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Preface

Let us take a moment to examine the matrix representation of the following
linear transformation from `

2
! `

2 (defined later),

2

66666666664

1

�i

�1

i

. . .

3

77777777775

.

One can see that this matrix is unitary and has eigenvalues {1,�i,�1, i},
each of infinite multiplicity.

Throughout the remainder of this thesis, we will convince the reader
that the above linear transformation is actually the Fourier transform. We
will compute the commutant, as well as its invariant subspaces. The key to
do this relies on the Hermite polynomials.

Why do we recast the Fourier transform from its well-known and well-
studied integral form to the matrix form shown above? As we will see,
the matrix form allows us to efficiently discover the operator theory of the
Fourier transform obfuscated behind an integral that is difficult to com-
pute.

In the Chapter 1, we establish some basic notation about Hilbert spaces
and introduce the two Hilbert spaces central to the ideas developped in
this thesis, L2(R) and `

2. We then define the Hermite polynomials and the

i-



ii Preface

Hermite functions in Chapter 2, which we will show form a convenient or-
thonormal basis for L2(R). The Hermite polynomials are further employed
in Chapter 3, where we establish the Fourier-Plancherel transform F on
L
2(R). A central step in this is to compute the eigenbasis of the Fourier

transform, which we show is the set of Hermite functions. After establish-
ing the Fourier transform, we further characterize it in Chapter 4 by defin-
ing the set {F}

0, which contains all bounded linear operators on L
2(R) that

commute with F . We continue this characterization in Chapter 5 by defin-
ing

p
F , the set of bounded linear operators on L

2(R) that are square roots
of F . Finally, we conclude our analysis of F in Chapter 6 by describing all
of the invariant subspaces of the Fourier transform.



Chapter 1

Preliminaries

1.1. Notation

First, we establish our basic notation.

• L
2(R) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2

• `
2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2

• h·, ·i . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 2
• C = {a+ bi : a, b 2 R} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 4
• B(H) bounded operators on a Hilbert space H . . . . . . . . . . . . . . . p. 4
• N = {1, 2, · · · } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 7
• N0 = {0, 1, 2, · · · } . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 7
• Hn the nth Hermite polynomial . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 7
• hn the nth normalized Hermite function . . . . . . . . . . . . . . . . . . . . . p. 9

• S = {p(x)e�⇡x2
: p(x) 2 C[x]} . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 9

• F the Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 19
• {F}

0 the commutant of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .p. 31
• Mm⇥n the set of complex valued matrices of size m⇥ n . . . . . p. 32

•
p
F the set of square roots of F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . p. 53

1.2. Basic Definitions

In this chapter we will introduce important concepts used throughout this
thesis. We will not go into technical details and refer the reader to the texts
[13, 14]. We begin with the very important definition of a Hilbert space.

1-



2 1. Preliminaries

Definition 1.2.1. A Hilbert space H is a vector space over the complex num-
bers that is endowed with an inner product h·, ·i such that H is complete
with respect to the norm k · k =

p
h·, ·i induced by this inner product.

Here complete means Cauchy complete in that if (xn)n>1 is a Cauchy
sequence in H, then there is a vector x 2 H such that

kxn � xk ! 0.

All of the Hilbert spaces in this thesis will be separable, meaning they have
a countable dense set.

Three results used many times in this thesis without much fanfare are
the following.

Theorem 1.2.2 (Cauchy–Schwarz Inequality). If x,y are vectors in a Hilbert
space, then

|hx,yi| 6 kxkkyk.

Theorem 1.2.3 (Triangle Inequality). If x,y are vectors in a Hilbert space, then

kx+ yk 6 kxk+ kyk.

Theorem 1.2.4 (Polarization Identity). If x, y are vectors in a Hilbert space,
then

hx,yi =
1

4
(kx+ yk

2
� kx� yk

2 + ikx+ yk
2
� ikx� yk

2).

The two Hilbert spaces discussed in this thesis are L
2(R) and `

2 . The
first, L2(R), is the space of complex valued Lebesgue measurable functions
on R such that Z

R
|f(x)|2dx < 1.

The inner product in this space is

hf, gi =

Z

R
f(x)g(x)dx.

An alert reader might have some reservation about the convergence of the
integral on the right. However, an application of the Cauchy-Schwarz in-
equality says that this inner product is well-defined. The corresponding
norm on L

2(R) is

kfk =
p

hf, fi =
⇣Z

R
|f(x)|2dx

⌘ 1
2
.

One can argue that L2(R) is a vector space and a technical detail called the
Riesz-Fischer theorem will show that it is complete, and hence a Hilbert
space. It is also separable.



1.2. Basic Definitions 3

The second Hilbert space discussed in this thesis, `2, is the set of all
complex sequences a = (an)n>0 such that

1X

n=0

|an|
2
< 1.

Here the inner product is

ha,bi =
1X

n=0

anbn, a = (an)n>0,b = (bn)n>0.

Again, there is some reservation about the convergence of the infinite sum
on the right, which is resolved by the Cauchy-Schwarz inequality. The cor-
responding norm is

kak =
p
ha,ai =

⇣ 1X

n=0

|an|
2
⌘ 1

2
.

This space is also separable.
One might wonder why we are indexing our sequences (an)n>0 start-

ing at zero instead of one (which would be more natural). As we will see
in the next chapter, we will be writing every function f 2 L

2(R) as an infi-
nite linear combination of (hn)n>0, the Hermite basis for L2(R), where the
indexing naturally starts at zero (and not one).

With any separable Hilbert space H comes an orthonormal basis.

Definition 1.2.5. An orthonormal basis for a separable Hilbert space H is a
sequence of vectors (xn)n>0 in H such that

hxn,xmi = �m,n =

(
1 ifm = n

0 ifm 6= n

and if x 2 H and hx,xni = 0 for all n, then x = 0.

The first condition in the above definition says that the vectors xn are
pairwise orthogonal and have norm one, while the second condition says
that the linear span of the vectors xn is dense in H. A separable Hilbert
space always has an orthonormal basis. With an orthonormal basis (xn)n>0,
a theorem of Parseval gives that any x 2 H can be written uniquely as

x =
1X

n=0

hx,xnixn.



4 1. Preliminaries

In the above, the convergence of the infinite sum of vectors is understood
in the norm of H. By this we mean

lim
N!1

���x�

NX

n=0

hx,xnixn

��� = 0.

From here, it follows that

kxk
2 =

1X

n=0

|hx,xni|
2
.

For the Hilbert space `2, an obvious orthonormal basis is (en)n>0, where

en = (0, 0, 0, · · · , 0, 1, 0, 0, · · · )

such that the 1 appears in the nth slot. For the Hilbert space L
2(R), an or-

thonormal basis is less clear. This thesis will use the Hermite basis (hn)n>0,
which we will develop in the next chapter.

A linear transformation T on a Hilbert space H is said to be bounded if
there is a CT > 0 such that

kTxk 6 CT kxk 8x 2 H.

The optimal constant CT (the smallest CT for which kTxk 6 CT kxk for all
x 2 H) will be called the norm of T and will be denoted by kTk. If H = Cn,
the norm of a linear transformation T is the largest singular value of the
matrix representation of T . The set of all bounded linear transformations
(called bounded operators) will be denoted by B(H). With any bounded op-
erator T comes an adjoint T ⇤

2 B(H) which satisfies

hTx,yi = hx, T
⇤
yi 8x,y 2 H.

When H = Cn, the adjoint is the usual conjugate transpose of the matrix
representation of T . One can show that B(H) is closed under addition and
scalar multiplication, as well as operator composition.

A skeptical reader may wonder why we are focusing our attention on
bounded linear operators and not all linear operators on a Hilbert space.
The reason comes from adjoints, which will be used at various points in this
thesis. Without the assumption of a linear transformation being bounded,
the adjoint becomes difficult, and sometimes impossible, to define. In ad-
dition, we will often prove facts about a linear transformation by first ver-
ifying it on a dense set and then extending the result to the entire Hilbert
space. This process only works when the linear transformation is bounded.

A T 2 B(H) is isometric if

kTxk = kxk 8x 2 H.
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Notice that by the Polarization Identity, the above condition is equivalent
to

hTx, Tyi = hx,yi 8x,y 2 H.

A T 2 B(H) is unitary if it is isometric and onto. Notice that T is unitary if
and only if TT ⇤ = T

⇤
T = I .





Chapter 2

The Hermite Basis

It is a well known fact that L2(R) is a separable Hilbert space. What is less
known is a useful orthonormal basis. In this chapter we will develop the
Hermite basis, which will drive the rest of this thesis. Some of the treatment
below of the Hermite functions comes from Hsu [8].

2.1. The Hermite Functions

Definition 2.1.1. For n 2 N0, the nth Hermite function is defined to be
✓
(�1)n

n!

◆
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

.

We will use the notation N := {1, 2, 3, . . .} and N0 := N [ {0}. This next
result helps us relate the Hermite functions with the well-known Hermite
polynomials.

Theorem 2.1.2. The nth Hermite function satisfies

Hn(x)e
�⇡x2

,

where Hn(x) is a polynomial of degree n.

Proof. Let
✓
(�1)n

n!

◆
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

be the nth Hermite function. By the Leibnitz formula for the nth derivative
of the product of two functions, ( d

dx)
n
e
�2⇡x2 will produce some polynomial

in x, call it p(x), multiplied by the exponential e�2⇡x2 . To obtain the degree

7-



8 2. The Hermite Basis

condition on p(x), we will use induction. For the base case, observe that
when n = 0 we have

✓
d

dx

◆0

e
�2⇡x2

= e
�2⇡x2

,

so that p(x) = 1 with degree 0. Suppose
✓

d

dx

◆k

e
�2⇡x2

= p(x)e�2⇡x2

for some k > 0 where p(x) is a polynomial of degree k. Observe that
✓

d

dx

◆k+1

e
�2⇡x2

= �4⇡xp(x)e�2⇡x2
+ p

0(x)e�2⇡x2
.

Note that p0(x) will now have degree k�1. Then �4⇡xp(x) has degree k+1
and thus we can conclude by induction that p(x) is a polynomial of degree
n for all n 2 N0.

We now have
✓
(�1)n

n!

◆
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

=

✓
(�1)n

n!

◆
e
⇡x2

p(x)e�2⇡x2
=

✓
(�1)n

n!

◆
p(x)e�⇡x2

.

Define

Hn(x) :=
(�1)n

n!
p(x).

Then Hn(x) is a polynomial of degree n. ⇤

The functions Hn(x) are called the Hermite polynomials. The first 6 Her-
mite polynomials are given below.

H0(x) = 1 H3(x) =
1
3!(64⇡

3
x
3
� 48⇡2

x)

H1(x) = 4⇡x H4(x) =
1
4!(256⇡

4
x
4
� 384⇡3

x
2 + 48⇡2)

H2(x) =
1
2!(16⇡

2
x
2
� 4⇡) H5(x) =

1
5!(1024⇡

5
x
5
� 2560⇡4

x
3 + 960⇡3

x)

This is a well-known class of polynomials that appear as the eigenstates
of the quantum harmonic oscillator, in combinatorics as an example of an
Appell sequence, and in signal processing as Hermitian wavelets. An im-
portant consequence of defining the Hermite polynomials is demonstrated
below.

Proposition 2.1.3. For the Hermite polynomials (Hk)k>0,

span{H0, H1, H2, . . . , Hn} = span{1, x, x2, . . . , xn} for all n 2 N0.
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Proof. Recall that Hn is a polynomial of degree n. Let

p(x) =
nX

k=0

ckx
k

be a polynomial of degree n. We will proceed by induction. In the case
where n = 0, p(x) = c for some c 2 C. Note that H0 = 1. Then p(x) = cH0

and span{1} = span{H0}. Suppose

span{1, x, x2, . . . , xk} = span{H0, H1, H2, . . . , Hk}

for some k > 0. Then

Hk+1 = ck+1x
k+1 + q(x)

for ck+1 6= 0 where q(x) is a polynomial of degree less than k + 1 such that
q(x) 2 span{H0, H1, H2, . . . , Hk} by assumption. We then have that

x
k+1 =

1

ck+1
Hk+1 �

1

ck+1
q(x).

Thus,
x
k+1

2 span{H0, H1, H2, . . . , Hk+1}

and we conclude by induction that the assumption is true for all n > 0. ⇤

We need to know the value of

kHne
�⇡x2

k =
⇣Z

R
|Hn(x)e

�⇡x2
|
2
dx

⌘1/2

in order to normalize this function. This is done with the following.

Theorem 2.1.4. hHne
�⇡x2

, Hne
�⇡x2

i = (4⇡)np
2n!

for all n 2 N0.

The proof of this theorem makes use of the orthogonality of the Hermite
functions, which we have yet to show. We will delay this proof until this
property is established.

Definition 2.1.5. The normalized Hermite functions hn(x) are defined to be

hn(x) =

✓
21/4

p
n!

(4⇡)n/2

◆
Hne

�⇡x2
for n 2 N0.

We will now show that hhn, hmi = 0 for m 6= n; in other words, that
the Hermite functions are orthogonal in the inner product of L

2(R). To
show this, we will define a useful operator. Let C[x] denote the set of all
polynomials with complex coefficients.

