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Introduction

In December 2019, a novel coronavirus, severe acute respiratory syndrome coronavirus 2

(SARS-CoV-2), was identified in Wuhan, China after numerous patients experienced pneumonia

symptoms, but existing medicinal treatments were ineffective.1 The global spread of the

SARS-CoV-2 virus caused an outbreak of the infectious disease, coronavirus disease 2019

(COVID-19), which was soon after declared a pandemic by the World Health Organization,

referred to as the COVID-19 pandemic.2 According to John Hopkins University, over 1,000,000

people have died from SARS-CoV-2 infection and about 104,000,000 cases have been confirmed

in the United States (US).3 An infection of the SARS-CoV-2 virus is caused by the virus spike

protein binding with the human angiotensin-converting enzyme 2 (hACE2) receptor. The most

common symptoms reported of this respiratory disease are a cough, fever, difficulty breathing,

fatigue, headache, sore throat, loss of taste or smell, congestion, nausea, vomiting, and diarrhea.

Patients with severe cases can experience dyspnea, hypoxemia, and progressive respiratory

failure which can result in organ failure or other fatal conditions.4 Groups over the age of 60

and/or those with pre-existing conditions can experience a higher rate of fatality.

The hACE2 receptors, located on the surface of human throat cells and lung epithelial

cells, are SARS-CoV-2 targets.5 The function of this receptor is to aid the regulation of the

renin-angiotensin system (RAS), which modulates both blood pressure and extracellular

volume.6 The hACE2 receptor is an enzyme which converts the substrate angiotensin II to the

active form. The active form, angiotensin I-7, acts as a vasodilator.7, 8 The direct interaction

between the SARS-CoV-2 spike protein and the hACE2 receptor causes viral infection.9

SARS-CoV-2 contains spike-like projections of glycoproteins on its surface that are responsible

for host infection. Specifically, the ectodomain of the SARS-CoV-2 virus consists of a subunit,



S1, which contains the receptor-binding domain (RBD) and the membrane-fusion subunit, S2.10

The SARS-CoV-2 RBD consists of a section of amino acids that interact directly with the

hACE2 receptor called the receptor binding motif (RBM).

To prevent SARS-CoV-2 infection or lessen the symptoms of COVID-19, scientists and

researchers have developed vaccines, antivirals, and other therapeutics. In December of 2020, the

United States Food and Drug Administration (FDA) issued emergency use authorization (EUA)

for mRNA vaccines developed by Pfizer-BioNTech and Moderna, followed quickly by EUAs for

the adenovirus (viral vector) vaccines developed by Johnson & Johnson and Astra-Zeneca.11

These vaccines produced multiple antibodies to various regions of the SARS-CoV-2 spike

protein, including antibodies that targeted the the SARS-CoV-2 RBD, which prevents host cell

entry by prohibiting the virus from attaching and interacting with the hACE2 receptor.12,13

Additionally, over the years, effective SARS-CoV-2 antiviral therapies have been developed and

are continuing to be studied. These antivirals are able to inhibit SARS-CoV-2 enzymes such as

the SARS-CoV-2 polymerase or the SARS-CoV-2 protease or inhibit SARS-CoV-2 viral entry

into host cells. Remdesivir is a FDA approved antiviral that inhibits the SARS-CoV-2 RNA

polymerase by terminating the production of the RNA chain.14 Tocilizumab and baricitinib are

also FDA approved antivirals, but are for hospitalized adults suffering with breathing

complications.15 Tocilizumab is a monoclonal antibody that inhibits interleukin 6 receptors and

therefore improves the condition of patients suffering from cytokine storm syndrome.16

Baricitinib is a Janus kinase inhibitor that inhibits the proinflammatory signal of several

cytokines.17 Essentially, this inhibitor prevents SARS-CoV-2 from interacting with the hACE2

receptor by interrupting the passage of SARS-CoV-2 into the target cells. Other antiviral drugs

such as molunupiravir, ritonavir, etc. have been issued as EUA antivirals. Previously developed



vaccines and antivirals are extremely effective in reducing hospitalizations and deaths among

vaccinated individuals.19, 20

Previous studies have researched the interaction between the SARS-CoV-2 RBD and the

hACE2 receptor; such as developing crystal structures of the SARS-CoV-2 RBD and hACE2

complex, analyzing the binding affinity of this interaction, and evaluating the effects of

SARS-CoV-2 RBD mutations.21, 22 The characterization of the SARS-CoV-2 RBD is important

for developing additional medicinal treatments. This is especially significant given that

previously developed vaccines and medications can become ineffective due to SARS-CoV-2

mutations.

Due to the global spread of SARS-CoV-2, the virus is prone to mutations, allowing it to

evolve over time. However, numerous studies have reported that the mutation of SARS-CoV-2 is

relatively slow, with an estimated two mutations per month.26, 27 Researchers believed that

because of the slow mutation rate of SARS-CoV-2, the virus would not be able to evade the

immune system. However, in 2020 and early 2021 there were reports of SARS-CoV-2 variants

and COVID-19 cases where patients had chronic infections and symptoms. Variants containing

multiple SARS-CoV-2 mutations that significantly increase the transmissibility of the virus,

worsen the severity of COVID-19 symptoms, or decrease the effectiveness of previously

developed vaccines, therapeutics, or public health/social measures are considered variants of

concerns. As of 2023, the major variants of concern, as in variants that exhibit more than one of

the characteristics previously mentioned, are Alpha (B.1.1.7), Beta (B.1.351), Gamma (P1),

Delta (B.1.617.2), and Omicron (B.1.1.529).28, 29 Table 1 contains more information pertaining to

the SARS-CoV-2 major variants of concern.



Table 1. SARS-CoV-2 Major Variants of Concern. The name of the variant and the time it was detected
is listed as well as the specific SARS-CoV-2 receptor binding domain mutations.

Variants Time Detected RBD Mutations

Alpha Sept. 2020 N501Y

Beta Oct. 2020 K417 N, E484K, N501Y

Delta Dec. 2020 K417 N, L452R, T478K

Gamma Jan. 2021 L452R, T478K

Omicron (B.1.1.529) Nov. 2021 G339D, S371L, S373P, S375F, K417 N, N440K,
G446S, S477 N, T478K, E484A, Q493 K/R∗, G496S,
Q498R, N501Y, Y505H

Most recently, the Omicron variant was detected in November of 2021 and, of the major

variants of concern, has the most SARS-CoV-2 RBD mutations. Initial reports speculated that the

increase in the SARS-CoV-2 RBD mutations in addition to the rapid increase in the number of

COVID-19 cases could be attributed to enhanced binding affinity of the Omicron RBD. Now, as

of 2023, Omicron and its subvariants are the predominant SARS-CoV-2 strain in the US. Figure

1 illustrates the Omicron RBD and the highlighted Omicron mutations. Notably, there were

conflicting reports of the specific amino acid mutation at the position 493: Q493K or Q493R.



Figure 1. Omicron SARS-CoV-2 RBD - hACE2 Interaction. Omicron SARS-CoV-2 RBD is
displayed in blue and hACE2 is displayed in a lighter blue. In green are the Omicron
SARS-CoV-2 RBD residue mutations: G339D, S371L, S373P, S375F, K417N, N440K, G446S,
S477N, T478K, E484A, Q493K, G496S, Q498R, N501Y, and Y505H. The binding site for the
RBD - hACE2 interaction and the residues K417N, G446S, S477N, T478K, E484A, Q493K,
G496S, N501Y, and Y505H are shown in the inset.

In the current study, we believed it was important to study the effect of the Omicron RBD

mutations, specifically, how the mutations affected the structure and stability of the SARS-CoV-2

RBD, the binding affinity between the SARS-CoV-2 RBD and the hACE2 receptor, and the

individual amino acid interactions responsible for said interaction. Previous experimental and

computational studies have investigated the binding affinity of the Omicron RBD and compared

the results to the wild type (WT) RBD.30-38 Overall, we found that the results of previous studies

were inconsistent, with various studies concluding that the Omicron RBD had an enhanced,

decrease, or similar binding affinity compared to the WT RBD. Additionally, we recognized a

pattern. Generally when researchers used an Omicron computational or experimental structure

that contained the Q493K mutation, they concluded that the Omicron RBD has a less or similar



binding affinity to the WT RBD. Then when researchers used an Omicron computational or

experimental structure that contained a Q493R mutation, generally they concluded that the

Omicron RBD had an enhanced binding affinity. Table 2 illustrates the binding affinity results of

previous studies and their conclusions. So, in this current study, we were interested in analyzing

the effect of the mutation at position 493 on the RBD binding affinity.

Table 2. Previous Computational and Experimental Research Studies Focusing on Omicron
and WT Binding Affinities. The experimental research studies measure the dissociation
constant (KD) and the binding affinity (KAFF). The computational research studies estimate the
binding free energy of the interaction. Additionally, the specific Omicron mutation at position
493 of the Omicron model used in the study is specified.

Model KD (nM) Omicron Model Ref.

