit is graphed versus number of galaxies for a specified error tolerance in 𝐻0, where 𝜎𝑝 is the proper motion uncertainty and 𝑁 is
the number of galaxies surveyed. In contrast to Figure 2, our Galaxy’s peculiar velocity is set to zero, so that only the effects of extragalactic statistical parallax
are included. The colors are as in Figure 2.

is the reason that the low-redshift curves stop at small values of 𝑁 .)
At high redshift, on the other hand, the parallax signal becomes small
and hard to measure.

A useful observation for experimental design is the relative scale
of the curve and the steepness of the two sides. While there is a clear
peak in the figure of merit, it is within a factor of roughly four of
the figure of merit for the higher redshift limits that we tested – that
is, the peak FOM is of the same order of magnitude as those with
greater redshift limits. Furthermore, the curve is much steeper to the
left of the peak than to the right. This indicates that if a survey design
is to deviate from the ideal redshift limit, it is better for the redshift
limit to be higher than the ideal redshift limit than for it to be lower.

Although our formalism does not allow us to forecast errors for

surveys in which galaxies are closer together than the velocity cor-
relation length, there is reason to believe that the error forecasts for
surveys with larger numbers of more closely-spaced galaxies would
have similar FOMs – that is, that the curves in Figure 2 and the
following figures would roughly plateau rather than decline dramat-
ically if extended to higher 𝑁 at a fixed redshift cutoff. In particular,
in the limit where the separation between a set of galaxies is much
less than the velocity correlation length, we could treat the peculiar
velocities as identical and treat the entire collection as a single ob-
ject with a correspondingly larger observing time. In this limit, the
FOM is independent of the number of galaxies in that collection. To
forecast errors for a survey with mean galaxy separation less than
the correlation length, we could imagine dividing the survey volume

MNRAS 000, 1–10 (2021)
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into voxels whose size is of order the correlation length and treating
all galaxies in each voxel as a single data point in this manner. (Of
course, one would not analyze the real data in this way, but it is plau-
sible that such an approach would give decent enough error forecasts
for present purposes.) This approximation would lead to plateaus in
the various curves – that is, one would achieve results similar to the
optimum FOM even if one shifted to larger values of 𝑁 at a given
redshift limit.

Finally, we wish to compare the precision of measurement re-
quired for a useful constraint of 𝐻0 with the capabilities of present
and near-future experiments. For example, with an error tolerance
of 7 km s−1 Mpc−1, the optimum FOM is ∼ 0.06 𝜇as yr−1, obtained
by surveying ∼ 64 galaxies with redshift limit ∼ 0.046. This corre-
sponds to a precision for each measurement of 𝜎𝑝 ∼ 0.5 𝜇as yr−1.
While this is certainly a greater degree of precision than is cur-
rently available, it is not vastly beyond the capabilities of current
astrometric surveys. For example, Paine et al. (2020) forecast a Gaia
end-of-mission catalog with 104 nearby galaxies with mean proper
motion uncertainties of about 70 𝜇as yr−1, leading to an FOM of
about 0.7 𝜇as yr−1, about a factor of ten greater than our optimal
forecast. However, it should be noted that Gaia’s primary mission
is to catalogue Milky Way objects and their proper motions; mea-
surement of 𝐻0 is not a primary science goal (de Bruĳne 2012).
In this sense, then, the measurements needed to constrain 𝐻0 via
extragalactic parallax are not too far beyond current capabilities. In
the future, instruments such as the Nancy Grace Roman Space Tele-
scope (Mutchler et al. 2021), the Vera C. Rubin Observatory (Ivezić
et al. 2019), or the next-generation VLA (McKinnon et al. 2019) may
provide the capability to perform even better surveys.

As we noted in the introduction, the calculations presented in this
paper are meant as preliminary estimates. Although they are based
on approximations that limit the precision of the error forecasts, we
have presented tests that show that the resulting errors are not so
large as to prevent our results from providing a useful guide at this
early stage of consideration of this method. Naturally, as details of a
survey design come into focus, more precise error forecasts will be
required.

The methods we have presented here can be extended in various
ways to assist in designing the optimum design for a future proper
motion survey. For example, we have assumed an all-sky redshift-
limited survey, but our simulations can easily be generalized to ac-
commodate partial sky coverage or more complicated redshift and/or
brightness selection functions. In future work, we plan to consider
whether including the strongly lensed galaxies that are expected to
be found in future surveys (Oguri & Marshall 2010) can enhance the
precision of the measurement, by increasing the size of the proper
motion of some images and/or by using multiple images to reduce
the uncertainty.
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