Definition 2.1.6. Let S be the vector space of functions of the form

S = {p(x)e�⇡x2
: p(x) 2 C[x]}.
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Routine integral estimates will show that S ⇢ L
2(R). The following

theorem of M. Riesz [12] (see also [1, Ch. 2]) plays an important role later
on.

Theorem 2.1.7 (M. Riesz). S is dense in L
2(R).

Proof. The proof of this result is very technical and beyond the scope of
this thesis, so we will only give a brief outline.

First, it suffices to show that the polynomials are dense in L
2(wdx),

where w(x) = e
�2⇡x2 . To prove this, we must first show that the set

(2.1.8)
NX

j=1

cj

x� aj

for cj 2 C and aj /2 R is dense in L
2(wdx). By basic orthogonality of Hilbert

spaces, it suffices to show that if g 2 L
2(wdx) and

Z 1

�1

g(x)

x� z
w(x)dx = 0

for all z /2 R, then g = 0. One can verify this fact by the Poisson Inte-
gral Formula, a Theorem of Fatou [5] (see also [7, p. 34]), and the solu-
tion of the Dirichlet problem. Next, use the Gram Schmidt method on the
set {1, x, x2, . . .} with respect to L

2(wdx) to produce an orthonormal set of
polynomials {p0, p1, p2, . . .}. Fix z /2 R and let

an = h
1

x� z
, pniL2(wdx).

One can verify that Parseval’s theorem holds for this z, i.e.,
1X

n=0

|an|
2 =

Z 1

�1

1

|x� z|2
e
�2⇡x2

dx.

This is a significant part of Riesz’s technique and though it has the name
Parseval’s theorem, it is not quite Parseval’s theorem. Finally, it follows by
orthogonality that
Z 1

�1

���
1

x� z
�

NX

n=0

h
1

x� z
, pnipn

���
2
e
�2⇡x2

dx =

Z 1

�1

1

|x� z|2
e
�2⇡x2

dx�

NX

n=0

|an|
2
.

Now, let N ! 1 to see that 1
x�z can be approximated by a sequence of

polynomials. From here, it follows that any function of the form (2.1.8) can
be approximated by a sequence of polynomials. ⇤
Definition 2.1.9. Define the linear transformation K : S ! S by

Kf(x) = �
d
2
f

dx2
(x) + 4⇡2

x
2
f(x).
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We will now show that the Hermite functions are eigenfunctions of this
linear transformation. To establish this, we need a few identities.

Lemma 2.1.10. Define h�1(x) := 0. Then for n 2 N0, the Hermite functions
satisfy the following identities:

(i)
⇣
d

dx
� 2⇡x

⌘
hn = h

0
n � 2⇡xhn = �(n+ 1)hn+1

(ii)
⇣
d

dx
+ 2⇡x

⌘
hn = h

0
n + 2⇡xhn = 4⇡hn�1

Proof. We will first prove (i). Recall

hn(x) = �n
(�1)n

n!
e
⇡x2 d

dx
e
�2⇡x2

where �n = 21/4
p
n!

(4⇡)n/2 is the normalizing constant. Then

h
0
n(x) = 2⇡x�n

(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

+ �n
(�1)n

n!
e
⇡x2

✓
d

dx

◆n+1

e
�2⇡x2

= 2⇡xhn(x)� (n+ 1)�n
(�1)n+1

(n+ 1)!
e
⇡x2

✓
d

dx

◆n+1

e
�2⇡x2

= 2⇡xhn(x)� (n+ 1)hn+1(x).

Thus,

h
0
n(x)� 2⇡xhn(x) = �(n+ 1)hn+1(x).

We will now prove (ii). To begin, define h�1(x) := 0. Next we establish
the following identity,

4⇡x

✓
d

dx

◆n

(e�2⇡x2
) = �

✓
d

dx

◆n+1

(e�2⇡x2
)� 4⇡n

✓
d

dx

◆n�1

(e�2⇡x2
).

We can show that this holds for n = 1 as follows,

4⇡x

✓
d

dx

◆
(e�2⇡x2

) = �

✓
d

dx

◆2

(e�2⇡x2
)� 4⇡(e�2⇡x2

)

4⇡x(�4⇡x)e�2⇡x2
= �

d

dx
(�4⇡xe�2⇡x2

)� 4⇡e�2⇡x2

�16⇡2
x
2
e
�2⇡x2

= 4⇡e�2⇡x2
� 16⇡2

x
2
e
�2⇡x2

� 4⇡e�2⇡x2

�16⇡2
x
2
e
�2⇡x2

= �16⇡2
x
2
e
�2⇡x2

.

We will prove this identity holds for n > 1 by induction. Suppose

4⇡x

✓
d

dx

◆k

(e�2⇡x2
) = �

✓
d

dx

◆k+1

(e�2⇡x2
)� 4⇡k

✓
d

dx

◆k�1

(e�2⇡x2
)
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for some k > 1. Taking the derivative with respect to x on both sides of the
previous line shows that

4⇡

✓
d

dx

◆k

(e�2⇡x2
) + 4⇡x

✓
d

dx

◆k+1

(e�2⇡x2
)

is equal to

�

✓
d

dx

◆k+2

(e�2⇡x2
)� 4⇡k

✓
d

dx

◆k

(e�2⇡x2
).

Combining these two equations and grouping like terms gives

4⇡x

✓
d

dx

◆k+1

(e�2⇡x2
) = �

✓
d

dx

◆k+2

(e�2⇡x2
)� 4⇡(k + 1)

✓
d

dx

◆k

(e�2⇡x2
).

We conclude by induction that the identity is true for all n > 1.

Multiplying each side of this identity by (�1)n

n! e
⇡x2 and rearranging terms

yields that

4⇡x
(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

+
(�1)n

n!
e
⇡x2

✓
d

dx

◆n+1

e
�2⇡x2

(2.1.11)

is equal to

4⇡
(�1)n�1

(n� 1)!
e
⇡x2

✓
d

dx

◆n�1

e
�2⇡x2

.

Note that the right hand side of the above equation is equal to 4⇡Hn�1e
�⇡x2 .

Additionally, we have that

h
0
n =

d

dx

✓
�n

(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

◆

= 2⇡x�n
(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

+ �n
(�1)n

n!
e
⇡x2

✓
d

dx

◆n+1

e
�2⇡x2

.

Adding 2⇡xhn gives

h
0
n + 2⇡xhn = 4⇡x�n

(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

+ �n
(�1)n

n!
e
⇡x2

✓
d

dx

◆n+1

e
�2⇡x2

.

Then, normalizing the functions in equation (2.1.11), we have

h
0
n + 2⇡xhn = 4⇡hn�1

as desired. ⇤

We are now ready to present the following theorem which identifies
each Hermite function hn as an eigenfunction of K.

Theorem 2.1.12. For n 2 N0, Khn = 4⇡(n+ 1
2)hn.



2.1. The Hermite Functions 13

Proof. To begin, observe that
✓

d

dx
+ 2⇡x

◆✓
d

dx
� 2⇡x

◆
f =

✓
d

dx
+ 2⇡x

◆
(f 0

� 2⇡xf)

=
d

dx
(f 0

� 2⇡xf) + 2⇡xf 0
� 4⇡2

x
2
f

= f
00
� 2⇡xf 0

� 2⇡f + 2⇡xf 0
� 4⇡2

x
2
f

= f
00
� 2⇡f � 4⇡2

x
2
f.

Now,

�

✓
d

dx
+ 2⇡x

◆✓
d

dx
� 2⇡x

◆
f � 2⇡f = �f

00 + 2⇡f + 4⇡2
x
2
f � 2⇡f

= �f
00 + 4⇡x2f

= K(f).

Apply this to the Hermite functions hn to obtain

K(hn) = �

✓
d

dx
+ 2⇡x

◆✓
d

dx
� 2⇡x

◆
hn � 2⇡hn

= �

✓
d

dx
+ 2⇡x

◆
(�(n+ 1)hn+1)� 2⇡hn

= 4⇡(n+ 1)hn � 2⇡hn

= 4⇡nhn + 2⇡hn

= 4⇡

✓
n+

1

2

◆
hn.

Thus, the Hermite functions are eigenfunctions of K with corresponding
eigenvalues 4⇡(n+ 1

2). ⇤

Theorem 2.1.12 shows that the Hermite functions are eigenfunctions of
a linear transformation, each from a distinct eigenspace. To finally prove
that they are orthogonal functions, all that is left to show is that K is Her-
mitian on S .

Theorem 2.1.13. For f, g 2 S , hKf, gi = hf,Kgi.

Proof. Observe that

hKf, gi =

Z 1

�1
(f 00(x) + 4⇡2

x
2
f(x))g(x)dx

=

Z 1

�1
f
00(x)g(x)dx+

Z 1

�1
4⇡2

x
2
f(x)g(x)dx.

Then we must show that we can pass d2

dx2 to g(x) in the first integral. We
will use integration by parts. Let u = g(x), du = g0(x)dx, dv = f

00(x)dx,
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and v = f
0(x). Then
Z 1

�1
f
00(x)g(x)dx = g(x)f 0(x)

����
1

�1
�

Z 1

�1
f
0(x)g0(x)dx

= �

Z 1

�1
f
0(x)g0(x)dx

Note that because f, g 2 S , we have f(�1) = f(1) = 0 and the same for
g so that g(x)f 0(x)|1�1 = 0.

Performing integration by parts once more yields
Z 1

�1
f
00(x)g(x)dx =

Z 1

�1
f(x)g00(x)dx.

Then we have

hKf, gi =

Z 1

�1
f(x)g00(x)dx+

Z 1

�1
4⇡2

x
2
f(x)g(x)dx

=

Z 1

�1
f(x)(g00(x) + 4⇡2

x
2
g(x))dx

= hf,Kgi

and thus K is Hermitian. ⇤

This yields the following orthogonality relation.

Corollary 2.1.14. For all m,n 2 N0 with m 6= n,

hhn, hmi = 0.

Proof. Let cn = 4⇡(n+ 1
2). Then for n 6= m,

cnhhn, hmi = hcnhn, hmi

= hKhn, hmi

= hhn,Khmi

= hhn, cmhmi

= cmhhn, hmi.

Since cm 6= cn, it must be the case that hhn, hmi = 0. ⇤

The last step in showing that the Hermite functions form an orthonor-
mal basis is to show they are complete. This is done with the following.

Proposition 2.1.15. Suppose f 2 L
2(R) satisfies hf, hni = 0 for all Hermite

functions (hn)n>0. Then f = 0.
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Proof. Since S is dense in L
2(R), it is enough to prove that when hf, hni = 0

for all n 2 N0, hf, si = 0 for all s 2 S .
Suppose f 2 L

2(R) satisfies hf, hni = 0 for all n 2 N0. By Proposition
2.1.3, we can take linear combinations of Hermite polynomials to produce
any x

k for k > 0 so that c0H0+c1H1+· · ·+ckHk = x
k. Then hf, x

k
e
�⇡x2

i = 0.
Then for any polynomial of degree N where p(x) =

PN
n=0 anx

n,

hf, p(x)e�⇡x2
i = hf, (a0 + a1x+ · · ·+ aNx

N )e�⇡x2
i

=
NX

n=0

anhf, x
n
e
�⇡x2

i

= 0. ⇤

In the next chapter we will show that, in fact, the Hermite functions
form an eigenbasis for the Fourier–Plancherel transform.

We now return to the proof of the normalizing constant for the Hermite
functions delayed in this section.

Proof of Theorem 2.1.4. We will begin by showing that for the Hermite
polynomial Hn of degree n, the leading coefficient is (4⇡)n

n! . One already
saw this for the first few Hermite polynomials shown earlier in this chap-
ter. We will proceed by induction. For the case where n = 0, observe

H0e
�⇡x2

=

✓
(�1)0

0!

◆
e
⇡x2

✓
d

dx

◆0

e
�2⇡x2

= e
�⇡x2

,

and thus the leading coefficient of H0 is (4⇡)0

0! = 1. Suppose

Hke
�⇡x2

=

✓
(�1)k

k!

◆
e
⇡x2

✓
d

dx

◆k

e
�2⇡x2

= e
�⇡x2

✓
(4⇡)k

k!
x
k + · · ·

◆

for all k > 0. Taking a derivative with respect to x of the above equation
gives

2⇡x

✓
(�1)k

k!

◆
e
⇡x2

✓
d

dx

◆k

e
�2⇡x2

+

✓
(�1)k

k!

◆
e
⇡x2

✓
d

dx

◆k+1

e
�2⇡x2

is equal to

�2⇡xe�⇡x2

✓
(4⇡)k

k!
x
k + · · ·

◆
+ e

�⇡x2

✓
(4⇡)k

k!
kx

k�1 + · · ·

◆
.

Note that the second term on the right hand side of the above equation
includes only lower order terms of x and will thus be omitted from the fol-
lowing computations since we are only interested in the leading coefficient
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of Hn. Multiplying the above by �1
k+1 and combining terms gives

�2⇡x

k + 1

✓
(�1)k

k!