WT

60 ± 1.4 Cameroni et al.30

13.20 Zhang et al.31

24.63 ± 5.00 Han et al.32

22.0 Chan et al.33

68.3 Cuit et al.34

Omicron

25.3 ± 1.2 Arg493 Cameroni et al.30

8.85 Lys493 Zhang et al.31

31.40 ± 11.62 Arg493 Han et al.32

24.4 Arg493 Cui et al.34

Model KAFF (L/mol) Omicron Model Ref.

WT 6.01 ± 3.02 x 107 Wu et al.35

Omicron 0.37 ± 4.66 x 107 Lys493 Wu et al.35

Model Computational ΔG
estimation (kcal/mol)

Omicron Model Ref.

WT

−33.13 ± 3.26 Wu et al.35

−18.32 ± 1.62 Nguyen et al.36

−32.43 Kumar et al.38

−59.7 da Costa et al.37

−29.43 ± 3.01 Lys493 Wu et al.35



Omicron −30.21 ± 4.48 Arg493 Nguyen et al.36

−41 Arg493 Kumar et al.38

−75.4 Arg493 da Costa al. 37

Lastly, we were interested in studying potential SARS-CoV-2 inhibitors by using

preexisting small molecules and analyzing their effects on the interaction between the

SARS-CoV-2 RBD and the hACE2 receptor. Previous studies have looked into screening small

molecules in the SARS-CoV-2 RBD and hACE2 interface and studying the molecules’ potential

to inhibit the interaction.23-25 However, in the current study we specifically focused on ACE

inhibitors as potential SARS-CoV-2 inhibitors as well as pre-identified SARS-CoV-2 inhibitors.

ACE inhibitors are used to treat cardiovascular and renal disease and are known to reduce

hypertension and congestive heart failure. More information on these inhibitors are explained

later on in the paper, but we decided to use ACE inhibitors as proof-of-concept potential

SARS-CoV-2 inhibitors.

In this study, we found that the Omicron mutations do not have a significant effect on the

SARS-CoV-2 RBD structure and stability. However, our results support that the Omicron RBD

model containing the Q493R mutation has an increased binding affinity to the hACE2 receptor

compared to both the WT and the Q493K Omicron RBD. Additionally, for both Omicron models

we found that amino acid interactions between the SARS-CoV-2 RBD and the hACE2 receptor

were lost, gained, strengthened, or decreased due to Omicron mutations. More detail is explained

in this paper. Then from preliminary results of investigating potential SARS-CoV-2 inhibitors we

found that ACE inhibitors would not be effective SARS-CoV-2 inhibitors based solely on

binding affinity results. However, additional analyses are still being conducted.



Methods
Protein Retrieval and Preparation

An hACE2 - SARS-CoV-2 RBD crystal structure was obtained from the Protein Data

Bank (PDB Code 6LZG).39 Chains A (hACE2) and B (SARS-CoV-2 RBD) were selected from

6LZG, and all waters were removed. The Omicron structure was computationally constructed

according to the 15 RBD point mutations mentioned in Table 1. Schrödinger’s Protein

Preparation Wizard was used to add missing hydrogen atoms, assign bond orders according to

the CCD database, fill missing side chains using Prime, predict side chain protonation states

using Epik with a pH range of 7 ± 2, and optimize H-bonds using PROPKA at a pH of 7.40-42

Schrödinger’s Protein Preparation Wizard was used to sample side chain conformers of amino

acid residues Asn, Gln, His, Asp, and Glu during the optimization of H-bonding. Restrained

minimization was then performed using the OPLS3e force field.43

Molecular Dynamics Simulations
Unrestrained classical molecular dynamics (cMD) was performed on the binary complex

of SARS-CoV-2 RBD with hACE2 using the GPU-accelerated pmemd code of AMBER18.44-46

The ff14SB and Glycam06j force fields were used to model standard amino acids, and

glycosylated amino acids/glycans, respectively.47, 48 The program antechamber was used to apply

the GAFF force field and AM1-BCC charges to all ligands.49, 50 All models were neutralized with

Na+ ions and explicitly solvated in a TIP3P unit cell using the program tleap.44 A process of

minimization, heating, and equilibration was performed prior to running unrestrained MD.

Minimization occurred in seven stages of a maximum of 5000 steps each. The first 1000 steps

consisted of steepest descent minimization and the remaining 4000 steps consisted of conjugate

gradient minimization. An initial restraining force of 10.0 kcal mol-1 Å-2 applied to the heavy



atoms of the solute was methodically decreased over the seven stages to 5.0, 2.0, 1.0, 0.5, 0.1,

and lastly 0.0 kcal mol-1 Å-2. Each structure was then heated linearly from 10 to 300 K while a

restraining force of 10.0 kcal mol-1 Å-2 was reapplied to all heavy atoms. Equilibration was then

conducted in seven 500-ps stages, with the initial restraining force methodically decreased to 0.0

kcal mol-1 Å-2 following the same procedure as that of minimization. Completion of equilibration

was followed by a certain amount of randomly selected seeds depending on the Omicron study

or the inhibitor study. A seed represents the initial protein ability to sample the potential energy

surface and adapt different conformations. The seeds are randomized based on the different

initial velocities of each starting structure, which is assigned in the heat step.

Molecular Dynamics Specification for RBD Comparison of WT and Omicron

Models
Initially, 10 100 ns trajectories were generated for each model, each using different seeds

to speed surface coverage. We concatenated the 10 seeds from each of the different SARS-CoV-2

RBD structures to obtain 1 µs ensembles for WT and the two Omicron binary complexes,

initiated using the 6LZG experimental structure. We then extended these seeds by another 100 ns

(200 ns total) and produced concatenated 2 µs ensembles for the all complexes.

Molecular Dynamics Specification for Potential SARS-CoV-2 Inhibitors
We generated 300 ns trajectories for each seed and concatenated the 10 seeds into a 3 µs

ensemble for the apo complex (no ligand was bound). For the ligand bound MD simulations, we

focused on 7 ligands with various poses which will be further discussed later in the paper. For

each ligand bound complex with a distinct pose, we generated 100 ns trajectories for 5 seeds and

the seeds were then concatenated into 500 ns ensembles.



Molecular Dynamics Analyses
Trajectory visualization was conducted using UCSF Chimera and UCSF ChimeraX.61, 62

From this analysis we confirm that amino acid side chains sampled all possible rotamers as part

of the cMD simulation. This is in addition to the rotamer analysis and screening that was

performed as part of our initial protein preparation. Using the AmberTools MMPBSA.py

package, MM-GBSA binding free energies and per-residue decomposition energies were

calculated for every frame, and pairwise decomposition energies were obtained for frames at a 1

ns interval.51 The GBOBC2 model (igb = 5) was used for the previously mentioned analyses.

Native contact analysis, as defined by Best et al., was conducted on all trajectories between RBD

and hACE2 heavy atom pairs.63 MDTraj was used to calculate the native contacts in the

interface. Hydrogen bonding, center-of-mass distance (COM), root-mean-squared deviation

(RMSD), root-mean-square fluctuation (RMSF), secondary structure, backbone atom

RMSD-based clustering, and non-hydrogen atom pairwise distance-based clustering analyses

were conducted using the AmberTools cpptraj module.51 Each clustering method resulted in 10

families per model.

SiteMap Analysis and Receptor Grid Generation
Schrödinger’s SiteMap program was used to predict and score potential sites for ligand

binding.52 These potential sites are assigned both Site Scores (SScore) and Drugability Scores

(DScore) based on volume, hydrophilicity/hydrophobicity, and H-bonding ability. Binding sites

with a SScore of at least 0.8 and a DScore of at least 0.83 are likely to allow ligand binding.52,56

Predicted binding sites are ranked based on size. SiteMap was run with default parameters on

chains A and B of 6LZG. Five binding sites were identified, three of which returned favorable

scores for 6LZG. Site #2, which was identified as a potentially favorable binding site, occurs at



the hACE2 - SARS-CoV-2 complex junction. Schrödinger’s Receptor Grid Generation program

was then used to generate a 40Å by 40Å by 40Å receptor grid with a ligand size cutoff of 20Å

centered on Site #2 in both models. All parameters were kept at their default values. These

receptor grids were used for all subsequent ligand docking.

Ligand Selection, Preparation, and Docking
Structures of common ACE inhibitors benazepril, captopril, enalapril, fosinopril,

fosinoprilat, lisinopril, perindopril, quinapril, ramipril, and trandolapril were manually built and

optimized according to the GAFF force field using Avogadro 1.2.53, 54 Additionally, aloe

emodin-LS-H15204, emodin-LS-H11074 and H17409, camostat-LS-H6976, and

physcion-LS-H9395, identified by LSBio as potential SARS-CoV-2 Spike (S) Protein inhibitors

and diquafosol, selected due to the phosphate groups, were also built using the same method

detailed above. While this is not an expansive list, the goal of this study was simply to

demonstrate that ligand binding to the site of interest is possible. Additionally, we want to

explore how ACE inhibitors act as SARS-CoV-2 RBD inhibitors and compare them to other

identified small molecules. Schrödinger’s Empirical pKa Prediction (Epik) was used to predict

the protonation states of each ligand at a pH of 7.4 ± 0.1. Schrödinger’s Glide Docking program

was used to dock each ligand into Site #2 as encompassed by the receptor grid. Glide assigns a

GlideScore to each ligand based on predicted polar and nonpolar interactions within the receptor

grid.55, 56 Default parameters were used with the XP docking algorithm, in addition to specifying

5 predicted poses per ligand. Ligands were selected for further analyses based on the GlideScore.

