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Abstract

Automated fact checking is a task in the domain of Natural Language Pro-

cessing that deals with the verification of claims using evidence. Fact checking is

becoming increasingly important as large amounts of human-generated informa-

tion accumulate online. In the recent past, our society has witnessed large-scale

spread of disinformation via the internet that has time and again led to noticeable

disruptions in the fabric of society. Fact-checking would help mitigate the spread

of disinformation by allowing large magnitudes of content to be automatically

evaluated for disinformation.

In this work, we construe and tackle multiple subtasks of fact checking using

labeled data from WikiFactCheck-English (Sathe et al., 2020), a dataset

of 124k triples consisting of a claim, context and an evidence document ex-

tracted from English Wikipedia articles and citations, as well as 34k manually

written claims that are refuted by the evidence documents. We provide sup-

port vector machine and logistic regression-based baselines, as well as attempt

state-of-the-art results using large pretrained transformer-based transfer learn-

ing approaches (specifically, BERT) that take our performance from a baseline

accuracy of 68% to about 78%. Furthermore, we adapt a novel semi-supervised

attention-based multiple-instance learning approach to learn item-level fact veri-

fication from document-level labeled data, leading to future possibilities in weakly

supervised learning of fact-checking models. We also demonstrate that transfer

learning from Natural Language Inference, a sentence-level inference task, leads to

the best overall transfer performance in a low-resource data constrained setting,

but no overall advantage given sufficient training data.

We demonstrate that claims often require and benefit from more than 1 sen-

tence to support them, and that BERT can learn to attend to multiple evidence

sentences to make the correct fact checking inference.
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Chapter 1

Introduction

Fact checking: motivation Fact checking is a problem under the domain of

Natural Language Processing (NLP) and Information Retrieval. Fact-checking is

a text-based problem, conceived as a classification task. Fact-checking is a pop-

ular task, given its applicability to some of the pressing issues faced by societies

with high digital penetration and access to the internet. In recent years, large so-

cial media platforms on the internet, as well as message boards and public-facing

information sources, have witnessed a proliferation of misinformation. Misinfor-

mation appears truthful, and is hard for even humans to identify. Misinformation

also tends to spread faster than truthful information, and can appear more be-

lievable at first glance (Vosoughi et al., 2018). This compounds the hardness of

the task for machines, which, thus far, have had limited success in the process-

ing of text involving realistic data requiring world knowledge and common-sense

reasoning.

Machine learning approaches to Fact checking Many researchers have worked

on various characterizations of the fact checking task. Typical approaches include

constructing a dataset based on fact and misinformation content, training clas-

sifiers on the data, and evaluating them. In the past, people have extracted

such datasets using human fact-checking websites, headlines and ledes of news

1



Chapter 1. Introduction 2

articles, hand-crafted text, and text extracted from large internet-based knowl-

edge bases including Wikipedia. Approaches include regression, support vector

machines, convolutional neural networks, recurrent neural networks, transformer

neural networks, and ensemble methods. In more recent approaches, like in any

NLP application, a representation of the input is obtained using an intermediate

network. This representation may be in the form of word embeddings, recurrent

encodings of entire sentences, as well as contextualized embeddings using convo-

lutional networks. These representations are further fed to classifiers, which may

range from regression to feedforward neural networks.

In recent years, we have seen the advent of large corpus-based training meth-

ods and newer model architectures, most noticeably, the transformer family of

architectures. These advancements enable taking advantage of vast amounts of

unsupervised text data obtained using the internet, via sources such as Wikipedia

and Common Crawl. Using these large corpora, researchers have demonstrated

that unsupervised or semi-supervised pretraining on unrelated tasks, can lead to

significant transfer improvements in general-purpose NLU in many downstream

tasks. Such methods have also shown large increases in performance on specific

applications, with large pretrained models now playing a key role in the pipelines

of many such applications. In general, the current state of the art in Natural

Language Understanding has come to be dominated by the practice of utilizing

large, unsupervised, pretrained language models finetuned to a specific domain.