◆
e
⇡x2

✓
d

dx

◆k

e
�2⇡x2

+

✓
(�1)k+1

(k + 1)!

◆
e
⇡x2

✓
d

dx

◆k+1

e
�2⇡x2

is equal to

2e�⇡x2

✓
4k⇡k+1

(k + 1)!
x
k+1 + · · ·

◆
+ · · · .

Then by Theorem 2.1.2, this is equivalent to

�2⇡x

k + 1
Hke

�⇡x2
+Hk+1e

�⇡x2
= 2e�⇡x2

✓
4k⇡k+1

(k + 1)!
x
k+1 + · · ·

◆
+ · · · .

By the induction hypothesis,

Hke
�⇡x2

= e
�⇡x2

✓
(4⇡)k

k!
x
k + · · ·

◆

so that
�2⇡x

k + 1
e
�⇡x2

✓
(4⇡)k

k!
x
k + · · ·

◆
+Hk+1e

�⇡x2

is equal to

2e�⇡x2

✓
4k⇡k+1

(k + 1)!
x
k+1 + · · ·

◆
+ · · · .

Combining terms, we have

�2e�⇡x2

✓
4k⇡k+1

(k + 1)!
x
k+1 + · · ·

◆
+Hk+1e

�⇡x2

is equal to

2e�⇡x2

✓
4k⇡k+1

(k + 1)!
x
k+1 + · · ·

◆
+ · · · .

Thus,

Hk+1e
�⇡x2

= e
�⇡x2

✓
(4⇡)k+1

(k + 1)!
x
k+1 + · · ·

◆
.

We can conclude by induction that the leading coefficient of Hn is (4⇡)n

n! for
all n > 0. Define

an :=
(4⇡)n

n!
.

We will now show

hHne
�⇡x2

, Hne
�⇡x2

i =
an
p
2
.
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By the orthogonality of the Hermite functions, for k < n we have
D
e
�⇡x2

kX

j=0

cjHj , Hne
�⇡x2

E
= 0

for cj 2 C. Let Hn = anx
n + an�1x

n�1 + . . .+ a0 by Proposition 2.1.3. Then

hHne
�⇡x2

, Hne
�⇡x2

i = hanx
n
e
�⇡x2

+ an�1x
n�1

e
�⇡x2

+ . . . , Hne
�⇡x2

i

= anhx
n
e
�⇡x2

, e
�⇡x2

Hni

= an

Z 1

�1
x
n
e
�⇡x2 (�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

dx

=
an(�1)n

n!

Z 1

�1
x
n

✓
d

dx

◆n

e
�2⇡x2

dx.

We will proceed by integration by parts. Let u = x
n, du = nx

n�1
dx, v =

( d
dx)

n�1
e
�2⇡x2 , and dv = ( d

dx)
n
e
�2⇡x2

dx. Then

an(�1)n

n!

Z 1

�1
x
n

✓
d

dx

◆n

e
�2⇡x2

dx

is equal to

an(�1)n

n!
x
n

✓
d

dx

◆n�1

e
�2⇡x2

���
1

�1
�

an(�1)n

n!

Z 1

�1
nx

n�1

✓
d

dx

◆n�1

e
�2⇡x2

dx.

Note that the first term on the right hand side of this equation is an element
of S and will thus go to 0. Then

an(�1)n

n!

Z 1

�1
x
n

✓
d

dx

◆n

e
�2⇡x2

dx =
�an(�1)n

(n� 1)!

Z 1

�1
x
n�1

✓
d

dx

◆n�1

e
�2⇡x2

dx.

Applying integration by parts n more times will give
an(�1)n

n!

Z 1

�1
x
n

✓
d

dx

◆n

e
�2⇡x2

dx = an

Z 1

�1
e
�2⇡x2

dx

= an

Z 1

�1
e
�⇡(

p
2x)2

dx.

Using u-substitution, let u =
p
2x and du =

p
2. Then

an

Z 1

�1
e
�⇡(

p
2x)2

dx = an
1
p
2

Z 1

�1
e
�⇡u2

du

=
an
p
2

by Proposition 3.1.1 (i) (we prove this proposition in the following chapter)
and the theorem follows. ⇤





Chapter 3

The Fourier–Plancherel

Transform

3.1. An alternate definition of the Fourier–Plancherel transform

Most people define the Fourier–Plancherel transform on L
2(R) via the in-

tegral formula

(Ff)(t) =

Z 1

�1
f(x)e�2⇡ixt

dx.

However, there are technical difficulties with convergence of the integral
since, for particular f 2 L

2(R), the integral may not converge for all values
of t. Some people get around this issue by understanding the integral in
the Fourier transform as a limit in the mean, i.e.,

lim
N!1

���Ff �

Z N

�N
f(x)e�2⇡ixt

dx

��� = 0,

where the norm above is the L
2(R) norm, and use the notation

l. i.m.

Z 1

�1
f(x)e�2⇡ix2

dx.

To avoid these difficulties, and to avoid the integral representation of the
Fourier transform altogether, we will define the Fourier transform via the
Hermite basis (hn)n>0 discussed in the previous chapter. Recall that

S = {p(x)e�⇡x2
: p(x) 2 C[x]}

is a dense subset of L2(R) by Theorem 2.1.7.

19-
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For f 2 S , define

(Ff)(t) :=

Z 1

�1
f(x)e�2⇡ixt

dx.

Note that there is no issue of convergence in this integral since f 2 S

rapidly decays to zero near infinity. We now wish to show that F : S ! S .
To do this, we first present a few integral identities.

Proposition 3.1.1. The following identities are true:

(i)
Z 1

�1
e
�⇡x2

dx = 1

(ii)
Z 1

�1
e
�⇡x2

e
�2⇡ixt

dx = e
�⇡t2 for all t 2 R

Proof. We begin by proving (i). Observe that
Z 1

�1
e
�⇡t2

dt =

sZ 1

�1
e�⇡t2dt

Z 1

�1
e�⇡s2ds

=

sZ 1

�1

Z 1

�1
e�⇡(s2+t2)dtds

=

sZ 1

0

Z 2⇡

0
e�⇡r2rd✓dr

=
p

2⇡

sZ 1

0
e�⇡r2rdr

after conversion to polar coordinates. Using u-substitution, let u = �⇡r
2

and du = �2⇡rdr. Then

p

2⇡

sZ 1

0
e�⇡r2rdr =

p

2⇡

s
1

2⇡

Z 0

�1
eudu

= e
u
���
0

�1
= 1.

We will now prove (ii). Using integration by parts, let u = e
�⇡x2 and

dv = e
�2⇡ixt

dt so that
Z 1

�1
e
�⇡x2

e
�2⇡ixt

dx = e
�⇡x2 e

�2⇡ixt

�2⇡it

����
1

�1
�

2⇡

2⇡it

Z 1

�1
xe

�⇡x2
e
�2⇡ixt

dx

=
�1

it

Z 1

�1
xe

�⇡x2�2⇡ixt
dx.
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Let us examine �⇡x
2
� 2⇡ixt. Completing the square yields

�⇡x
2
� 2⇡ixt = �⇡(x2 + 2ixt)

= �⇡(x2 + 2ixt� t
2 + t

2)

= �⇡((x+ it)2 + t
2).

We then have
�1

it

Z 1

�1
xe

�⇡x2�2⇡ixt
dx =

�1

it

Z 1

�1
xe

�⇡(x+it)2
e
�⇡t2

dx

=
�e

�⇡t2

it

Z 1

�1
xe

�⇡(x+it)2
dx.

Using u-substitution, let u = x+ it and du = dx. Then

�e
�⇡t2

it

Z 1

�1
xe

�⇡(x+it)2
dx =

�e
�⇡t2

it

Z 1

�1
(u� it)e�⇡u2

du

=
�e

�⇡t2

it

✓Z 1

�1
ue

�⇡u2
du�

Z 1

�1
ite

�⇡u2
du

◆

=
�e

�⇡t2

it
(�it)

= e
�⇡t2

invoking property (i). Note that
Z 1

�1
ue

�⇡u2
du = 0

since the integrand is an odd function. ⇤

Proposition 3.1.2. If f 2 S , then Ff 2 S .

Proof. Let f 2 S . Then f(x) = p(x)e�⇡x2 , where p(x) is a polynomial of
degree N . The Fourier transform of f will then depend on how F acts on
x
n
e
�⇡x2 for all n 6 N . We will proceed with a proof by induction. For

n = 0, we have Z 1

�1
e
�⇡x2

e
�2⇡ixt

dx = e
�⇡t2

,

invoking Proposition 3.1.1 (ii), which is in S . Suppose
Z 1

�1
x
k
e
�⇡x2

e
�2⇡ixt

dx 2 S

for some k > 0. Taking a derivative with respect to t gives

d

dt

Z 1

�1
x
k
e
�⇡x2

e
�2⇡ixt

dx =

Z 1

�1
x
k
e
�⇡x2

(�2⇡ix)e�2⇡ixt
dx
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= �2⇡i

Z 1

�1
x
k+1

e
�⇡x2

e
�2⇡ixt

dx,

which must be in S , as any derivative of an element in S is also in S by
Definition 2.1.6. Then F(xne�⇡x2

) 2 S for all n 6 N and thus Ff 2 S for
all f 2 S . ⇤

Then if f = p(x)e�⇡x2 where p(x) is a polynomial of degree N , use the
orthogonality of (hn)n>0 to see that

f =
NX

n=0

hf, hnihn

(note that hf, hmi = 0 for all m > N + 1). In Section 3.2, we will show that
Fhn = (�i)nhn. Assuming this, we see that

kFfk =
NX

n=0

|hf, hni|
2 = kfk

2
.

Thus F is isometric on S . The polarization identity yields

hFf,Fgi = hf, gi

for all f, g 2 S .
Consider the linear transformation G : S ! S defined by

G(
NX

n=0

hf, hnihn) =
NX

n=0

hf, hnii
n
hn.

Then

GF(
NX

n=0

hf, hnihn) = G(
NX

n=0

hf, hni(�i)nhn)

=
NX

n=0

hf, hnii
n(�i)nhn

=
NX

n=0

hf, hnihn.

Additionally,

FG(
NX

n=0

hf, hnihn) = F(
NX

n=0

hf, hnii
n
hn)

=
NX

n=0

hf, hni(�i)ninhn
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=
NX

n=0

hf, hnihn.

Thus G = F
�1 on S .

We now want to know how G acts on any given basis element hn, as all
f 2 S can be written as linear combinations of these basis elements. We
claim that

(Ghn)(t) =

Z 1

�1
hn(x)e

2⇡ixt
dx.

To show this, we will use u-substitution. Let u = �x and du = �dx. Then
Z 1

�1
hn(�u)e�2⇡iut

du = (�1)n
Z 1

�1
hn(u)e

�2⇡iut
du

= (�1)n(�i)nhn(t)

= i
n
hn(t)

= (Ghn)(t).

Note the identity hn(�x) = (�1)nhn(x) is used in the above computation.
To see this, let �n be the normalizing constant for a given hn so that

hn(�x) = �n
(�1)n

n!
e
⇡x2

✓
d

d(�x)

◆n

e
�2⇡x2

.

Then via the chain rule, we have
d

d(�x)
=

d

dx

dx

d(�x)

=
d

dx
(�1).

Thus

�n
(�1)n

n!
e
⇡x2

✓
d

d(�x)

◆n

e
�2⇡x2

= �n
(�1)n

n!
e
⇡x2

✓
d

dx
(�1)

◆n

e
�2⇡x2

= (�1)n�n
(�1)n

n!
e
⇡x2

✓
d

dx

◆n

e
�2⇡x2

= (�1)nhn(x).

We then have

(Gf)(t) =

Z 1

�1
f(x)e2⇡ixtdx

for all f 2 S

We now have one crucial fact to show. Observe

hF(
NX

n=0

anhn),
MX

m=0

bmhmi = h

NX

n=0

(�i)nanhn,
MX

m=0

bmhmi
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=
NX

n=0

MX

m=0

an(�i)nbmhhn, hmi

=
NX

n=0

an(�i)nbn

=
NX

n=0

an(i)nbn

=
NX

n=0

MX

m=0

an(i)mbmhhn, hmi

= h

NX

n=0

anhn,

MX

m=0

(i)mbmhmi

= h

NX

n=0

anhn,G(
MX

m=0

bmhm)i.

Then F
⇤ = G on S . What we have accomplished in this section is the first

definition of the Fourier transform we will consider. Additionally, we have
shown that it is unitary and defined its inverse.

Here is how we extend F to all of L2(R). If f 2 L
2(R),

fN =
NX

n=0

hf, hnihn

and

fM =
MX

n=0

hf, hnihn

for N > M , then

kFfN � FfMk = kF(fN � fM )k

=
NX

n=M

|hf, hni|
2
! 0.

Then (FfN ) is a Cauchy sequence and thus FfN converges to some func-
tion we will denote by Ff . By this we mean

kFfN � Ffk ! 0.

Then

F(
NX

n=0

hf, hnihn) =
NX

n=0

hf, hni(�i)nhn.
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One can show that Ff + Fg = F(f + g) and F(↵f) = ↵F(f) for all
↵ 2 C and f 2 L

2(R).