The GlideScore cutoff was -4.5 kcal/mol; however, fosinoprilat was selected due to the structural

similarity to fosinopril and significant difference in GlideScore. Absorption, distribution,

metabolism, and excretion (ADME) screenings were conducted on all ligands using



Schrödinger’s QikProp Program. Results were generated using the default settings and properties

that exceeded the 95% range of known drugs are reported in the results section. Additionally,

Pan-assay interference compounds (PAINS) screenings were conducted on the selected ligands

using the following sources: https://www.cbligand.org/PAINS/ and

https://zinc15.docking.org/patterns/home/. The default settings were used for both screenings.

Results and Discussion

The following results and discussion section will be divided into two main sections:

comparison of WT and Omicron binding affinities and the study of potential SARS-CoV-2 RBD

inhibitors.

SARS-CoV-2 RBD Comparison of Binding Affinities
Our overarching goal of the first section is to compare the binding behavior of the RBD

of the WT and Omicron models. When this work was first initiated in November 2021, there

were no experimental structures of the Omicron RBD in either apo form, or bound to hACE2.

Therefore, we built an Omicron RBD by making in silico mutations of the RBD using the WT

SARS-CoV-2 RBD-hACE2 experimental structure (PDB: 6LZG). Our approach assumed that

the 15 mutations present in the Omicron variant do not significantly change the conformation of

the SARS-CoV-2 RBD, and that atomic relaxation via local minimization is enough to stabilize

our in silico mutated structure.

While our current study was under review, experimental structures of the Omicron

SARS-CoV-2 RBD complexed with the hACE2 receptor had become available, including the

cryo-EM Omicron B.1.1.529 variant structure published by Guo et al (PDB: 7WSA).57 We

decided to compare our in silico Omicron structure to this cryo-EM Omicron structure by

https://www.cbligand.org/PAINS/
https://zinc15.docking.org/patterns/home/


superimposing both models. The 6LZG WT structure is composed of 796 residues compared to

the 7WSA Omicron structure which contains 803 residues. The Omicron RBD of the 6LZG

structure is 196 residues, with one residue accounting for the NAG (N-glycosylated) glycan

bound to Asn343. Similarly, the 7WSA structure has a glycan bound to Asn343, but has 6

additional residues located at the beginning and end of the RBD structure (Pro330, Asn331,

Ile332, Lys528, Lys529, and Ser530) that are not present in the 6LZG structure. In total, the

RBD of the 7WSA structure is composed of 202 residues. The hACE2 receptor for 6LZG is

composed of 599 residues, including the three NAG glycans bound to Asn53, Asn90, and

Asn322. Compared to the 7WSA model, 6LZG has one additional residue located at the end of

the hACE2 structure (Ala614); however, the hACE2 structure of the 7WSA model has three

additional NAG glycans bound to Asn103, Asn432, and Asn546. In total, the 7WSA hACE2

structure is composed of 599 residues. Additionally, the 6LZG structure contains a Zn ion, unlike

the 7WSA structure. The additional residues on both the 6LZG and 7WSA structures are not

significantly close to the binding site, so we believe these structures have similar abilities in

determining the binding ability of the Omicron RBD to the hACE2 receptor (Figure S1).

Additionally, the superimposition of 7WSA with our mutated 6LZG Omicron model

shows that the model is structurally true to the experimental structure (Figures 2 and S1). There

are additional residues on both the 6LZG and 7WSA structures, but they are well removed from

the binding site. From this comparison, we believe that our results using 6LZG are representative

of the results that would be obtained using the 7WSA structure, i.e. these structures have similar

capacities for determining the binding ability of the Omicron RBD to the hACE2 receptor. With

this result we decided to continue to use the in silico Omicron models for this current study.



Figure 2. Comparison of the 6LZG and 7WSA Binding Sites. The 6LZG structure is in blue
with the RBD depicted in dark blue and the hACE2 receptor depicted in light blue. The 7WSA
structure is in purple with the RBD depicted in dark purple and the hACE2 receptor depicted in
light purple. The Omicron mutation of the residue 493 is highlighted in orange on both
structures. On the 6LZG WT structure residue 493 is a lysine and on the 7WSA Omicron
structure this residue is an arginine. Both mutated residues have similar lengths and placement of
the side chain conformers.

Using the WT structure (6LZG), as well as the in silico Omicron structures, we first

performed 100 ns of MD simulations using 10 different, randomly selected, initial seeds. This

generated 1 µs ensembles for each molecular system. We then extended these 10 seeds by

another 100 ns each (for a total of 200 ns per seed) and conducted the same analyses on the

resultant 2 µs ensembles. No significant differences in ensemble analyses were detected. As

such, all further analyses were conducted on the 1 µs ensembles for computational efficiency,

except where specified.

To assess conformational dynamics and simulation convergence, we computed the

root-mean-squared-deviation (RMSD) of each ensemble conformation, relative to the

corresponding initial structure. Overall, RMSD is measuring the average distance between the



position of atoms, which essentially is measuring the stability of the SARS-CoV-2 RBD and

hACE2 complex. Figure 3 details the RMSD performed for all three models using the 2 µs

ensemble. Apart from a brief increase in RMSD between 20 and 40 ns of WT seed 1, increased

RMSD from 30 ns onwards in seed 5 of the Omicron Q493K model, and a brief increase in

RMSD between 100 to 150 ns in seed 4 of the Omicron Q493R model, RMSD analysis shows

that the WT and both Omicron complexes are relatively well converged across each seed, with

RMSD values ranging from 2 to 3.5 Å. There are no significantly notable differences in the

RMSD behavior of each model. This suggests thorough sampling of the dynamics of each

complex and that the ensembles we are using to estimate binding free energy are

conformationally converged. Additionally, because the RMSD behavior of each model is similar

to one another this signifies that the models are sampling similar conformations, which further

suggests that the models are comparable.

Figure 3. RMSD of SARS-CoV-2 RBD and hACE2 Models.
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We also performed root-mean-square-fluctuation (RMSF) per residue analysis on each

1µs ensemble. RMSF measures the fluctuation or movement of every amino acid in the

SARS-CoV-2 RBD and hACE2 complex. This analysis demonstrates that the fluctuations of the

individual amino acids are also well conserved between seeds given the relatively low RMSF

values for most of the structures. A comparison of the RMSF values for the WT and both

Omicron models suggests relatively similar residue movements, with the exception of two amino

acid ranges: 358 to 376 and 384 to 390. Figure 4 demonstrates the RMSF values for all three

models in addition to the SARS-CoV-2 RBD structures. Notably, in the region 358 to 376 there

are three Omicron mutations: S371L, S373P, and S375F. Additionally, in this residue range, there

is an increase in the RMSF for the Omicron Q493R model. The residue range 384 to 390 does

not contain any Omicron mutations and is far removed from the RBM, which is a region of

SARS-CoV-2 RBD amino acids responsible for interacting with the hACE2 receptor. However, it

is 10 residues away from the proline point mutation at position 373. This region, 384 to 390, is

highlighted in Figure 4, with orange, red and yellow representing the region on the WT, Omicron

Q493K, and Omicron Q493R models, respectively. Additionally, in this range, there is an

increase in the RMSF for the Omicron Q493R model and there is a decrease in the RMSF for the

Omicron Q493K model.
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Figure 4. RMSF of SARS-CoV-2 RBD and hACE2 Models. On the left is a structure of the
SARS-CoV-2 RBD of all three models. Additionally, the residue ranges 358 to 376 and 384 to
390 are encased in orange on the RMSF graph and are highlighted in orange, red, and yellow for
the WT, Omicron Q493K, and Omicron Q493R, respectively.

To further explore why we see these differences in RMSF, we decided to conduct

secondary structure analysis. Secondary structure analysis studies the change in secondary

structure of amino acids across the simulation. Again in the residue range 358 to 376, there was

an increase in the RMSF for the Omicron Q493R structure and this is further supported by the

decrease in secondary structure seen in this range. Specifically, Figure 5 demonstrates that there

is a decrease in the occurrence of alpha and 3-10 helices in the Omicron Q493R structure, where

the frequencies for the WT, Omicron Q493K, and Omicron Q493R are as follows: 95.29, 94.26,

and 87.71% respectively. This relatively small decrease in the helical occurrence can cause a

decrease in the stability of the amino acid backbone atoms involved in the secondary structures;

therefore, increasing the fluctuation of the amino acids. Then, as a reminder, Figure 4

demonstrates a decrease in the RMSF for the Omicron Q493K structure, but an increase in the

RMSF for the Omicron Q493R structure. From secondary structure analysis and the average

Omicron RBD structure, we found that there was a formation of a 3-10 helix involving the

residues L387, N388, and D389 on the Omicron Q493K structure. Additionally, the percent

occurrence of 3-10 helices in the WT, Omicron Q493K and Q493R are as follows: 4.25%,

69.26%, and 33.78% (Figure 6). This increase in the occurrence and formation of a 3-10 helix

could have caused an increase in the stability of the amino acid backbones involved in the helix,

thereby decreasing the amino acids’ fluctuation. Additionally, to explain the increase in RMSF

for the Omicron Q493R model in this range, we see the destabilization of two 3-10 helices

throughout the simulation which can contribute to the increase in fluctuation of the amino acid

backbones. In addition, there are predominantly more turn and bend structures compared to other



more stable secondary structures, which again can contribute to the fluctuation of the amino

acids.

Figure 5. Secondary Structure Plots for Residue Range 358 to 376.

Figure 6. Secondary Structure Plots for Residue Range 386 to 390.

From RMSD, RMSF, and secondary structure analysis we found that the SARS-CoV-2

RBD and hACE2 complex is relatively stable for all three models. These analyses support that

the Omicron mutations do not significantly affect the structure of the RBD, other than the few

instances previously discussed. And most importantly, the Omicron mutations do not have a

significant effect on the stability of the SARS-CoV-2 RBD interaction with the hACE2 receptor.

Then we focused on the binding affinity of the WT and Omicron RBD with the hACE2

receptor using MM-GBSA binding free energy estimations. Table 3 contains the binding free

energies for all models and the corresponding concatenated ensemble time length. As shown in

Table 3, the Omicron Q493K RBD has a similar/relatively decreased binding affinity compared



to the WT RBD. However, the Omicron Q493R RBD has a relatively enhanced binding affinity.

This suggests that the Omicron Q493R RBD has a stronger interaction with the hACE2 receptor

compared to the RBD of the other two models. These results are in agreement with previous

computational and experimental studies that were discussed earlier. However, the current study

conducted MM-GBSA analysis over all frames of the concatenated trajectory, while previous

studies such as da Costa et al. and Kumar et al. conducted MM-GBSA analysis solely on the

most stable structures and the last 10 ns of their trajectory, respectively.37, 38 Therefore, our results

provide a long time scale and more detailed atomistic view of the SARS-CoV-2 RBD binding

affinity.

Table 3. MM-GBSA Binding Energies. The binding free energy estimations (kcal/mol) for the
1 and 2 µs ensembles of WT and Omicron SARS-CoV-2 RBD and hACE2 models.

Model

1 µs 2 µs

MM-GBSA
Avg.

Std.
Dev.

Std Error
Mean

MM-GBSA
Avg.

Std.
Dev.

Std Error
Mean

WT -28.45 11.33 0.11 -29.69 10.61 0.07

Omicron
(K493)

-25.61 7.57 0.08 -26.67 7.31 0.05

Omicron
(R493)

-34.82 8.44 0.08 -34.56 8.24 0.06

First we studied the per-residue decomposition energies for the 2µs ensembles of all

models to understand the role individual amino acids had on the SARS-CoV-RBD binding

affinity. Per-residue decomposition energy is the energy a single amino acid contributes to the

interaction between SARS-CoV-2 RBD and hACE2 receptor. Table S1 displays the most

significant per-residue decomposition energies (less than -1 kcal/mol). The Omicron mutated

amino acids are in red. Table S1 demonstrates that most per-residue decomposition energies are



similar across all three models and generally unmutated residues have relatively similar

per-residue decompositions. However, there are a few notable differences in per-residue

decomposition. Residue 449 remains a tyrosine in both WT and Omicron models, but there is a

sizable decrease in the per-residue contribution (WT: -1.35 ± 1.00 kcal/mol, Omicron Q493K:

-0.11 ± 0.32 kcal/mol, and Omicron Q493R: -0.15 ± 0.41). There are 8 unmutated residues that

are significant for binding of both the WT and Omicron (Q493K and Q493R) RBD: F486F,

F456F, Y489Y, L455L, G502G, N487N, A475A, and T500T.

Figure 7 highlights the per-residue decomposition energies of the 15 Omicron RBD

mutated residues from WT (blue) to Omicron Q493K (orange) and Omicron Q493R (green).

There are 4 mutated residues that are important for binding of both WT and Omicron (Q493K

and Q493R) models: Q493K/R, G496S, N501Y, and Y505H; however, there is a noticeable

decrease for Y505H (WT: -4.92 ± 0.98 kcal/mol, Omicron Q493K: -3.09 ± 1.32 kcal/mol, and

Omicron Q493R: -3.33 ± 1.61). Additionally, there is a significantly favorable free energy

contribution for the Omicron mutation N501Y (WT: -2.05 ± 1.19 kcal/mol, Omicron Q493K:

-6.69 ± 1.17 kcal/mol, and Omicron 493R: -6.46 ± 1.15). The residue Q498 is significant for WT,

and the 477N residue was significant only for the Omicron models, which is supported by a

notable decrease in per-residue decomposition energy for the mutations Q498R (WT: -2.98 ±

3.21 kcal/mol, Omicron Q493K: -0.16 ± 1.26 kcal/mol, and Omicron Q493R: -0.30 ± 1.62

kcal/mol) and notable increase for the mutation S477N (WT: -0.31 ± 0.82 kcal/mol, Omicron

Q493K: -1.10 ± 1.15 kcal/mol, and Omicron Q493R: -1.02 ± 1.17 kcal/mol), respectively. Table

S1 and Figure 7 support that most per-residue decomposition energies are consistent across the

three model, especially the pre-residue decomposition energies for both Omicron models;



however, there is a notable difference in per-residue contribution between the Q493K and Q493R

mutations

Figure 7. WT and Omicron Per-Residue Decomposition of SARS-CoV-2 RBD Mutated
Residues. This bar graph demonstrates the per-residue decomposition energies for the 15 WT
and Omicron (Q493K and Q493R) mutated RBD residues. The energies for WT are depicted in
blue, the energies for Omicron Q493K are depicted in orange, and the energies for Omicron
Q493R are depicted in green. Standard deviations are reported in black.

Table 4 contains the per-residue decomposition energies for the residues at position 493

in all three models. These energies suggest that not only does the residue at position 493 play a

significant role in the binding between the SARS-CoV-2 RBD and hACE2 receptor, but possibly

dictates the outcome of the binding affinity comparison. Specifically, the per-residue

decomposition energies for the residues at position 493 on the WT and Omicron Q493K models
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are very similar and based on the MM-GBSA results we concluded that the two models had

similar binding energies. While the per-residue decomposition energy for R493 is significantly

higher (more negative) than the other models. This not only further supports the enhanced

binding affinity of the Omicron Q493R RBD, but, given the similarity in other residue energies

between the two Omicron models, also suggests that a single point mutation causes the Omicron

RBD to bind significantly tighter to hACE2 compared to the other two models.

Table 4. Per-residue Decomposition Energies for Residues at Position 493.

Model Per-residue
Decomp. (kcal/mol)

Std. Dev. Std. Error Mean

WT (Q493) -4.60 1.90 0.01

Omicron (K493) -5.05 2.62 0.02

Omicron (R493) -9.86 3.49 0.02

Additionally, to further support the estimated binding affinities of all three SARS-CoV-2

RBDs, we wanted to investigate the individual amino acid interactions and how they were

affected by the Omicron mutations. Pairwise decomposition energies, which measure the energy

of interaction for a pair of amino acids, were calculated for all three models. Our pairwise

decomposition analysis is consistent with our MM-GBSA results in that it supports the relatively

similarity in binding affinity to hACE2. Specifically, a summation of the energies of each

favorable residue pair yields -54.68, -59.63, and -57.73 kcal/mol for the WT, Omicron Q493K,

and Q493R models, respectively. Likewise, a summation of all pairwise interactions, both

favorable and unfavorable, yields total energies of -117.53, -110.83, and -116.30 kcal/mol for the

WT, Omicron Q493K, and Omicron Q493R models, respectively. Again, this further suggests



minimal differences in binding affinity across the models. Additionally, our data suggests that the

main contributor to the different estimated binding affinities are the specific lost or gained amino

acid interactions between the RBD and hACE2 receptor.

Table 5 illustrates that several pairwise interaction energies change upon mutation. Most

notably, the Q493R/K mutation significantly increases binding, enhancing the strength of

interaction with hACE2 residues His 34 and Glu 35, and providing a new interaction with

hACE2 Asp38. While this disagrees with Geng et al., who reported that the Q493R mutation

significantly reduced binding, several other studies agree with our findings.34, 37, 38, 64 In the WT,

neutral Gln493 contributes -4.84 and -4.10 kcal/mol when bound to hACE2 Glu35 and Lys31,

respectively. However, the Omicron mutations to a positively charged Lys493 or a positively

charged Arg493 creates very favorable interactions with hACE2 Glu35 (Omicron Q493K: -10.25

kcal/mol and Omicron Q493R: -12.65 kcal/mol) and with hACE2 Asp38 (Omicron Q493K:

-8.09 kcal/mol and Omicron Q493R: -9.29 kcal/mol), while the interaction with hACE2 Lys31 is

expectedly lost. In the WT, the S477 is not involved in a significant interaction, however in

Omicron the S477N mutation creates an interaction with a binding energy contribution of -3.37

kcal/mol (Omicron Q493K) and -2.86 kcal/mol (Omicron Q493R) with hACE2 Ser19.