3.2. Eigenbasis

We will now show that the Hermite functions (hn)n>0 form an eigenbasis
for F . As with Chapter 2, some of the computations from this chapter come
from Hsu [8].

Theorem 3.2.1. For each n 2 N0, Fhn = (�i)nhn.

To prove Theorem 3.2.1, we must first present some identities involving
the Fourier transform.

Lemma 3.2.2. For f 2 S , the following identities are true:

(i) (Ff
0)(t) = (2⇡it)(Ff)(t),

(ii) (F(�2⇡ix)f)(t) = (Ff)0(t).

Proof. Let f 2 S . We will begin with the proof of part (i). Recall that

(Ff
0)(t) =

Z 1

�1
f
0(x)e�2⇡ixt

dx.

We will proceed with integration by parts. Let u = e
�2⇡ixt, v = f(x), du =

�2⇡ite�2⇡ixt
dx and dv = f

0(x)dx. Then
Z 1

�1
f
0(x)e�2⇡ixt

dx = e
�2⇡ixt

f(x)

����
1

�1
�

Z 1

�1
f(x)(�2⇡it)e�2⇡ixt

dx

= (2⇡it)

Z 1

�1
f(x)e�2⇡ixt

dx

= (2⇡it)(Ff)(t).

Note that f 2 S , and so f(�1) = f(1) = 0. Thus (Ff
0)(t) = (2⇡it)(Ff)(t).

We will now prove part (ii). Observe

(F(�2⇡it)f)(t) =

Z 1

�1
�2⇡ixf(x)e�2⇡ixt

dx

=

Z 1

�1
f(x)

d

dt
e
�2⇡ixt

dx

=
d

dt

Z 1

�1
f(x)e�2⇡ixt

dx

= (Ff)0(t).

Thus (F(�2⇡ix)f)(t) = (Ff)0(t) ⇤

For the use of Lemma 3.2.2 for f 2 L
2(R), refer to Theorem 2.1.7. We

are now ready to prove Theorem 3.2.1.
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Proof of Theorem 3.2.1. Recall the identity

h
0
n(x)� 2⇡xhn(x) = �(n+ 1)hn+1(x)

from Lemma 2.1.10 (i). Taking the Fourier transform of this identity gives

F(h0n(x)) +
1

i
F(�2⇡ixhn(x)) = �(n+ 1)F(hn(x))

2⇡ix(Fhn)(x) +
1

i
(Fhn)

0(x) = �(n+ 1)(Fhn+1)(x)

(Fhn)
0(x)� 2⇡x(Fhn)(x) = �(n+ 1)i(Fhn+1)(x)

i
n(Fhn)

0(x)� 2⇡xin(Fhn)(x) = �(n+ 1)in+1(Fhn+1)(x)

by Lemma 3.2.2. We will proceed by induction to show (hn)n>0 are eigen-
functions of F . In the case where n = 0, we have h0(x) = e

�⇡x2 and

(Fh0)(t) =

Z 1

�1
e
�⇡x2

e
�2⇡ixt

dx = e
�⇡t2

.

Then h0(x) = i
0(Fh0)(x). Let k > 0 and suppose hk(x) = i

k(Fhk)(x). Then
from the computation above, we have

i
k(Fhk)

0(x)� 2⇡xik(Fhk)(x) = �(k + 1)ik+1(Fhk+1)(x)

h
0
k(x)� 2⇡xhk(x) = �(k + 1)ik+1(Fhk+1)(x)

�(k + 1)hk+1(x) = �(k + 1)ik+1(Fhk+1)(x)

hk+1(x) = i
k+1(Fhk+1)(x)

by the induction hypothesis and another application of Lemma 2.1.10. Then
hn(x) = i

n(Fhn)(x) for all n > 0. Dividing by i
n gives (Fhn)(x) = (�i)nhn(x).

Thus, the nth Hermite function is an eigenfunction of the Fourier transform
with corresponding eigenvalue (�i)n. ⇤

This brings us to the most important theorem of this section.

Theorem 3.2.3. Let F be the Fourier transform considered as a bounded operator
on L

2(R). Then (hn)n>0 is an eigenbasis for F .

Proof of Theorem 3.2.3. We have by definition that

span{hn : n > 0} = S

and by Theorem 2.1.7, S is dense in L
2(R). We have already shown that

(hn)n>0 are eigenfunctions for F , and the theorem follows. ⇤

An immediate result of Theorem 3.2.3 is the following, which will play
an important role later on.

Corollary 3.2.4. F
4 = I .
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Proof. Let f 2 L
2(R). To see how F

4 acts on f , it is enough to learn how
F

4 acts on basis elements (hn)n>0. Observe

F
4
hn = F

3((�i)nhn) = F
2((�i)2nhn) = F((�i)3nhn) = (�i)4nhn = hn.

Then F
4 is the identity operator for all basis elements, and thus F

4
f = f

for all f 2 L
2(R). Hence, F4 = I . ⇤

3.3. Matrix Representation

In this section, we will consider matrix representations of linear operators
on L

2(R). As discussed in Chapter 2, the set of all Hermite functions form
an orthonormal basis for L

2(R). Then for a bounded linear operator T :
L
2(R) ! L

2(R), we wish to know how T acts on the basis elements hn.
Let us first consider Th0. We can write this vector as some linear com-

bination of basis vectors, so that

Th0 =
1X

j=0

cjhj

for some coefficients cj . Then via the orthonormality of hj , any one cj is
equal to

cj = hTh0, hji.

Similarly, for

Th1 =
1X

j=0

djhj ,

we have that dj = hTh1, hji. Continuing to perform this computation for
all basis elements, the matrix representation T of T is

T =

2

6666664

hTh0, h0i hTh1, h0i hTh2, h0i . . .

hTh0, h1i hTh1, h1i hTh2, h1i . . .

hTh0, h2i hTh1, h2i hTh2, h2i . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
.

To observe how T acts on some f 2 L
2, we can write f as a linear

combination of basis elements

f =
1X

j=0

hf, hjihj .



28 3. The Fourier–Plancherel Transform

Then Tf is given in matrix form by

Tf =

2

6666664

hTh0, h0i hTh1, h0i hTh2, h0i . . .

hTh0, h1i hTh1, h1i hTh2, h1i . . .

hTh0, h2i hTh1, h2i hTh2, h2i . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775

2

6666664

hf, h0i

hf, h1i

hf, h2i

.

.

.

3

7777775
.

Then

T (
1X

j=0

hf, hjihj) =
1X

j=0

hf, hjiThj .

Let us compute the matrix representation F of the Fourier transform F .
Using the matrix form of any linear operator on L

2(R) as given above, we
have that

F =

2

66666666664

hFh0, h0i hFh1, h0i hFh2, h0i hFh3, h0i . . .

hFh0, h1i hFh1, h1i hFh2, h1i hFh3, h1i . . .

hFh0, h2i hFh1, h2i hFh2, h2i hFh3, h2i . . .

hFh0, h3i hFh1, h3i hFh2, h3i hFh3, h3i . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777775

=

2

66666666664

hh0, h0i �ihh1, h0i �hh2, h0i ihh3, h0i . . .

hh0, h1i �ihh1, h1i �hh2, h1i ihh3, h1i . . .

hh0, h2i �ihh1, h2i �hh2, h2i ihh3, h2i . . .

hh0, h3i �ihh1, h3i �hh2, h3i ihh3, h3i . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777775

.

Then by the orthonormality of the Hermite functions, we have

F =

2

66666666664

1 0 0 0 . . .

0 �i 0 0 . . .

0 0 �1 0 . . .

0 0 0 i . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777775
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so that F is an infinite diagonal matrix. Because the eigenvalue of F for
some hn is (�i)n, this 4 ⇥ 4 pattern will repeat itself on the diagonal infin-
itely. Let

D =

2

6666664

1 0 0 0

0 �i 0 0

0 0 �1 0

0 0 0 i

3

7777775
.

Then in block form,

F =

2

6666664

D

D

D

. . .

3

7777775

omitting zeros. This representation of F as a matrix will be used in later
chapters. We will also see another matrix representation which will be
more useful in discussing various properties of the Fourier transform. We
presented this matrix representation first since it is the most natural one.





Chapter 4

The Commutant

In linear algebra, we have often asked what matrices commute with a given
matrix. We now ask this question for the Fourier transform. In this chapter,
we fully characterize the set of bounded linear operators in the commutant
of F in their matrix representations, considering F as given in Chapter 3.

4.1. Basic Facts

Definition 4.1.1. The commutant of F is defined by

{F}
0 = {T 2 B(L2(R)) : TF = FT}.

These are the bounded operators on L
2(R) that commute with the Fourier

transform. Note that {F}
0 is closed under addition and scalar multiplica-

tion. Indeed, for T 2 {F}
0 and c 2 C, we have

F(cT ) = c(FT ) = c(TF) = (cT )F

so cT 2 {F}
0. Additionally, for T, T 0

2 {F}
0, we have

F(T + T
0) = FT + FT

0 = TF + T
0
F = (T + T

0)F

so that (T + T
0) 2 {F}

0.
We also have that that {F}

0 is closed under operator composition. For
instance, for S, T 2 {F}

0, we have

STF = SFT = FST

and thus ST 2 {F}
0.

Finally, {F}
0 is closed under adjoints. Indeed, if T 2 {F}

0, then

TF = FT ) (TF)⇤ = (FT )⇤

31-
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) F
⇤
T
⇤ = T

⇤
F

⇤

) T
⇤ = FT

⇤
F

⇤

) T
⇤
F = FT

⇤
.

Some obvious operators in {F}
0 are p(F)q(F⇤) for p, q 2 C[x]. A some-

what less obvious one is in the following.

Example 4.1.2. Consider the operator A : L2(R) ! L
2(R) defined by (Af)(x) =

f(�x). Then

(AFf)(x) = A

Z 1

�1
f(t)e�2⇡ixt

dt

=

Z 1

�1
f(t)e2⇡ixtdt.

Let u = �t and du = �dt. Then
Z 1

�1
f(t)e2⇡ixtdt = �

Z �1

1
f(�u)e�2⇡ixu

du

=

Z 1

�1
f(�u)e�2⇡ixu

du

= (FAf)(x).

In the other direction, we have

(FAf)(x) = (Ff)(�x)

=

Z 1

�1
f(�t)e�2⇡ixt

dt

= (AFf)(x).

Thus A 2 {F}
0.

4.2. Kronecker Product

We now define an important operation for the section that follows, the Kro-
necker product.

Definition 4.2.1. Let A = [aij ]1i,j=1 be an infinite matrix and B 2 Mn⇥n.
The Kronecker product A⌦B is the infinite matrix

A⌦B =

2

6666664

a11B a12B a13B . . .

a21B a22B a23B . . .

a31B a32B a33B . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
.
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Taking a more in depth look at an arbitrary block aijB, we have that

aijB =

2

66666666664

aijb11 aijb12 aijb13 . . . aijb1n

aijb21 aijb22 aijb23 . . . aijb2n

aijb31 aijb32 aijb33 . . . aijb3n

.

.

.
.
.
.

.

.

.
. . .

aijbn1 aijbn2 aijb3n aijbnn

3

77777777775

.

It is sometimes the case that the interesting matrix to compute is the
product of two Kronecker products. This is called the mixed product, defined
below.

Theorem 4.2.2. Let A and C be infinite matrices such that AC exists and B,D 2

Mn⇥n. The mixed product of A, B, C, and D is

(A⌦B)(C⌦D) = AC⌦BD.

Proof. Let A and C be infinite matrices and B,D 2 Mn⇥n. Then

A⌦B =

2

66666666664

a11B a12B a13B a14B . . .

a21B a22B a23B a24B . . .

a31B a32B a33B a34B . . .

a41B a42B a43B a44B . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777775

and

C⌦D =

2

66666666664

c11D c12D c13D c14D . . .

c21D c22D c23D c24D . . .

c31D c32D c33D c34D . . .

c41D c42D c43D c44D . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777775

.
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Multiplying these two matrices together gives

(A⌦B)(C⌦D) =

2

6666664

P1
j=1 a1jcj1BD

P1
j=1 a1jcj2BD

P1
j=1 a1jcj3BD . . .

P1
j=1 a2jcj1BD

P1
j=1 a2jcj2BD

P1
j=1 a2jcj3BD . . .

P1
j=1 a3jcj1BD

P1
j=1 a3jcj2BD

P1
j=1 a3jcj3BD . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
.

Note that the product AC in summation notation is given by

AC =

 1X

n=1

aincnj

�1

i,j=0

.

Then the above matrix is exactly AC⌦BD by Definition 4.2.1. ⇤

4.3. Main Theorem

In the matrix representation of F as described in Chapter 3, we claim the
following theorem.

Theorem 4.3.1 (Commutant of F). A bounded linear operator T on L
2(R) com-

mutes with F if and only if the matrix representation T of T with respect to the
Hermite basis takes the form T = [Tij ]1i,j=1 where each Tij is a 4 ⇥ 4 diagonal
matrix.