Conversely, one of the strongest WT interactions between RBD Lys417 and hACE2 Asp 30

(-5.92 kcal/mol) is eliminated by the K417N mutation in Omicron. Similarly, the G496S and

Q498R mutations result in lost interactions with hACE2 Lys353 (-3.07 and -3.00 kcal/mol

respectively). Despite not being subjects of mutation, the WT interaction RBD Tyr449 – hACE2

Asp38 is also diminished in both Omicron models (Table 5).

Table 5. WT and Omicron SARS-CoV-2 RBD - hACE2 Pairwise Decomposition Energies.
Pairwise decomposition energies that are more favorable (less) than -2.00 kcal/mol are listed.
The pairwise decomposition energies are calculated from the full 1 µs ensemble and are reported



with the corresponding SARS-CoV-2 RBD and hACE2 residues. Omicron mutated residues are
shown in red.

RBDWT
Resid.

ACE2
Resid.

Pairwise
Decomp.
(avg. ± std.

dev.)
(kcal/mol)

RBD
Omicron
Q493K
Residue

ACE2
Resid.

Pairwise
Decomp.
(avg. ±
std. dev.)
(kcal/mol)

RBD
Omicron
Q493R
Residue

ACE2
Resid.

Pairwise
Decomp.
(avg. ±
std. dev.)
(kcal/mol)

Lys417 Asp30 -5.92 ± 3.34 Lys493 Glu35 -10.25 ±
3.21

Arg493 Glu35 -12.65 ±
4.42

Thr500 Asp355 -5.14 ± 2.38 Lys493 Asp38 -8.09 ±
3.61

Arg493 Glu38 -9.29 ±
5.22

Tyr505 Lys353 -5.06 ± 0.54 Thr500 Asp355 -6.44 ±
2.08

Tyr501 Lys355 -6.31 ±
0.94

Asn501 Lys353 -5.01 ± 1.47 Tyr501 Lys353 -6.38 +
1.00

Thr500 Asp355 -5.95 ±
2.24

Gln493 Glu35 -4.84 ± 1.62 His505 Lys353 -4.96 ±
1.45

His505 Lys353 -5.17 ±
1.41

Gln493 Lys31 -4.10 ± 2.04 Asn477 Ser19 -3.37 ±
2.68

Asn487 Gln24 -2.95 ±
0.93

Tyr449 Asp38 -3.26 ± 2.17 Asn487 Tyr83 -2.98 ±
0.89

Asn487 Tyr83 -2.93 ±
0.88

Gly496 Lys353 -3.07 ± 1.74 Arg498 Tyr41 -2.76 ±
0.70

Asn477 Ser19 -2.86 ±
2.71

Asn487 Tyr83 -3.02 ± 0.92 Asn487 Gln24 -2.75 ±
0.89

Ser496 Asp38 -2.79 ±
2.41

Gln498 Lys353 -3.00 ± 3.33 Lys493 His34 -2.61 ±
1.41

Arg498 Tyr41 -2.66 ±
0.71



Asn487 Gln24 -2.99 ± 0.90 Ala475 Ser19 -2.46 ±
1.54

Arg493 His34 -2.47 ±
1.67

Tyr505 Glu37 -2.59 ± 2.37 Phe486 Met82 -2.35 ±
0.79

Phe486 Met82 -2.35 ±
0.75

Phe486 Met82 -2.50 ± 0.81 Tyr489 Lys31 -2.16 ±
0.67

Tyr489 Lys31 -2.21 ±
0.75

Asn501 Tyr41 -2.13 ± 1.21 Ser496 Asp38 -2.05 ±
2.40

Gln493 His34 -2.05 ± 1.34

Interactions unaffected or preserved by mutation are also observed. The Q493K/R

mutation does not disrupt the favorable interaction with His34 in the WT. The mutation Y505H

does not seem to affect binding. In both the WT and Omicron RBDs, residue 505 interacts

similarly with hACE2 residue Lys353 (WT: -5.06 kcal/mol; Omicron Q493K: -4.96 kcal/mol;

Omicron Q493R: -5.17 kcal/mol), while the interaction with Glu37 doesn’t change significantly

with respect to standard deviation. Important interactions not subject to mutation, RBD Thr500 –

hACE2 Asp355, RBD Asn487 – hACE2 Tyr83, RBD Asn487 - hACE2 Gln24, and RBD Ala475

– hACE2 Ser19, are unchanged between the WT and Omicron models. (Table 5).

Lastly we wanted to explore hydrogen bonding interactions that take place in the

interface between SARS-CoV-2 RBD and the hACE2 receptor. Based on hydrogen bonding

analysis, there is a decrease in the number of significant (defined as occurring for more than 5%

of the ensemble) hydrogen bonding interactions between RBD and hACE2 residues upon

Omicron mutation (Table 6). One interaction that is present in both WT and Omicron is the



hydrogen bond with the residue Q493K/R to the hACE2 residue Glu35 (WT: 68.16%, -4.84 ±

1.62; Omicron Q493K: 66.05%, -10.25 ± 3.21; Omicron Q493R: 66.44% and 33.29%, -12.65 ±

4.42). Notably, Omicron Q493R has two distinct interactions between the residues Arg493 and

Glu35. We believe this is because Arg has more potential hydrogen bond donors compared to

both Lys and Gln. Kumar et al. reported this interaction as important but occurring to a lesser

extent (WT: 38.20% and Omicron Q493R: 11.10%).38 For the WT model, there are seven more

hydrogen bonds between RBD and hACE2 that also occur in the Omicron models. (Table 6).

Notably, these interactions are between non-mutated RBD residues for WT and both Omicron

models. The interaction RBD Thr500 – hACE2 Tyr41 appears to be significant for both WT and

Omicron but there is a notable difference in hydrogen bonding occurrence (WT: 29.74 %,

Omicron Q493K: 10.26%, and Omicron Q493R: 12.10%). In comparison, Kumar et al. reports

that the RBD Thr500 – hACE2 Tyr41 interaction is only significant for the WT, occurring

18.40%. Also, Table 6 shows that the interactions RBD Tyr489 - hACE2 Tyr83, and RBD

Tyr495 – hACE2 Lys353 are significant hydrogen bonding interactions for the WT but are not

significant interactions for the Omicron models. The interaction RBD Tyr449 - hACE2 Asp38

appears to be significant for WT and the Omicron Q493R model, but there is a significant

decrease in hydrogen bonding occurrence. Similarly, Kumar et al. saw a significant decrease in

hydrogen bonding occurrence for RBD Tyr449 - hACE2 Asp38 (WT: 70.50% and Omicron:

17.10%); however, the RBD Tyr489 - hACE2 Tyr83 and RBD Tyr495 – hACE2 Lys353 were not

significant interactions for their WT model. These discrepancies are likely due to significant

differences in the simulation time, i.e analysis conducted over 1 µs in this study versus sampling

hydrogen bonding over only 100ns in the Kumar et al study.38

Table 6. WT and Omicron SARS-CoV-2 RBD - hACE2 Hydrogen Bonding Occurrences.
Individual hydrogen bonding percentages were combined for interactions between the same



residues and rotationally equivalent atoms on each residue. For example, the hydrogen bonding
interactions between RBD Lys 493 and ACE2 Asp 38 (62.53%) are comprised of individual
interactions between OD1 and OD2 with N-H1, N-H2 and N-H3. Unless specified, these consist
of sidechain - sidechain interactions. Hydrogen bonding percentages that are greater than 5% are
listed. In red are SARS-CoV-2 mutated residues.

RBDWT
Residue

hACE2
Residue

H-Bond %
Occur.

(Avg.)

RBD
Omicron
Q493K
Residue

hACE2
Residue

H-Bond
% Occur.

(Avg.)

RBD
Omicron
Q493R
Residue

hACE2
Residue

H-Bond %
Occur.

(Avg.)

Asn487

Tyr83 83.27

Asn487

Tyr83 72.75

Asn487

Tyr83 61.16

Gln24 23.27 Gln24 14.15 Gln24 14.60

Gly502 Lys353 77.58

Thr500

Asp355 67.49

Thr500

Asp355 52.58

Gln493

Glu35 68.07 Tyr41 10.26 Tyr41 12.10

His34 7.66

Lys493

Glu35 66.05

Arg493

Asp38 74.21

Lys31 42.66 Asp38 62.53 Glu35
Sidechain

Glu35
Sidechain

66.44

33.29

Tyr449 Asp38 62.55 Gly502 Lys353 57.00

Lys417 Asp30 62.26

Ala475

Ser19
Sidechain

Ser19
Backbone

38.27

16.28 Ala475

Ser19
Sidechain

Ser19
Backbone

32.79

13.98

Thr500

Asp355 58.69 Gln24 5.28 Gly502 Lys353 51.59

Tyr41 29.75 Ser496 Asp38 38.20 Ser496 Asp38 41.38

Tyr505

Glu37 49.41 Asn477 Ser19
Backbone

Ser19
Sidechain

28.22

11.42

Asn477 Ser19
Backbone

Ser19
Sidechain

22.90

9.88

Ala386 7.21 Tyr453 His34 19.68 Tyr453 His34 20.52

Gln498

Lys353 35.95 Arg498 Gln42 12.77

Arg498

Gln42 13.57

Asp38 24.17 Asp38 5.81

Ala475

Ser19
Sidechain

31.34

5.85

Tyr449 Asp38 10.25



Ser19
Backbone

Gln24 7.60

Gly496 Lys353 30.70

Tyr453 His34 24.79

Tyr489 Tyr83 8.29

Tyr495 Lys353 9.32

Gly446 Gln42 8.17

Additionally, we analyzed the pairwise and hydrogen-bonding data for all RBD mutated

residues regardless of their values. Significant hydrogen bonding interactions of the WT RBD

with hACE2 (RBD Lys417 – hACE2 Asp30, RBD Gly446 – hACE2 Gln42, RBD Gln493 –

hACE2 Lys31, RBD Gly496 – hACE2 Lys353, RBD Gln498 – hACE2 Asp38, RBD Gln498 –

hACE2 Lys353, RBD Tyr505 – hACE2 Glu37, and RBD Tyr505 – hACE2 Ala386) appear to be

destroyed or diminished upon residue mutation in the Omicron variant. Notably, such residue

mutations do not seem to introduce many new hydrogen bonding interactions, and as such,

relative to the WT model, the Omicron mutations reduce hydrogen bonding occurrences more

than they increase it.

However, the mutated RBD residues Asn477, Lys493/Arg493, Ser496, and Arg498

participate in significant hydrogen bonding interactions: RBD Asn477 – hACE2 Ser19, RBD

Lys493/Arg493 – hACE2 Asp38, RBD Ser496 – hACE2 Asp38, and RBD Arg498 – hACE2

Gln42. However, the WT interaction RBD Gly496 – hACE2 Asp38 and Omicron interaction

RBD Ser496 – hACE2 Asp38, both have relatively high pairwise decomposition values (WT:

-0.86 ± 0.85 kcal/mol, Omicron Q493K: -2.05 ± 2.40 kcal/mol, and Omicron Q493R: -2.79

±2.41 kcal/mol). The Omicron Q493K hydrogen bonding interactions RBD Ser496 – hACE2

Lys353, RBD Arg498 – hACE3 Asp38, and RBD His505 – hACE2 Glu37, appear to have low



hydrogen bonding occurrences compared to the equivalent WT interactions (with Omicron

percent occurrences less than 5%); however, the pairwise decomposition values of these

interactions are significant (Table 5) The Omicron Q493R hydrogen bonding occurrences for the

previously mentioned hydrogen bonding interactions are similar to the Omicron Q493K model.

Overall, MM-GBSA estimations, per-residue and pairwise decomposition energies, and

hydrogen-bonding interactions indicate three very important Omicron mutations: Q493K/R,

N501Y and S477N. Strikingly, for Q493K, hACE2 binding to the WT and Omicron are similar,

whereas for the Q493R RBD, Omicron binds more tightly. This is in agreement with previous

experimental reports, using the Q493K RBD, that suggests Omicron binds similar or less tightly

than WT,32, 65 and also in agree with computational and experimental reports that suggests

Omicron binds more tightly.37, 38, 64 It is remarkable that a single point mutation can confer such

differences in binding and it is imperative to experimentally test this computational prediction.

The overall atomistic picture that emerges from our detailed study is that some of the mutations

in the SARS-CoV-2 RBD and hACE2 interface enhance binding and that some of those

enhancements are balanced by mutations that disfavor binding. The mutations that have the most

significant effect on binding are shown in Figure 8, where favorable and unfavorable point

mutations are shown in green and red, respectively.



Figure 8. Omicron Q493K SARS-CoV-2 RBD - hACE2 Interactions. Highlighted are
residues that most significantly affect binding based upon hydrogen bonding occurrence and
pairwise residue decomposition changes in the WT and Omicron variant. Shown in red are
mutated residues that display less favorable or less significant interaction. Shown in green are the
mutated residues that became more significant for RBD - hACE2 interactions.

SARS-CoV-2 Potential Inhibitors
The goal of this section, in addition to assessing the possible disruption of the interaction

caused by ligands bound in the active site, was to analyze the properties and residue interactions

significant for the SARS-CoV-2 RBD - hACE2 interaction. Other analyses used to investigate

the SARS-CoV-2 RBD and hACE2 complex are discussed in previous sections; however, we

decided to perform ten different seeds of 300ns MD simulations to further understand the

baseline energetics of the SARS-CoV-2 RBD and hACE2 interaction. The average MM-GBSA

binding free energy of the 3 µs trajectory was -31.2 ± 10.6 kcal/mol (Table 7). Additionally, the

binding free energies of the individual 10 seeds throughout MD simulations suggest that the

SARS-CoV-2 RBD and hACE2 complex sample a variety of structures.



Table 7. MM-GBSA Binding Energies of 1 µs and 3 µs ensemble for SARS-CoV-2 RBD
Complexed with hACE2.

6LZG MM-GBSA Average (kcal/mol) Std. Dev. (kcal/mol)

3 µs -31.23 10.55

Additionally, we ran native contact analysis using the concatenated 3 μs ensemble. We

identified 299 native contacts in the interface between SARS-CoV-2 and hACE2. The average

fraction of native contacts in each frame of the ensemble was 0.94. Figure 7 displays the fraction

of native contacts for each frame throughout the simulation. Notably, there is a decrease in the

fraction of native contacts between frames 6,493 and 8,550, which occur in seed 3. After

visualizing the 3 μs ensemble, we did not identify a noticeable difference in the SARS-CoV-2

RBD and hACE2 interface during these frames.

Figure 7. Native Contact Analysis in the Interface of Apo 3 μs Ensemble.

Schrödinger’s SiteMap program was used to predict and score potential ligand binding

sites based on volume, hydrophilicity/hydrophobicity, and H-bonding ability.56 Five binding sites

were identified on the model, with three displaying favorable SScores and DScores. Sites #1 and

#3 appear to flank the ACE2 active site.57, 58 Site #2, displayed in Figure 8 (SScore 1.002, DScore

1.017), occurs at the hACE2 – SARS-CoV-2 RBD complex junction. This site notably contains

1.00 

0.95 

0.90 

>< 
~ 

O 0.85 

0.80 

0.75 

0 5000 10000 15000 20000 25000 30000 

Frame 



many residues necessary for the formation of this complex.60, 22 This may suggest the possibility

for a ligand to disrupt the ability of the SARS-CoV-2 RBD to complex with hACE2. So, Site #2

was selected for ligand docking calculations. The contribution of the nearby N-glycosylated

Asn90 to Site #2 further suggests the possibility that different glycans may affect the favorability

of this binding site. Two additional smaller binding sites (Sites #4 and #5) are predicted on the

surface of hACE2 for 6LZG. All sites and their properties are detailed in Figure S2 and Table S2.

Figure 8. SARS-CoV-2 RBD and hACE2 Interface Binding Site. In the image, hACE2 is
shown in white and SARS-CoV-2 RBD is shown in cyan. H-bond accepting sites are colored red,
H-bond donating sites are colored blue, and hydrophobic sites are colored yellow. N-linked
glycans bound to Asn90 are shown in orange. 6LZG Site #2 was predicted to have a SiteMap
SScore of 1.002 and DScore of 1.017. Asn90 is N-glycosylated with NAG.

To determine whether a ligand might favorably bind to Site #2, a small sample of

common ACE inhibitors, molecules identified by LSBio as potential SARS-CoV-2 S Protein

inhibitors, and diquafosol were screened using Schrödinger’s Glide program.55, 56 In preparation

for docking, we determined the proper protonation states of all the ligands at pH 7.4 using



Schrödinger’s Epik program. However, the Epik program predicted that the protonation state of

Lisinopril had a NH2
+ on the structure. Unsure of this prediction, we decided to use both

Lisinopril structures. All structures, XP GlideScores, and their relative ranking are detailed in

Table S3. Of these structures, diquafosol scored most favorably.

Of the 17 ligands screened, results of which are depicted in Tables S3, seven ligands and

their three top scoring poses were selected for further analysis in MD simulations based on Glide

Scores and their corresponding rank. All diquafosol poses scored higher than the other ligands’

poses. The first pose of fosinopril, lisinopril, physcion, and emodin_H11074 (emodin) were the

next top scoring poses of all the ligands, respectively. Additionally, the ligand lisinopril, with an

overall charge of -1, also scored highly and was selected for further analysis. For this ligand, we

were specifically interested to see how the -NH- or -NH2
+- affected its binding to the interface.

Also, as previously mentioned, the Epik program predicted that the backbone nitrogen of

lisinopril should be protonated, resulting in -NH2
+- and a net neutral charge. At a pKa of 7.4, it is

possible there would be a mixture of lisinopril with both protonation states (-NH- and -NH2
+-), so

we decided to investigate both. Also, we selected a lower ranked drug, fosinoprilat, for the sake

of increasing the diversity of structures. Fosinoprilat was ranked 16th. We visualized the top 3

poses of the ligands selected and decided to run MD simulations on the poses that were visibly

distinct.