Proof. Let T : L2(R) ! L
2(R) be some bounded linear operator. Suppose

TF = FT . Consider T as being composed of an infinite number of 4 ⇥ 4
matrices in its matrix representation, so that we can write T = [Tij ]1i=1,j=1
for Tij 2 M4⇥4. Then, in terms of block matrix multiplication,

TF =

2

6666664

T11 T12 T13 . . .

T21 T22 T23 . . .

T31 T32 T33 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775

2

6666664

D

D

D

. . .

3

7777775

=

2

6666664

T11D T12D T13D . . .

T21D T22D T23D . . .

T31D T32D T33D . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
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Similarly,

FT =

2

6666664

DT11 DT12 DT13 . . .

DT21 DT22 DT23 . . .

DT31 DT32 DT33 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
.

Comparing (block) entries says that TjkD = DTjk for all j, k.
Let us examine this relationship for an arbitrary selection of j, k,

2

6666664

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

3

7777775

2

6666664

1 0 0 0

0 �i 0 0

0 0 �1 0

0 0 0 i

3

7777775
=

2

6666664

1 0 0 0

0 �i 0 0

0 0 �1 0

0 0 0 i

3

7777775

2

6666664

t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

3

7777775
.

Matrix multiplication yields
2

6666664

t11 (�i)t12 �t13 (i)t14

t21 (�i)t22 �t23 (i)t24

t31 (�i)t32 �t33 (i)t34

t41 (�i)t42 �t43 (i)t44

3

7777775
=

2

6666664

t11 t12 t13 t14

(�i)t21 (�i)t22 (�i)t23 (�i)t24

�t31 �t32 �t33 �t34

(i)t41 (i)t42 (i)t43 (i)t44

3

7777775
.

It is clear from the above equation that all but the diagonal elements of
Tjk must be 0 to produce equality. Thus, each block of T must be a 4 ⇥ 4
diagonal matrix.

Suppose T = [Tjk]1j=1,k=1 so that each block Tjk is a 4 ⇥ 4 diagonal
matrix. Consider an arbitrary block Tjk. Then TjkD = DTjk, as diagonal
matrices commute. Thus

TF =

2

6666664

T11D T12D T13D . . .

T21D T22D T23D . . .

T31D T32D T33D . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
=

2

6666664

DT11 DT12 DT13 . . .

DT21 DT22 DT23 . . .

DT31 DT32 DT33 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
= FT,

and TF = FT. ⇤

A powerful consequence of this theorem is that producing a T 2 {F}
0

is not at all difficult. Take any known bounded operator A represented as
a matrix on `

2 and any 4 ⇥ 4 diagonal matrix ⇤ and compute A ⌦ ⇤. A
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technical result from operator theory will show that this defines a bounded
operator. This product will commute with the Fourier transform.

Corollary 4.3.2. Let A be any bounded linear operator on `
2 and let ⇤ be any

4⇥ 4 diagonal matrix. Then A⌦ ⇤ commutes with F.

Proof. Let A be a bounded operator and ⇤ be a 4⇥4 diagonal matrix. Note
that one can write F = I⌦D where I is the infinite identity operator. Then,
by Theorem 4.2.2,

(A⌦ ⇤)(I⌦D) = AI⌦ ⇤D and (I⌦D)(A⌦ ⇤) = IA⌦D⇤.

Thus, (A⌦⇤)(I⌦D) = (I⌦D)(A⌦⇤), and the product A⌦⇤ commutes
with F. ⇤

The remainder of this section is composed of several interesting exam-
ples of Theorem 4.3.1.

Example 4.3.3. Any polynomial in the Fourier transform is in the commu-
tant of F . Let

T = a0I + a1F + a2F
2 + . . .+ anF

n
.

Let p(z) = a0 + a1z + a2z
2 + . . .+ anz

n. Then

T =

2

66666666666664

p(1)

p(�i)

p(�1)

p(i)

p(1)

. . .

3

77777777777775

is a diagonal matrix. Thus, T is in the commutant of F .

Example 4.3.4. The integral example of this was shown at the beginning
of this chapter, with (Tf)(x) = f(�x). In the matrix representation, note
that (Thn)(x) = hn(�x) = (�1)nhn(x) (this result was shown in Chapter
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3). Then

T =

2

66666666666666666666664

1

�1

1

�1

1

�1

1

�1

. . .

3

77777777777777777777775

is in the commutant of F .

Example 4.3.5. Let H be the Hilbert matrix

H =

2

666666666664

1 1
2

1
3

1
4 . . .

1
2

1
3

1
4

1
5 . . .

1
3

1
4

1
5

1
6 . . .

1
4

1
5

1
6

1
7 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

777777777775

.

A result of Schur [15] says that Hx 2 `
2 for all x 2 `

2. Additionally, we
have

kHk = sup
x2`2;kxk=1

kHxk = ⇡.

Thus H is a bounded operator on `
2. Let

⇤ =

2

6666664

�1 0 0 0

0 �2 0 0

0 0 �3 0

0 0 0 �4

3

7777775
.

-1- - - - - - - - - ~ 
I 

I 

I 

- - - - - - - - -" 
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Then the matrix

H⌦ ⇤ =

2

666666666666666666666666664

�1
1
2�1 . . .

�2
1
2�2 . . .

�3
1
2�3 . . .

�4
1
2�4 . . .

1
2�1

1
3�1 . . .

1
2�2

1
3�2 . . .

1
2�3

1
3�3 . . .

1
2�4

1
3�4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

777777777777777777777777775

is in the commutant of F .

Example 4.3.6. Let Ta be the Toeplitz matrix

Ta =

2

66666666666664

a0 a�1 a�2 a�3 a�4 . . .

a1 a0 a�1 a�2 a�3 . . .

a2 a1 a0 a�1 a�2 . . .

a3 a2 a1 a0 a�1 . . .

a4 a3 a2 a1 a0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
. . .

3

77777777777775

for some sequence a = (an)1n=�1. As first explored by Toeplitz [16, 17] but
then more rigorously verified by Hartman and Wintner [6], Ta defines a
bounded operator on `

2 if and only if

an =
1

2⇡

Z 2⇡

0
�(✓)e�in✓

d✓

for some bounded measurable function � on [0, 2⇡]. In other words, if a is
the sequence of Fourier coefficients of �. The norm of this matrix is given
by

kTak = sup
✓

|�(ei✓)|.

-1-

1 

- _J 
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Then for any 4⇥ 4 diagonal matrix

⇤ =

2

6666664

�1

�2

�3

�4

3

7777775
,

Ta ⌦ ⇤ =

2

666666666666666666666666664

a0�1 a�1�1 . . .

a0�2 a�1�2 . . .

a0�3 a�1�3 . . .

a0�4 a�1�4 . . .

a1�1 a0�1 . . .

a1�2 a0�2 . . .

a1�3 a0�3 . . .

a1�4 a0�4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

777777777777777777777777775

is an element of {F}
0.

Example 4.3.7. Let C be the Cesàro matrix

C =

2

666666666664

1 0 0 0 . . .

1
2

1
2 0 0 . . .

1
3

1
3

1
3 0 . . .

1
4

1
4

1
4

1
4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

777777777775

.

A well known result of Brown, Halmos, and Shields [3] says that C`
2
⇢ `

2

and

kCk = sup
x2`2,kxk=1

kCxk = 2.

_J_ 

I 
- - - - - - - - - - - - - - - - - _j 
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Then

C⌦ ⇤ =

2

66666666666666666666666666666666666666664

�1 . . .

�2 . . .

�3 . . .

�4 . . .

1
2�1

1
2�1 . . .

1
2�2

1
2�2 . . .

1
2�3

1
2�3 . . .

1
2�4

1
2�4 . . .

1
3�1

1
3�1 . . .

1
3�2

1
3�2 . . .

1
3�3

1
3�3 . . .

1
3�4

1
3�4 . . .

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

77777777777777777777777777777777777777775

is in the commutant of F .

4.4. A Better Approach

Though the matrix representation of F from the previous section seems
the most natural since the indexing corresponds to the natural indexing of
(hn)n>0, one can see that the description of the commutant of F is a bit cum-
bersome, and one might argue, not all that useful. In this section, we give
another matrix representation of F that yields a more useful description of
{F}

0. To begin, decompose L
2(R) into the closed linear span

L
2(R) =

_
{h0, h4, h8, . . .}�

_
{h1, h5, h9, . . .}�

_
{h2, h6, h10, . . .}�

_
{h3, h7, h11, . . .}.

Note that
_

{h0, h4, h8, . . .} = ker(F � I)
_

{h1, h5, h9, . . .} = ker(F � (�i)I)

-------- I_ 
I 

7-
1 

________ _j_ 
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_
{h2, h6, h10, . . .} = ker(F � (�1)I)

_
{h3, h7, h11, . . .} = ker(F � iI)

and these eigenspaces are orthogonal. Then we can rewrite the matrix rep-
resentation of F so that

F =

2

6666664

I

�iI

�I

iI

3

7777775
(4.4.1)

where each jI for j = ±1,±i is an infinite diagonal matrix with j on the
main diagonal, omitting zeros. For f 2 L

2(R), define

f = f1 � f�i � f�1 � f1,

where fj 2 ker(F � jI) for j = ±1,±i. We now have

Ff =

2

6666664

I

�iI

�I

iI

3

7777775

2

6666664

f1

f�i

f�1

fi

3

7777775
=

2

6666664

f1

�if�i

�f�1

ifi

3

7777775

Then for T 2 B(L2(R)),

Tf =

2

6666664

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

3

7777775

2

6666664

f1

f�i

f�1

fi

3

7777775
.

One can see from the above equation that each Tjk is a linear transforma-
tion such that Tjk : ker(F � (�i)kI) ! ker(F � (�i)jI). We can now
characterize the elements of {F}

0 using this representation of F .
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Theorem 4.4.2. Let T : L2(R) ! L
2(R) be some bounded linear operator. Then

the matrix representation T commutes with F , both represented according to equa-
tion (4.4.1), if and only if

T =

2

6666664

T0

T1

T2

T3

3

7777775
,

where each Tj 2 B(`2) for 0 6 j 6 3.

This proof is carried out in much the same way as the proof for The-
orem 4.3.1; however, one can also achieve this result by noting that this
new definition of F is simply a new notation, gathering all terms in a given
eigenspace together. Then re-notating T 2 {F}

0 in the same way will yield
the matrix given in the above theorem. We will use this notation through-
out the remainder of this thesis unless otherwise noted.

If not already apparent, the convenience of this notation will be fur-
ther demonstrated in the following chapters on square roots and invariant
subspaces of F .

We now return to some of the examples in Section 4.3 and express them
in their new notation.

Example 4.4.3. The transformation of Examples 4.3.3 and 4.3.4 are analo-
gous to the way in which we renotate F , as these examples involve diago-
nal matrices. For a polynomial p(z) = a0+a1z+a2z

2+ . . .+anz
n, we have

that

T =

2

6666664

P1

P�i

P�1

Pi

3

7777775

where each Pj is an infinite diagonal matrix with p(j) on the main diagonal.
Additionally, for (T 0

f)(x) = f(�x), we have

T
0 =

2

6666664

I

�I

I

�I

3

7777775
.
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Example 4.4.4. We now return to Example 4.3.5 involving the Hilbert ma-
trix. For H⌦ ⇤ 2 {F}

0, we have
2

6666664

�1H

�2H

�3H

�4H

3

7777775

in the new notation. Note that this is exactly ⇤ ⌦ H. For the Toeplitz and
Cesàro operators, the result from the examples in the new notation is also
given by ⇤⌦T↵ and ⇤⌦C, respectively.

4.5. The Fourier Cosine and Sine Transforms

We now turn our attention to two forms of the Fourier transform: the
Fourier cosine transform and Fourier sine transform.

Definition 4.5.1. The Fourier cosine transform is

Fcos =
1

2
(F + F

⇤).

Similarly, the Fourier sine transform is

Fsin =
1

2i
(F � F

⇤).

To find the matrix representation of these operators, we will again ob-
serve how they act on the basis (hn)n>0. Let us begin with Fcos. We have

Fcosh4k =
1

2
(F + F

⇤)h4k =
1

2
(Fh4k + F

⇤
h4k) = h4k

for k 2 N0. A similar computation shows

Fcosh4k+1 = 0

Fcosh4k+2 = �h4k+2

Fcosh4k+3 = 0

so that the eigenspaces of Fcos are ker(F�I) and ker(F+I), where ker(Fcos�

I) =
W
{h4k : k 2 No} and ker(Fcos + I) =

W
{h4k+2 : k 2 N0}. Then the

matrix representation of Fcos is

Fcos =

2

6666664

I

0

�I

0

3

7777775
.
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One can go through similar computations to show that the eigenspaces for
Fsin are ker(F + iI) and ker(F � iI) so that the matrix representation is

Fsin =

2

6666664

0

�I

0

I

3

7777775
.

As with the Fourier transform, we wish to characterize the commutant
of Fsin and Fcos. This is demonstrated in the following theorem.

Theorem 4.5.2.

{Fcos}
0 =

8
>>>>>><

>>>>>>:

2

6666664

T00

T11 T13

T22

T31 T33

3

7777775

9
>>>>>>=

>>>>>>;

and

{Fsin}
0 =

8
>>>>>><

>>>>>>:

2

6666664

T00 T02

T11

T20 T22

T33

3

7777775

9
>>>>>>=

>>>>>>;

such that Tjk 2 B(`2) where Tjk : ker(F�(�i)kI) ! ker(F�(�i)jI), omitting
zeros.