Before beginning MD simulations, we assessed the pharmacological properties of each

ligand using the Schrödinger QikProp ADME program (Table 8). All ligands selected for MD

analysis are known drugs in clinical use, so we expected favorable ADME properties. Properties

for emodin, fosinopril, fosinoprilat, both lisinoprils, and physcion did not violate the 95% range

for known drugs. As mentioned in Table 8, diquafosol exceeds the indicated range for the



properties: molecular weight, H-bond acceptor, and logP octanol/water. This analysis indicates

that diquafosol is water soluble, which is further supported given that it is a common compound

in eye drops. Additionally, the molecular structure of diquafosol is notably uncommon with four

chained phosphate groups, so it is possible that the ADME program is not trained on molecules

of similar structures. This is indicated in Table 8 for the properties aqueous solubility and

logIC50. The ADME program noted that diquafosol exceeds the molecular weight of the drugs

that were trained for the aforementioned properties. Additionally, PAINS screenings were

conducted on the 7 ligands. The two screenings that were used are mentioned in the methods

section. Both screenings found that emodin and physcion did not pass because of the quinone

core in both structures. Also, the non-specific activity of both compounds could be due to their

numerous pharmacological properties. These results indicate that the binding activity of the other

5 ligands are specific. Overall, from ADME analysis and PAINS screenings we concluded that

these 7 ligands are viable compounds for further analysis.

Table 8. ADME Properties for 7 Selected Ligands. ADME properties for diquafosol, emodin,
fosinopril, fosinoprilat, lisinopril with -NH2

+- backbone nitrogen, lisinopril with -NH- backbone
nitrogen, and physcion. H-bond donor and acceptor refers to the average number of hydrogen
atoms on the molecule that is estimated to be capable of donating or accepting a hydrogen bond,
respectively. logP Octanol/Water and logS Aqueous Solubility refers to the solubility of the
ligand. logBB Brain/Blood refers to how likely the drug is able to cross the blood brain barrier.
Lastly, logIC50 HERG K+ refers to the amount (in log scale) that would need to be taken to block
the HERG K+ channel. Data that exceeds the range of 95% of known drugs used in the ADME
program are underlined and data that was flagged due to the molecular weight of the ligand
exceeding the trained set of compounds is bolded.

Ligand Molecular
Weight
(AMU)

H-Bond
Donor

H-Bond
Acceptor

logP
Octanol/Water

logS
Aqueous
Solubility

logBB
Brain/Blood

logIC50
HERG
K+

Diquafosol 790.311 6.000 33.200 -5.404 0.031 6.000 1.064

Emodin 270.241 1.000 4.250 1.252 -3.051 -1.535 -4.330



Fosinopril 563.670 1.000 12.000 4.677 -5.917 -1.605 -3.374

Fosinoprilat 435.499 1.000 9.000 3.540 -4.264 -1.880 -0.732

Lisinopril
(NH2

+)
405.493 5.000 9.500 -1.209 -1.142 -1.944 -1.828

Lisinopril
(NH)

405.493 5.000 9.500 -1.199 -1.080 -1.494 -1.889

Physcion 284.268 0.00 4.250 1.849 -3.978 -1.045 -4.366

Unrestrained MD simulations were conducted on hACE2 - SARS-CoV-2 RBD

complexes (6LZG) bound to either diquafosol, emodin, fosinopril, fosinoprilat, lisinopril with

both protonation states, or physcion. Distinct poses of each ligand were selected for 100 ns

simulations and 5 seeds were conducted for each complex. For the 6LZG ensemble, the

MM-GBSA binding free energy analysis is depicted in Tables 9 and 10. The MM-GBSA values

in Table 9 represent the binding free energy between the RBD and hACE2 while a drug is

present in the interface; suggesting the drug's effect on the RBD-hACE2 interaction. The

MM-GBSA binding free energy of the concatenated Apo 3 μs ensemble is -31.23 ± 10.55

kcal/mol.

Table 9. Average MM-GBSA Binding Free Energies between SARS-CoV-2 RBD and
hACE2. This energy was estimated in the presence of the bound ligand, i.e. this estimates the
binary binding interaction. For each ligand and the corresponding pose the average MM-GBSA
value for the RBD - hACE2 interaction, standard deviation, and standard error is reported.
Additionally, the ΔΔG is included below, which is the difference in binding free energy of the
RBD and hACE2 with a drug bound and the binding free energy between the RBD and hACE2
without a drug present.

Ligand Present
in Binding Site

Pose Avg. ± Std. Dev.
(kcal/mol)

Std. Err.
(kcal/mol)

ΔΔG
(kcal/mol)

Diquafosol
Pose 1 -26.65 ± 9.13 0.13 4.58

Pose 3 -25.01 ± 11.80 0.17 6.22



Emodin
Pose 1 -22.93 ± 10.21 0.14 8.30

Pose 2 -27.13 ± 9.81 0.14 4.10

Fosinopril Pose 1 -25.48 ± 9.31 0.13 5.75

Fosinoprilat
Pose 1 -20.92 ± 9.39 0.13 10.31

Pose 2 -30.04 ± 9.60 0.14 1.19

Pose 3 -30.19 ± 9.76 0.14 1.04

Lisinopril
(NH2

+)
Pose 1 -30.26 ± 9.19 0.13 0.97

Lisinopril (NH) Pose 1 -29.78 ± 9.91 0.14 1.45

Physcion
Pose 1 -24.94 ± 10.58 0.15 6.29

Pose 2 -23.86 ± 9.65 0.14 7.37

Pose 3 -34.05 ± 9.60 0.14 -2.82

Our results suggest there is not a significant difference in binding free energy when a

drug is present in the interface. Each drug shows a positive increase in the MM-GBSA of the

RBD-hACE2 interaction, except for physcion pose 3. This result could suggest that extending

the simulations would demonstrate a more significant increase in the RBD and hACE2 binding

free energy. Table 10 indicates the binding free energies of the ligand interacting in the interface

of the RBD-hACE2 complex. Notably, the binding free energies of fosinopril pose 1, fosinoprilat

poses 2 and 3, and lisinopril (both protonation states -NH- and - NH2
+-) are statistically similar to

the binding free energy of the Apo 3 μs ensemble, suggesting that the ligands have a similar

strength in interaction. The MM-GBSA binding free energies for both lisinoprils (-NH- and

-NH2
+-) are statistically similar, so for further analysis we decided to continue with the lisinopril

structure with the -NH- and negative charge.



Table 10. Average MM-GBSA Binding Free Energies of the Ligand Bound to hACE2-RBD
Interface. For each ligand and the corresponding pose the average MM-GBSA value for the
interaction of ligand and hACE2-RBD complex, standard deviation, standard error, and percent
dissociation is reported. Percent Dissociation was calculated using MM-GBSA value, center of
mass analysis and visualization.

Ligand Present
in Binding Site

Pose Avg. ± Std. Dev.
(kcal/mol)

Std. Err.
(kcal/mol)

Percent
Dissociation

Diquafosol
Pose 1 -14.86 ± 15.98 0.23 2.70

Pose 3 -5.60 ± 23.11 0.33 9.66

Emodin
Pose 1 -10.98 ± 4.77 0.07 33.32

Pose 2 -14.94 ± 5.68 0.08 4.22

Fosinopril Pose 1 -24.51 ± 10.67 0.15 11.60

Fosinoprilat
Pose 1 -18.30 ± 8.78 0.12 43.46

Pose 2 -29.01 ± 11.14 0.16 0.06

Pose 3 -21.13 ± 12.42 0.18 2.04

Lisinopril
(NH2

+)
Pose 1 -35.05 ± 9.82 0.14 0.26

Lisinopril (NH) Pose 1 -31.80 ± 11.15 0.16 6.74

Physcion
Pose 1 -10.37 ± 5.07 0.07 82.46

Pose 2 -12.02 ± 7.99 0.11 72.26

Pose 3 -10.98 ± 6.28 0.09 77.70

Additionally, Table 10 indicates the percent dissociation of each pose. Percent

dissociation signifies the percentage of the concatenated 500 ns simulation when the drug is not

in the RBD-hACE2 interface and is not interacting with any amino acids. Notably, diquafosol

poses 1 and 3, emodin pose 2, fosinopril pose 1, fosinoprilat poses 2 and 3, and lisinopril (both

protonation states -NH- and -NH2
+-) have relatively low percent dissociations. The percent

dissociation for all physcion poses analyzed with MD simulations are above 50%, signifying that



the ligand is not in the binding site for more than half of the simulation. However, after

visualizing the simulation, we noticed that physcion still interacts with amino acids on the

SARS-CoV-2 RBD or hACE2 receptor outside of the interface. We also looked at the RMSD of

all ligand bound complexes to understand the stability of the SARS-CoV-2 RBD and hACE2

complex with a drug present in the interface. Table S4 contains the RMSD graphs for all drug

bound complexes with each of the 5 seeds indicated in the legend. The RMSD graphs indicate

that physcion seed 3 and seed 4 could be outliers for poses 2 and 3 respectively. However, the

RMSD graphs for all other ligands indicate relative convergence between the seeds.

Figure 9 represents both MM-GBSA binding free energies previously mentioned, and the

percent dissociation of each ligand pose except physcion (all poses). Notably, the ligands with

relatively low percent dissociations did not show a significant decrease in the binding affinity of

the interface. However, when the interface binding energy was more positive, the ligand that was

present had a relatively high percent dissociation, such as fosinoprilat pose 1 and emodin pose 1,

or the ligand had a more positive binding energy with the interface, such as diquafosol poses 1

and 3 and emodin pose 2. This data would suggest that the interaction between hACE2 and

SARS-CoV-2 RBD is stronger than the corresponding ligand in the interface.