Proof. We will begin with {Fcos}
0. Let T : L2(R) ! L

2(R) be represented
by the (second) matrix representation with respect to the decomposition of
L
2(R) as ker(F � I)� ker(F + I)� ker(F � iI)� ker(F + iI),

T =

2

6666664

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

3

7777775
,



4.5. The Fourier Cosine and Sine Transforms 45

where each Tjk is a bounded operator on `
2. Suppose TFcos = FcosT . Then,

in terms of block matrix multiplication,

TFcos =

2

6666664

T00 T01 T02 T03

T10 T11 T12 T13

T20 T21 T22 T23

T30 T31 T32 T33

3

7777775

2

6666664

I

0

�I

0

3

7777775

=

2

6666664

T00 0 �T02 0

T10 0 �T12 0

T20 0 �T22 0

T30 0 �T32 0

3

7777775
.

Similarly,

FcosT =

2

6666664

T00 T01 T02 T03

0 0 0 0

�T20 �T21 �T22 �T23

0 0 0 0

3

7777775
.

We see here that all but the diagonal elements and the T13, T11, T32, and
T33 are non-zero. Thus,

T =

2

6666664

T00

T11 T13

T22

T31 T33

3

7777775
,

omitting zeros.
Suppose

T =

2

6666664

T00

T11 T13

T22

T31 T33

3

7777775
,
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omitting zeros. Observe

TFcos =

2

6666664

T00

T11 T13

T22

T31 T33

3

7777775

2

6666664

I

0

�I

0

3

7777775

=

2

6666664

T00

0

�T22

0

3

7777775

=

2

6666664

I

0

�I

0

3

7777775

2

6666664

T00

T11 T13

T22

T31 T33

3

7777775

= FcosT.

Thus, T 2 {Fcos}
0. A similar proof will show {Fsin}

0 is as described. ⇤

We will revisit the Fourier cosine and sine transforms in Chapter 6
when discussing their relative invariant subspaces.

4.6. von Neumann’s Double Commutant Theorem

We have characterized {F}
0; what about {F}

00, {F}
000, {F}

0000, etc.? Thank-
fully, this process terminates (quickly) via the double commutant theorem.

First, let us mention that {F}
000 = {F}

0, {F}
0000 = {F}

00, etc. The proof
of this claim will come after we have determined {F}

00.
We now state von Neumann’s double commutant theorem, and in a

moment we will prove it in the special case of the Fourier transform. Note
that all matrix representations of operators will be in the notation of Section
4.4.

Theorem 4.6.1 (von Neumann’s Double Commutant Theorem [18]). Let A
denote a subset of B(H) such that A is closed under addition, scalar multiplication,
operator composition, adjoints, and contains the identity operator. Then

A
00 = {T 2 B(H) : TR = RT 8R 2 {A}

0
}

is equal to the strong operator closure of A.
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The set A00 is known as the double commutant of A. We will not get into
the meaning of the term “strong operator closure” since we will not need it
for the discussion below.

In the following, we formulate and prove a version of the double com-
mutant theorem for the Fourier transform. Consider the set

A(F) := {a0I + a1F + a2F
2 + a3F

3 : aj 2 C, 0 6 j 6 3}.

Using Corollary 3.2.4 and the fact that FF
⇤ = F

⇤
F = I , it follows that

A(F) is closed under addition, scalar multiplication, operator composition,
and adjoints. Since A(F) is a finite dimensional vector space, it is also
closed in the strong operator topology.

Before stating the double commutant of F , we establish the following
helpful lemma.

Lemma 4.6.2. Let T 2 B(`2). If TA = AT for all A 2 B(`2), then T = aI for
some a 2 C.

Proof. Let T 2 B(`2) for T = [tij ]1i,j=1. Suppose TA = AT for all A 2

B(`2). Then T commutes with

A =

2

6664

1 0 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
.

We then have

TA = AT

2

6664

t11 t12 t13 . . .

t21 t22 t23 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

2

6664

1 0 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
=

2

6664

1 0 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

2

6664

t11 t12 t13 . . .

t21 t22 t23 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

2

6664

t11 0 0 . . .

t21 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
=

2

6664

t11 t12 t13 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

so that all of t1j , tj1 = 0 for j > 1. Similarly, we have that T commutes with

A =

2

6664

0 1 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
.
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Following the computation above, we arrive at
2

6666664

0 0 0 . . .

0 t22 0 . . .

0 t32 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775
=

2

6666664

0 0 0 . . .

0 t22 t23 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7777775

so that all of tj2, t2j = 0 for j > 2. Continuing for more basis vectors (en)
shows that the nonzero entries of T lie on the main diagonal, such that

T =

2

6664

t1 0 0 . . .

0 t2 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

We now consider

A =

2

6664

0 1 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
.

For TA = AT, we arrive at
2

6664

0 t1 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775
=

2

6664

0 t2 0 . . .

0 0 0 . . .

.

.

.
.
.
.

.

.

.
. . .

3

7775

so that t1 = t2. For

A =

2

6664

0 0 1 0 . . .

0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

7775
,

we have
2

6664

0 0 t1 0 . . .

0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

7775
=

2

6664

0 0 t3 0 . . .

0 0 0 0 . . .

.

.

.
.
.
.

.

.

.
.
.
.

. . .

3

7775
,

so that t1 = t2 = t3. Continuing by shifting e1 one position to the right, we
find that all diagonal entries are equal. Then T = aI for some a 2 C. ⇤
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Theorem 4.6.3 (Double Commutant of F). {F}
00 = A(F).

Proof. By the discussion at the beginning of this chapter, {F}
0 is a ⇤-closed

algebra of operators. Additionally, we have that in block matrix form with
respect to the decomposition of L2(R) into the four basic eigenspaces for F ,
as before, an arbitrary element of A(F) is equal to the sum of

a0I =

2

6666664

a0I

a0I

a0I

a0I

3

7777775

a1F =

2

6666664

a1I

�ia1I

�a1I

ia1I

3

7777775

a2F
2 =

2

6666664

a2I

�a2I

a2I

�a2I

3

7777775

and

a3F
3 =

2

6666664

a3I

ia3I

�a3I

�ia3I

3

7777775
.

We now want to show that A(F) is the set of matrices of the form

A(F) =

2

6666664

c0I

c1I

c2I

c3I

3

7777775
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for arbitrary c0, c1, c2, c3 2 C. Equating the 5 above equations yields the
4⇥ 4 system

c0 = a0 + a1 + a2 + a3

c1 = a0 � ia1 � a2 + ia3

c2 = a0 � a1 + a2 � a3

c3 = a0 + ia1 � a2 � ia3

which we can write in matrix representation by

2

6666664

1 1 1 1

1 �i �1 i

1 �1 1 �1

1 i �1 �i

3

7777775

2

6666664

a0

a1

a2

a3

3

7777775
=

2

6666664

c0

c1

c2

c3

3

7777775
.

A quick computation shows the determinant of the above complex matrix
is 16i, and thus this system has a unique solution for every c0, c1, c2, c3.

We claim that A(F)0 = {F}
0. To see this, first let T 2 {F}

0. Then

T =

2

6666664

T1

T2

T3

T4

3

7777775

by Theorem 4.4.2. Then T 2 A(F)0 (since every element of A(F) is a linear
combination of powers of F), so {F}

0
✓ A(F)0. Now let T 2 A(F)0. Then

TF = FT as F 2 A(F) so T 2 {F}
0. Thus A(F)0 ✓ {F}

0 and we conclude
A(F)0 = {F}

0.
We now want to examine {F}

00. Let T 2 {F}
00. Then, since F 2 {F}

0, T
commutes with F and it follows from Theorem 4.4.2 that T has the form

T =

2

6666664

T1

T2

T3

T4

3

7777775
.
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However, we also have that T commutes with all operators of the form

2

6666664

A

B

C

D

3

7777775

by Theorem 4.4.2 and so T1A = AT1 for all A 2 B(L2(R)). Thus, it must
be the case that T1 = aI for some a 2 C by Lemma 4.6.2. A similar compu-
tation shows this result holds for all Tj for 1 6 j 6 4. In other words,

T =

2

6666664

aI

bI

cI

dI

3

7777775

for some a, b, c, d 2 C.
We claim that {F}

00 = A(F). To show this, let T 2 {F}
00. Then for T as

described above, we have T 2 A(F). Conversely, suppose that T 2 A(F).
Then

T =

2

6666664

aI

bI

cI

dI

3

7777775

for a, b, c, d 2 C. If S 2 {F}
0, then by Theorem 4.4.2

S =

2

6666664

A

B

C

D

3

7777775

and thus TS = ST via block matrix multiplication. Then T 2 {F}
00. Thus,

{F}
00 = A(F) by Theorem 4.6.1. ⇤
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We can now prove that {F}
000 = {F}

0, and thus {F}
0000 = {F}

00, etc. To
see this, let T 2 {F}

0. Then

T =

2

6666664

T1

T2

T3

T4

3

7777775

by Theorem 4.4.2. We wish to show that T 2 {F}
000. In other words, we

must show TA = AT for all A 2 {F}
00. Let A 2 {F}

00. Then by Theorem
4.6.3, we have that the matrix representation of A has the form

A =
3X

j=0

cj

2

6666664

I

�iI

�I

iI

3

7777775

j

.

Then

TA =

2

6666664

T1

T2

T3

T4

3

7777775

2

6666664

I

�iI

�I

iI

3

7777775

j

= AT

as diagonal matrices commute. Then T 2 {F}
000. Now, suppose T 2 {F}

000.
Then TA = AT for all A 2 {F}

00. However, we have that F 2 {F}
00, so

that TF = FT . Thus, T 2 {F}
0. We can now conclude {F}

000 = {F}
0. Then

{F}
0000 will contain all bounded operators that commute with {F}

000 = {F}
0,

which is exactly {F}
00. Thus, {F}

0000 = {F}
00 = A(F).



Chapter 5

Square Roots

We will now use our description of {F}
0 as in Section 4.4 to discuss the

square roots of F .

5.1. Main Theorem

We begin with a definition of the set of square roots of the Fourier trans-
form.

Definition 5.1.1.
p
F = {T 2 B(L2(R)) : T 2 = F}.

Of course, as it stands now, this set may be empty. We will establish
that this is far from the truth. We can use our knowledge of the commutant
of F to claim the following.

Proposition 5.1.2. If T 2
p
F , then T 2 {F}

0.

Proof. Let T 2
p
F . Then TF = TT

2 = T
2
T = FT . Thus, T 2 {F}

0. ⇤

An obvious example of an element of
p
F is given below. Recall that

we represent F with respect to the decomposition of L2(R) into the four
eigenspaces of F .

Example 5.1.3. If we represent the Fourier transform as

F =

2

6666664

I

�iI

�I

iI

3

7777775
,

53-
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then

T =

2

6666664

±I

±
p
�iI

±iI

±
p
iI

3

7777775

are elements of
p
F .

To produce a broader range of examples of square roots, we remind the
reader of two important types of operators. For A 2 B(H), A is involutary
if A2 = I . Additionally, for P 2 B(H), P is idempotent if P 2 = P . This leads
us to the following theorem.

Theorem 5.1.4. A 2 B(H) is involutary if and only if A = ±(I � 2P ) for some
idempotent P 2 B(H).

Proof. Let P be a bounded linear operator such that P 2 = P . Suppose A is
a linear operator such that A = I � 2P . Observe that

A
2 = (I � 2P )2

= I
2
� 4P + 4P 2

= I � 4P + 4P

= I.

Thus, A is involutary.
Suppose A = �I + 2P . Then

A
2 = (�I + 2P )2

= I
2
� 4P + 4P 2

= I � 4P + 4P

= I.

Thus, A is involutary.
For the other direction, suppose A

2 = I . Let P = 1
2(I �A). Then

P
2 =

1

4
(I � 2A+A

2) =
1

4
(2I � 2A) =

1

2
(I �A) = P,

thus P is idempotent and A = I � 2P . Let P = 1
2(A+ I). Then

P
2 =

1

4
(A2 + 2A+ I

2) =
1

4
(2A+ 2I) =

1

2
(A+ I) = P,

thus P is idempotent and A = �I + 2P . ⇤

In the matrix representation of F , we claim the following theorem.
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Theorem 5.1.5 (Square Roots of F).

p

F =

8
>>>>>><

>>>>>>:

2

6666664

T1
p
iT2

iT3
p
�iT4

3

7777775

9
>>>>>>=

>>>>>>;

such that T1,T2,T3,T4 2 B(`2) are involutary.

Proof. Let

T =

2

6666664

T1
p
iT2

iT3
p
�iT4

3

7777775
.

By block multiplication, we have

T
2 =

2

6666664

T
2
1

�iT
2
2

�T
2
3

iT
2
4

3

7777775
=

2

6666664

I

�iI

�I

iI

3

7777775
= F .

Thus, T 2
p
F .