Figure 9. Comparison of MM-GBSA Energies and Percent Dissociation. The x-axis
represents the MM-GBSA binding free energies of the RBD-hACE2 interaction with a ligand
present in the interface. These points are represented by circles. The y-axis (left side) represents
the MM-GBSA binding free energies of the ligand interacting with the RBD-hACE2 complex.
The y-axis (right side) represents the percent dissociations. These points are triangles. The larger
symbols depicted in orange represent ligands that were selected for further analyses. All other
symbols are purple. All ligands, except physcion, are included and labeled next to each data
point. Physcion was not included because it appeared to be an outlier once the data was
visualized.

Overall, these results suggest that it might be beneficial to further investigate the

atomistic interactions of fosinoprilat poses 2 and 3, fosinopril, and lisinopril in the interface.

These ligand poses that were selected for further analysis are indicated in Figure 9 in yellow and

are depicted in a slightly larger symbol.

Conclusion

In this paper, there are two main focuses: comparison of Omicron and WT SARS-CoV-2
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RBD binding affinities and investigating the effects of potential SARS-CoV-2 inhibitors on the

interaction between the SARS-CoV-2 RBD and hACE2 receptor. With both research projects we

have studied the baseline energetics of the SARS-CoV-2 RBD and hACE2 complex and support

that this is a stable interaction.

The Omicron variant of the SARS-CoV-2 virus possesses 32 point mutations, including

15 in the receptor binding domain of the spike protein. Current vaccines produce polyclonal

antibodies that target the RBD of the spike protein and prevent the virus from gaining access to

human cells. We have utilized classical molecular dynamics to sample the binding behavior of

the WT and Omicron spike protein RBD with hACE2 as well as MM-GBSA to compare their

binding affinities for hACE2. Remarkably, while we find that the binding affinity between the

hACE2 receptor and the WT and Omicron Q493K RBD are similar and within the limits of error

of the MM-GBSA binding estimation, the binding for the Omicron Q493R RBD is significantly

enhanced. A detailed analysis of the per-residue interaction energies, pairwise decomposition

energies, hydrogen-bonding interactions, center-of-mass distance measurements, and clustering

suggests that while the Omicron RBD mutations disrupt some favorable WT residue interactions,

such mutations also produce new favorable interactions. For instance, for the Q493K RBD,

pairwise analysis shows that the Q493K and S477N mutations significantly increase binding

whereas K417N, G496S and Q498R reduce binding. For the Q493R RBD, per-residue

decomposition analysis indicates that the point mutation confers a significantly larger

contribution to favorable binding. For both Omicron RBDs, and in agreement with previous

studies, this detailed atomistic analysis points to the importance of 3 residues: Q493K/R, N501Y

and S477N.



Additionally, based on our initial analyses of the apo SARS-CoV-2 RBD and hACE2

complex and ligand bound MM-GBSA binding free energy estimates, we determined that ACE

inhibitors do not act as effective SARS-CoV-2 RBD inhibitors. This conclusion is primarily

based on the interface binding free energies. Specifically, ligands with low percent dissociations

do not show a reduction in the binding affinity between the SARS-CoV-2 RBD and the hACE2

receptor, signifying that the ligand isn’t significantly disrupting the amino acid interactions

present in the interface. However, we believe looking into these ligands further and assessing the

individual amino acid interactions can further support our conclusion and possibly lead to

potential scaffolds for SARS-CoV-2 RBD inhibitors. Additionally, future studies could consider

studying the effect of these ligands on the Omicron RBD and hACE2 interface and comparing

how the Omicron mutations affect these inhibitors roles’ in disrupting the interface. Based on the

previous section, we have shown that the stability and structure of the WT and Omicron

SARS-CoV-2 RBD interaction with hACE2 are very similar, but we mention that specific amino

acid interactions responsible for maintaining the interface become unfavorable or more

favorable. So, using this previous knowledge, it would be interesting to see how the Omicron

mutations would affect these potential SARS-CoV-2 inhibitors.
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Supporting Information

Figure S1. Comparison of the 6LZG and 7WSA Structures. The 6LZG structure is in blue
with the RBD depicted in dark blue and the hACE2 receptor depicted in light blue. The 7WSA
structure is in purple with the RBD depicted in dark purple and the hACE2 receptor depicted in
light purple. The additional residues that were only found on the 6LZG model or the 7WSA
model are depicted in green. [A] The entire 6LZG and 7WSA structures. In green the additional
NAG glycans are shown on the 7WSA structure bound to Asn103, Asn432, and Asn546. [B]
Additional residues on the beginning (Pro330, Asn331, and Ile332) and end (Lys528, Lys529,
and Ser530) of the 7WSA RBD structure. [C] The additional residue on the 6LZG hACE2
structure (Ala614).

Table S1. WT and Omicron SARS-CoV-2 RBD Per-residue Decomposition Energies. These
energies account for the RBD interaction with hACE2. Each energy is reported as an average
over the concatenated 2 µs ensemble. Only the per-residue decomposition energies that are more
negative than -1 kcal/mol are listed. Omicron mutated residues are shown in red.

A 



SARS-CoV-2
RBD WT
Residue

Per-residue
Decomp. (avg.
± std. dev.)
(kcal/mol)

SARS-CoV-2
RBD Omicron

Q493K
Residues

Per-residue
Decomp. (avg. ±

std. dev.)
(kcal/mol)

SARS-CoV-2
RBD Omicron
Q493R Residues

Per-residue
Decomp. (avg. ±

std. dev.)
(kcal/mol)

Tyr505 -4.92 ± 0.98 Tyr501 -6.69 ± 1.17 Arg493 -9.86 ± 3.49

Gln493 -4.60 ± 1.90 Lys493 -5.30 ± 2.62 Tyr501 -6.46 ± 1.15

Phe486 -3.30 ± 0.96 Phe486 -3.32 ± 0.99 Phe486 -3.34 ± 0.91

Phe456 -3.00 ± 0.56 His505 -3.09 ± 1.32 His505 -3.33 ± 1.61

Gln498 -2.98 ± 3.21 Phe456 -2.79 ± 0.55 Phe456 -2.75 ± 0.51

Asn501 -2.05 ± 1.19 Tyr489 -2.14 ± 0.70 Tyr489 -2.05 ± 0.67

Tyr489 -1.99 ± 0.71 Leu455 -1.74 ± 0.43 Leu455 -1.82 ± 0.46

Leu455 -1.74 ± 0.37 Ala475 -1.69 ± 1.03 Ala475 -1.64 ± 1.03

Gly502 -1.66 ± 0.49 Thr500 -1.53 ± 0.80 Ser496 -1.59 ± 1.13

Gly496 -1.65 ± 1.14 Ser496 -1.46 ± 1.10 Thr500 -1.39 ± 0.84

Asn487 -1.44 ± 0.92 Asn487 -1.30 ± 0.82 Asn487 -1.33 ± 0.82

Ala475 -1.41 ± 1.00 Gly502 -1.28 ± 0.49 Gly502 -1.31 ± 0.48

Thr500 -1.36 ± 0.86 Asn477 -1.10 ± 1.15 Asn477 -1.02 ± 1.17

Tyr449 -1.35 ± 1.00



Figure S2. SiteMap Results for 6LZG. Blue indicates Site #1 (SScore 1.005, DScore 1.029),
yellow indicates Site #2 (SScore 1.002, DScore 1.017), red indicates Site #3 (SScore 1.053,
DScore 1.061), green indicates Site #4 (SScore 0.743, DScore 0.742), and orange indicates Site
#5 (SScore 0.696, DScore 0.672). Site #2 occurs in the hACE2 – SARS-CoV-2 RBD complex
junction and is the binding site of interest.

Table S2. SiteMap Properties for 6LZG Binding Sites.

Site
#

Size Volume Exposure Enclosure Contact Phobic Philic Balance Don/Acc

1 251 885.28 0.645 0.696 0.352 0.352 1.010 0.348 1.088

2 164 568.35 0.697 0.702 0.854 0.236 1.057 0.223 0.711

3 133 463.74 0.567 0.777 1.008 0.712 1.060 0.672 0.831

4 56 120.05 0.735 0.546 0.685 0.225 0.887 0.254 0.948

5 50 117.65 0.725 0.549 0.737 0.156 0.989 0.158 1.392

Table S3. Drug Structures and Glide Scores. Ranking for each model is based on XP Glide
Score of first pose.
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Drug Name 6LZG
Glide Score (kcal/mol) Rank

Benazepril -4.154 8

Captopril -3.588 13

Enalapril -4.097 9

Fosinopril -6.050 2

Fosinoprilat -3.287 16

Lisinopril -4.959 3

Lisinopril (-1) -3.353 15

Perindopril -3.569 14

Quinapril -3.984 11

Ramipril -4.070 10

Trandolapril -3.643 12

Aloe Emodin
LS-H15204

-4.384 7

Camostat LS-H6976 -2.731 17

Emodin LS-H11074 -4.706 5

Emodin LS-H17409 -4.402 6

Physcion LS-H9395 -4.737 4

Diquafosol -9.138 1

Table S4. RMSD For All Drug Bound Complexes.
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