Suppose T 2
p
F . Then T 2 {F}

0 by Proposition 5.1.2 and has the form

T =

2

6666664

A

B

C

D

3

7777775

by Theorem 4.4.2. Squaring the above matrix yields

T
2 =

2

6666664

A
2

B
2

C
2

D
2

3

7777775
=

2

6666664

I

�iI

�I

iI

3

7777775
.
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Then

T =

2

6666664

A
0

p
�iB

0

iC
0

p
iD

0

3

7777775

where A02
, B

02
, C

02
, D

02 = I . Matrices with this property are involutary, and
the theorem follows. ⇤

The remainder of this section contains a few interesting examples as a
result of Theorem 5.1.5.

Example 5.1.6. First, note that for all z 2 C,
2

40 z

z 0

3

5

2

40 z

z 0

3

5 =

2

4z
2 0

0 z
2

3

5 .

Then

T =

2

6666666666666666664

0 I

I 0

0
p
�iI

p
�iI 0

0 iI

iI 0

0
p
iI

p
iI 0

3

7777777777777777775

satisfies T2 = F .

Example 5.1.7. An easy calculation shows that

2

4a b

c �a

3

5
2

= I
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ifand
only

if
a
2
+

b
c
=

1.Then

T
=

266666666666666666666664

12
I

14
I

3
I

�
12
I

p
�
i

2
I

p
�
i

4
I

3
p
�
i
I

�

p
�
i

2
I

i2
I

i4
I

3
i
I

�
i2
I

p
i2
I

p
i4
I

3
p
i
I

�

p
i2
I 377777777777777777777775

satisfies
T

2
=

F
.
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e
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r
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.
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Definition 5.2.1. For the Hermite polynomials (Hn)n>0 defined in Chapter
2, define the Mehler kernel

1X

n=0

⇢
n
n!

(4⇡)n
Hn(s)Hn(t).

We are being a bit vague about the allowable range of ⇢. The following
theorem will make this range clear.

Theorem 5.2.2 (Mehler 1866).
1X

n=0

e
�⇡(x2+y2)

n!

(4⇡)n
p
⇡

⇢
n
Hn(x)Hn(y) =

1p
⇡(1� ⇢2)

e

⇡(4⇢xy�(x2+y2)(1+⇢2))

1�⇢2

for |⇢| 6 1, ⇢ 6= 1,�1.

Proof. The following proof is taken from G.H. Hardy [19]. To begin, we
will invoke Proposition 3.1.1 (ii) to obtain

e
�2⇡x2

=
1
p
⇡

Z 1

�1
e
�u2+2

p
2⇡ixu

du.(5.2.3)

Differentiating this equation n times gives the known result

Hn(x) =
(�2

p
2⇡i)ne2⇡x

2

p
⇡n!

Z 1

�1
u
n
e
�u2+2

p
2⇡ixu

du.

Substituting this expression for Hn into the left-hand side of Theorem 5.2.2
shows that

1X

n=0

e
�⇡(x2+y2)

n!

(4⇡)n
p
⇡

⇢
n
Hn(x)Hn(y)

is equal to

e
⇡(x2+y2)

⇡3/2

Z 1

�1

Z 1

�1

" 1X

n=0

(�2⇢uv)n

n!

#
e
�u2+2

p
2⇡ixu�v2+2

p
2⇡iyv

dudv.

Using the exponential form of the infinite sum gives that the above is equal
to

e
⇡(x2+y2)

⇡3/2

Z 1

�1

Z 1

�1
e
�u2+2

p
2⇡ixu�2⇢uv�v2+2

p
2⇡iyv

dudv.(5.2.4)

Performing the integral in u first, we have
Z 1

�1
e
�u2+2

p
2⇡ixu�2⇢uv

du =

Z 1

�1
e
�u2+2

p
2⇡i(x� 1p

2⇡i
⇢v)u

du

=
p
⇡e

�2⇡(x� 1p
2⇡i

⇢v)2

=
p
⇡e

�2⇡(x2+i
q

2
⇡x⇢v� 1

2⇡ ⇢2v2)



5.2. Mehler’s Formula 59

by equation (5.2.3). Substituting this into equation (5.2.4) and simplifying
gives

e
⇡(y2�x2)

⇡

Z 1

�1
e
�(1�⇢2)v2+2

p
2⇡i(y�x⇢)v

dv.

We will solve this integral using substitution. Let s2 = (1� ⇢
2)v2 such that

ds =
p

1� ⇢2dv. We then have

e
⇡(y2�x2)

⇡

p
1� ⇢2

Z 1

�1
e
�s2+2

p
2⇡i

⇣
y�x⇢p
1�⇢2

⌘
s
dv =

e
⇡(y2�x2)

p
⇡(1� ⇢2)

e
�2⇡

⇣
y�x⇢p
1�⇢2

⌘2

after another application of equation (5.2.3). Simplifying the above expo-
nentials gives

1p
⇡(1� ⇢2)

e

⇡(4⇢xy�(x2+y2)(1+⇢2))

1�⇢2

and the theorem follows. ⇤

Simplification of Theorem 5.2.2 gives an expression in terms of Defini-
tion 5.2.1 so that

1X

n=0

⇢
n
n!

(4⇡)n
Hn(x)Hn(y) =

1p
1� ⇢2

e

⇡(4xy⇢�2(x2+y2)⇢2)

1�⇢2 .

Recall

hn(x) =

✓
21/4

p
n!

(4⇡)n/2

◆
Hn(x)e

�⇡x2
.

Then, expressing Definition 5.2.1 in terms of the Hermite functions yields
1X

n=0

⇢
n
n!

(4⇡)n
Hn(s)Hn(t) =

e
⇡(s2+t2)

p
2

1X

n=0

⇢
n
hn(s)hn(t).

By Theorem 5.2.2, we have

e
⇡(s2+t2)

p
2

1X

n=0

⇢
n
hn(s)hn(t) =

1p
1� ⇢2

e

⇡(4st⇢�2(s2+t2)⇢2)

1�⇢2

1X

n=0

⇢
n
hn(s)hn(t) =

p
2p

1� ⇢2
e
�⇡(s2+t2)

e

⇡(4st⇢�2(s2+t2)⇢2)

1�⇢2 .

Setting ⇢ = �i yields
1X

n=0

(�i)nhn(s)hn(t) = e
�⇡(s2+t2)

e
⇡(�4ist+2(s2+t2))

2 = e
�2⇡ist

.(5.2.5)

The reader may recognize this as the Fourier kernel, as expected.
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We can then write
1X

n=0

⇢
n
hf, hnihn =

p
2p

1� ⇢2

Z 1

�1
e

⇡(4xy⇢�2(x2+y2)⇢2)

1�⇢2 e
�⇡(x2+y2)

f(y)dy.

Recall that the Fourier transform of a function f 2 L
2(R) can be written

in its eigenvalue expansion as

Ff =
1X

n=0

(�i)nhf, hnihn.

Expressing the inner product in its integral form shows

Ff =

Z 1

�1

" 1X

n=0

(�i)nhn(x)hn(y)

#
f(y)dy

=

Z 1

�1
e
�2⇡ixy

f(y)dy

from equation (5.2.5), as expected.
One natural square root is ⇢ =

p
�i = e

�i⇡4 such that
1X

n=0

e
�in⇡

4 hn(x)

Z 1

�1
f(y)hn(y)dy

is equal to
p
2

p
1 + i

Z 1

�1
e

⇡(4xye�i(⇡/4)+2(x2+y2)i)
1+i e

�⇡(x2+y2)
f(y)dy.

The previous line is an integral expression for a square root of F . Techni-
cally, this integral is not defined for all f 2 L

2(R), but certainely for f 2 S .
This integral expression of a square root was given in its matrix representa-
tion at the beginning of this chapter. This natural square root is simply the
square root of the entries in

F =

2

66666666664

1

�i

�1

i

. . .

3

77777777775

,

where i = e
i⇡2 expressed in polar form. This is exactly the result of Example

5.1.3 with all positive entries on the diagonal (note that this example was
written in the notation of Chapter 3).

I 

--------- I 



Chapter 6

Invariant Subspaces

The invariant subspace problem, first posed in the mid-1900s by von Neu-
mann, is an unresolved problem which asks the following: given a T 2

B(H) where dim(H) > 2, does there exists a (closed) subspace M of H

where M 6= {0} and M 6= H such that TM ✓ M? For a finite dimen-
sional Hilbert space, we know that for any T 2 B(H), the eigenspace of T ,
E� = {x 2 H : Tx = �x} is an invariant subspace. An advanced version
of the spectral theorem gives us that, for an infinite dimensional Hilbert
space, unitary operators always have invariant subspaces. We thus pose
this question of the Fourier transform.

To show the complexity of the invariant subspace problem, Everett
Bishop posed a class of bounded operators on L

2[0, 1] which are possible
candidates for operators without non-trivial invariant subspaces. Consider
T↵ : L2[0, 1] ! L

2[0, 1] defined by

(T↵f)(x) = xf({x+ ↵})

for ↵ 2 R. In the above, {x + ↵} is the fractional part of x + ↵. Various
authors [2, 4, 9] were able to show that for many ↵, T↵ has non-trivial in-
variant subspaces. For ↵ 2 Q, Parrott [11] characterized all of the invariant
subspaces of T↵. For certain “highly irrational” ↵, it is unknown whether
T↵ has non-trivial invariant subspaces.

Throughout this chapter we will be dealing with subspaces of L2(R).
These are vector subspaces of L2(R) that are also topologically closed. In
this chapter we are faced with the opposite of the Bishop problem, where
the invariant subspaces seem to be sparse. On the other hand, the Fourier
transform has a very rich class of invariant subspaces, and we wish to de-
scribe them all.

61-
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6.1. Basic Facts

We begin with a definition of an invariant subspace of the Fourier trans-
form.

Definition 6.1.1. A (closed) subspace M ✓ L
2(R) is invariant for F if FM ✓

M .

Example 6.1.2. Recall the Hermite functions (hn)n>0 defined in Chapter 2.
Set

MA = {f 2 L
2(R) : hf, hni = 08n 2 A}

where A ✓ N0.
We will first show that MA is closed. Suppose (fk)k>0 is a Cauchy se-

quence in MA. Since MA ✓ L
2(R) and L

2(R) is a Hilbert space, then there
exists some f 2 L

2(R) such that fk ! f . We will now show f 2 MA.
Observe that for every n 2 A,

hf, hni = hf, hni � hfk, hni

= hf � fk, hni.

Then, by the Cauchy-Schwarz inequality,

|hf � fk, hni| 6 kf � fkk · 1.

Note that kf � fkk ! 0, so hf, hni = 0 for all n 2 A, so MA is closed.
Next we prove that MA is an invariant subspace for F . For any f 2 MA,

the fact that F is unitary gives

hf, hni = hFf,Fhni

= hFf, (�i)nhni

= i
n
hFf, hni.

Then hFf, hni = 0 for all n 2 A (since hf, hni = 0), and FMA ✓ MA. Then
MA is an invariant subspace.

6.2. Invariant versus Reducing

A somewhat stronger criteria of a subspace is called a reducing subspace,
defined below.

Definition 6.2.1. A (closed) subspace M ✓ L
2(R) is reducing for F if FM ✓

M and F
⇤
M ✓ M .

Note how this definition is equivalent to FM = M as F is a unitary
operator.
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Example 6.2.2. Let’s revisit the subspace MA as defined in Example 6.1.2.
Let f 2 MA be such that hf, hni = 0 for all n 2 A. Observe that

hf, hni = hF
⇤
f,F

⇤
hni

= hF
⇤
f, (i)nhni

= (�i)nhF⇤
f, hni.

Then hF
⇤
f, hni = 0 and hence F

⇤
f 2 MA. Thus F

⇤
MA ✓ MA. We have

previously shown that FMA ✓ MA, therefore MA is a reducing subspace
of F .

The following two theorems show that it is not entirely difficult to find
reducing subspaces. To produce more (in fact, all of them), we must first
define an orthogonal projection.

Definition 6.2.3. A bounded operator P on L
2(R) is an orthogonal projection

if P 2 = P and P
⇤ = P .

This is the infinite dimensional analog of a projection matrix in linear
algebra defined the same way. The following result is standard in Hilbert
space theory, but we give a proof anyway.

Proposition 6.2.4. If M is a closed subspace of L2(R), then there exists an or-
thogonal projection P : L2(R) ! L

2(R) such that M = PL
2(R).

Proof. Let (mj)j>0 be an orthonormal basis for M . For f 2 L
2(R), define

Pf =
1X

j=0

hf,mjimj .

This will define a bounded operator on L
2(R). Moreover, for any mk, we

have

Pmk =
1X

j=0

hmk,mjimj = mk.

Observe that

P (Pf) = P (
1X

j=0

hf,mjimj) =
1X

j=0

hf,mjiPmj =
1X

j=0

hf,mjimj = Pf.

Thus, P 2 = P . Additionally,

hPf, gi = h

1X

j=0

hf,mjimj , gi

=
1X

j=0

hf,mjihmj , gi
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and

hf, Pgi = hf,

1X

j=0

hg,mjimji

=
1X

j=0

hmj , gihf,mji.

Thus, P ⇤ = P . Then P is a projection that takes a function in L
2(R) onto

the subspace M so that M = PL
2(R). ⇤

This next result relates reducing subspaces with projections onto those
subspaces.

Theorem 6.2.5. Let M be a subspace of L2(R) and P be the orthogonal projection
of L2(R) onto M . Then the following are equivalent:

(i) FM = M

(ii) M is a reducing subspace of F
(iii) FP = PF

Proof. The proof for (i) () (ii) is given by Definition 6.2.1 and the fact
that F is a unitary operator. We will now show (i) ) (iii). Suppose FM =
M . Let f 2 M . Then

FPf = Ff.

Note that Ff 2 M by assumption. Then we also have

PFf = Ff,

and so PF = FP for f 2 M . Let f 2 M
?. Then Ff 2 M

? (since F is
unitary) and since PM

? = 0,

PFf = 0 = FPf.

Thus, PF = FP for f 2 L
2(R).

We will now show (iii) ) (i). Suppose PF = FP . Let f 2 M . Then

Ff = FPf = P (Ff),

so Ff 2 M and FM ✓ M . Additionally, operating on both sides of FP =
PF by F

⇤ gives PF
⇤ = F

⇤
P . Then following the same argument as above,

we can conclude that F⇤
M ✓ M . Then M ✓ FM , and we have that FM =

M . ⇤

Theorem 6.2.6. Every invariant subspace of F is also a reducing subspace.
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Proof. Suppose FM ✓ M . Let f 2 M . Then f = f1 + f�i + f�1 + fi where
each fj 2 ker(F � jI). Observe that

F
0
f = f1 + f�i + f�1 + fi 2 M

Ff = f1 � if�i � f�1 + ifi 2 M

F
2
f = f1 � f�i + f�1 � fi 2 M

F
3
f = f1 + if�i � f�1 � ifi 2 M.

Then, taking linear combinations of these equations gives

(F0 + F + F
2 + F

3)f = 4f1 2 M

(F0 + iF � F
2
� iF

3)f = 4f�i 2 M

(F0
� F + F

2
� F

3)f = 4f�1 2 M

(F0
� iF � F

2 + iF
3)f = 4fi 2 M.

Thus, f1, f�i, f�1, fi 2 M . Observe

F
⇤
f = f1 + if�i � f�1 � ifi 2 M.

Therefore F
⇤
M ✓ M and M is a reducing subspace for F . ⇤

Theorem 6.2.6 is not a general fact for unitary operators. Consider the
following example.

Example 6.2.7. This example will be of a unitary operator with an invariant
but not reducing subspace to demonstrate the significance of Theorem 6.2.6.
Let M : L2( d✓2⇡ ) ! L

2( d✓2⇡ ) be defined by (Mf)(ei✓) = e
i✓
f(ei✓) for all f 2

L
2( d✓2⇡ ). We will first show that M is unitary. To begin, note (M⇤

f)(ei✓) =
e
�i✓

f(ei✓). Indeed, bserve

hMf, gi =

Z 2⇡

0
e
i✓
f(ei✓)g(ei✓)

d✓

2⇡

=

Z 2⇡

0
f(ei✓)e�i✓g(ei✓)

d✓

2⇡

= hf, e
�i✓

gi

= hf,M
⇤
gi.

We also have

M
⇤(Mf) = M

⇤(ei✓f) = e
�i✓

e
i✓
f = f

and
M(M⇤

f) = M(e�i✓
f) = e

i✓
e
�i✓

f = f,

thus M is unitary.

Consider the subspace H = {f 2 L
2( d✓2⇡ ) : f =

P1
n=0

bf(n)ein✓}, the set
of functions in L

2( d✓2⇡ ) where all negative Fourier coefficients are 0. One can



66 6. Invariant Subspaces

see that H is a linear subspace of L2( d✓2⇡ ) and a revisiting of Example 6.1.2
will show that H is topologically closed. Applying M to H yields

MH = {f 2 L
2
⇣
d✓

2⇡

⌘
: f =

1X

n=0

bf(n)ei(n+1)✓
}.

From this equation, one can see that M shifts all Fourier coefficients of f one
position in the positive n direction. Thus MH ✓ H , as all negative Fourier
coefficients remain 0, and H is an invariant subspace of M . However,

M
⇤
H = {f 2 L

2
⇣
d✓

2⇡

⌘
: f =

1X

n=0

bf(n)ei(n�1)✓
}.

Here, we see that M⇤ shifts all Fourier coefficients of f one position in the
negative n direction, so that bf(0) is shifted to bf(�1). Thus, M⇤

H * H as it
is possible that bf(�1) is nonzero. Therefore, H is not a reducing subspace.

The following theorem allows us to completely characterize the invari-
ant (and consequently the reducing) subspaces of the Fourier transform.

Theorem 6.2.8. For a closed subspace M of L2(R), the following are equivalent:

(i) M is invariant for F
(ii) M is reducing for F

(iii) M = M1 � M�i � M�1 � Mi where each Mz for z = ±1,±i is a closed
subspace of ker(F � zI).

We remind the reader that (hn)1n=0 is the Hermite basis for L2(R).

Proof. The proof of (i) () (ii) was given in the proof of Theorem 6.2.6
and by Definition 6.2.1.

We will now show (iii) ) (ii). Suppose M = M1 �M�i �M�1 �Mi

where each Mz for z = ±1,±i are subspaces of ker(F � zI). Let (gj)j>1 be
an orthonormal basis for M1. Then

gj =
1X

i=0

cijh4i.

Observe

Fgj =
1X

i=0

cijFh4i

=
1X

i=0

cijh4i

= gj .
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Then for f 2 M1, f =
P1

j=0 ajgj and Ff 2 M . Thus F
��
M1

= IM1 where
IM1 is the indentity operator on M1. A similar computation can be done to
show F

��
M�i

= �iI , F
��
M�1

= �I , and F
��
Mi

= iI . Then FM = M and so
M is reducing for F .

We will now show (ii) ) (iii). Suppose M ✓ L
2(R) such that FM =

M . Then if P = PM is an orthonormal projection onto M , by Theorem 6.2.5
we have that PF = FP , and by Theorem 4.4.2

P =

2

6666664

A0

A1

A2

A3

3

7777775

where An for 0 6 n 6 3 are bounded operators on the respective ker(F �

(�i)nI). However, P
2 = P and P

⇤ = P implies that A
2
0 = A0, A

2
1 =

A1, A
2
2 = A2, and A

2
3 = A3, as well as A

⇤
0 = A0, A

⇤
1 = A1, A

⇤
2 = A2,

and A
⇤
3 = A3. Then An are orthogonal projections onto the subspaces

ker(F � (�i)nI), respectively. Moreover, each of these subspaces are or-
thogonal to one another. Then

M = PM = (A0 +A1 +A2 +A3)M

= A0M �A1M �A2M �A3M

= M1 �M�i �M�1 �Mi. ⇤

Note that if z = ±1,±i and w = ±1,±i such that z 6= w, then

ker(F � zI) ? ker(F � wI).

Thus, for f 2 ker(F � zI) and g 2 ker(F � wI), we have hf, gi = 0.
The novel approach described in Section 4.4 can be used here to pro-

vide a visual representation of the projection matrices necessary in Theo-
rem 6.2.5. Theorem 6.2.5 (iii) gives that P 2 {F}

0, so that we can invoke
Theorem 4.3.1 and the notation of Chapter 4.4 to arrive at

P =

2

6666664

P1

P�i

P�1

Pi

3

7777775

in its matrix representation, where each Pz for z = ±1,±i is a distinct pro-
jection onto the eigenspace of F corresponding to a given eigenvalue. This
makes the classification of the invariant subspaces for F given in Theorem
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6.2.8 (iii) much more intuitive. We can now see how PL
2(R) produces M

in the presented form.

6.3. The Fourier Cosine and Sine Transforms

We now revisit the Fourier cosine and sine transforms introduced in Chap-
ter 4.5. Recall

Fcos =

2

6666664

I

0

�I

0

3

7777775
and Fsin =

2

6666664

0

�I

0

I

3

7777775
.

We can immediately note that Fcos = F
⇤
cos and Fsin = F

⇤
sin, so that all in-

variant subspaces are also reducing automatically. This leads us to the fol-
lowing theorem.

Theorem 6.3.1. A (closed) subspace M ✓ L
2(R) is reducing for Fcos if and only

if
M = M1 �M�1 �N

where M1 is any closed subspace of ker(F � I), M�1 is any closed subspace of
ker(F+I), and N is any closed subspace of kerFcos = ker(F+ iI)�ker(F� iI).

Proof. Suppose M ✓ L
2(R) such that FcosM = M . Then if P = PM is an

orthogonal projection onto M , PFcos = FcosP by Theorem 6.2.5, and by
Theorem 4.5.2,

P =

2

6666664

A00

A11 A13

A22

A31 A33

3

7777775

where Ajk for 0 6 j, k 6 3 are bounded operators from ker(F � (�i)kI) !
ker(F � (�i)jI). However, P ⇤ = P and P

2 = P implies that

P =

2

6666664

A
⇤
00

A
⇤
11 A

⇤
31

A
⇤
22

A
⇤
13 A

⇤
33

3

7777775
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so that A31 = A
⇤
13, and

P =

2

6666664

A
2
00

A
2
11 +A13A

⇤
13 A11A13 +A13A33

A
2
22

A
⇤
13A11 +A33A

⇤
13 A

⇤
13A13 +A

2
33

3

7777775
.

We then have that A00 and A22 are orthogonal projections onto ker(F � I)
and ker(F + I), respectively. Additionally, we have

A11 = A
2
11 +A13A

⇤
13

A13 = A11A13 +A13A33

A
⇤
13 = A

⇤
13A11 +A33A

⇤
13

A33 = A
⇤
13A13 +A

2
33.

Consider the matrix

P
0 =

2

4A11 A13

A
⇤
13 A33

3

5 .

We have that (P0)⇤ = P
0 by previous results. Observe that

2

4A11 A13

A
⇤
13 A33

3

5
2

=

2

4 A
2
11 +A13A

⇤
13 A11A13 +A13A33

A
⇤
13A11 +A33A

⇤
13 A

⇤
13A13 +A

2
33

3

5 = P
0
.

Thus, P0 is an orthogonal projection onto ker(Fcos). Then

M = PM = (A00 +A22 + P
0)M

= A00M �A22M � P
0
M

= M1 �M�1 �N.

Suppose M = M1 �M�1 �N . Let (gj)j>1 be an orthonormal basis for
M1. Then

gj =
1X

i=0

cijh4i.

Observe that

Fcosgj =
1X

i=0

cijFcosh4i

=
1X

i=0

cijh4i

= gj .
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Then for f 2 M1, f =
P1

j=0 ajgj and Fcosf 2 M . Thus Fcos

��
M1

= IM1

where IM1 is the identity operator on M1. A similar computation can be
done to show Fcos

��
M�1

= IM�1 . Similarly, let (nj)n>0 be an orthonormal
basis for N ✓ ker(F + iI)� ker(F � iI). Then

nj =
1X

i=0

cijh4i+1 +
1X

i=0

c
0
ijh4i+3.

Observe that

Fcosnj =
1X

i=0

cijFcosh4i+1 +
1X

i=0

c
0
ijFcosh4i+3 = 0.

Then N ✓ ker(Fcos), and FcosM = M . Thus, M is reducing for Fcos. ⇤

Note that this description of an invariant subspace for Fcos is different
than that of F . In fact, there is a relationship between the two that immedi-
ately follows from Theorem 6.3.1.

Proposition 6.3.2. For any M ✓ L
2(R), if FM = M , then FcosM ✓ M .

Proof. Let M ✓ L
2(R) be a closed subspace. Suppose FM = M . Observe

FcosM =
1

2
(F + F

⇤)M = FM + F
⇤
M ✓ M,

thus M is invariant for Fcos by definition. ⇤

The following example demonstrates that the converse is not necessar-
ily true.

Example 6.3.3. Let M = span{h1 + h3} where h1 and h3 are the first and
third Hermite functions. Then

FcosM = {0} ✓ M,

thus M is invariant for Fcos. However, note that for (h1 + h3) 2 M ,

F(h1 + h3) = �ih1 + ih3 6= c(h1 + h3)

for any c 2 C. To show this, observe

h�ih1 + ih3, h3i = �i

hch1 + ch3, h3i = c

so that c = �i. However, �ih1+ ih3 6= �ih1� ih3. A similar result is found
for h�ih1 + ih3, h1i. Thus, M is invariant for Fcos but not F .

We can extend the claims given in this chapter to Fsin with the follow-
ing.
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Theorem 6.3.4. A (closed) subspace M ✓ L
2(R) is reducing for Fsin if and only

if
M = M�i �Mi �N

where M�i is any closed subspace of ker(F + iI), Mi is any closed subspace of
ker(F � iI), and N is any closed subspace of kerFsin = ker(F � I)� ker(F + I).

Proposition 6.3.5. For any M ✓ L
2(R), if FM = M , then FsinM ✓ M .

The proofs of the above two claims follow directly from the proofs of
Theorem 6.3.1 and Proposition 6.3.2.
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