1.1 Fact Checking Formalism

There are many varieties of the general problem of fact checking that came about

over the years, proposed by various researchers and organizations. Typically,

fact-checking involves verifying the truth value of a claim or a statement. This

verification may be done as a standalone task, i.e., on the basis of the structure
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of the claim itself (untruthful claims may exhibit certain patterns that are useful

for deceiving non-skeptical humans), or using an external knowledge base. The

verification may be also done in the context of a particular fact, or assertion, i.e.,

verification of the truthfulness of a claim assuming a certain other statement were

true.

In fact checking, as will be construed in the rest of this manuscript, a claim,

c is a textual string, usually consisting of one meaningful sentence or statement

making an assertion about something. Occasionally, the claim may be longer

than a single sentence, or simply a meaningful phrase, rather than a complete

sentence. The context of a claim is the text preceding the claim in the origi-

nal document the claim was extracted from. The context is typically more than

one sentence, but less than a paragraph. The task involves the evidence doc-

ument, Ec = (e1, e2, ..., e|Ec|), which is a document containing justification for

either supporting or refuting the claim. Here, e1, e2, ... are individual sentences

of the evidence document. An instance of fact checking is a collection of a claim,

context, evidence, and a gold label. The gold label associated with an instance is

the true status of the claim with respect to the evidence: whether it is supported

or refuted.

1.2 Research Contribution

In this work, we build on past work in fact-checking and more generally in natural

language understanding (NLU) by (1) tackling fact-checking using a new dataset

consisting of 124k+ claims, context, and evidence extracted using the English

Wikipedia; (2) extending baseline performance using state-of-the-art methods;

(3) implementing a novel dot-product attention mechanism to learn item-level

inference using document-level labels; and (4) utilizing context in an information

retrieval component. In doing so, we provide competitive empirical results and
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a novel approach to learning from partially-labeled data in a semi-supervised

manner. To our knowledge, our dataset is constructed in a novel manner to

tackle existing issues with datasets constructed in the past. Our extension of

baseline results uses transformer language models, making it one of the early uses

of transformers in fact-checking. Furthermore, our novel approach provides new

avenues of dataset construction and methods of training from massive amounts

of unlabeled data.

We provide a competitive result on the WikiFactCheck-English dataset using

transformer-based language models (BERT). We improve on multiple subtasks of

the fact checking task, including the sentence retrieval task using contextualized

semantic similarity measures for retrieval, as well as the inference subtask. We

improve on inference in the single sentence as well as generalized case, by allowed

for semi-supervised learning of unlabeled sentence-level data from document-level

annotations. We investigate the significance of transfer learning from related tasks

to Fact Checking, and investigate the use of context of a claim in performing fact

checking.

1.3 Outline

In the next section (Background), we will go into the task as well as some back-

ground information in more depth. In the section after that (Related Works),

we provide an overview of past research on fact checking as it relates to our con-

tribution. We include a summary of other approaches, including datasets and

methods, and the outcomes. In the Methods section, we provide the technical

details of our approach and contribution, including machine learning and neural

network methods, as well as the specific adaptation to our task. We explain the

specific questions we investigate and how we address them. In the Experiments

section, we describe our experimental setup, and describe the results, and how
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they relate to our question and contribution. Finally, in Discussion, we consider

the implications of our approach, and discuss extensions to this work.



Chapter 2

Background

2.1 Fact Checking Subtasks

Fact-checking is a complex task involving many moving parts. Thanks to this,

many subtasks that are otherwise independently studied and tackled can be for-

mulated as subtasks of fact-checking. Consequently, fact checking can benefit

from research in these areas, and the subtasks can find a practical application

domain. Furthermore, research on integrating various subtasks can lead to futher

advancements within these subtasks. Part of work attempts to integrate certain

subtasks in a novel way and demonstrate the effectiveness of them in fact check-

ing. From common knowledge, as well as observation, we find that typically 1-3

sentences, ei, ej, ek ∈ Ec lend sufficient evidence to support or refute the claim

c. However, the typical evidence document Ec of a claim contains hundreds of

sentences. The crux of the task, then, is to identify few sentences in Ec that may

be used to decide the truth value of claim c.

1 Document Retrieval/Information Retrieval subtask A subtask of Fact

Checking is Document Retrieval/Information Retrieval (IR). In IR, we are trying

to retrieve a subset of optimal documents D′ from a very large set of possibilities

D with respect to a query q, such that the relevance of D′ given q is maximized,

6
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Figure 2.1: High-level depiction of the WikiFactCheck pipeline

according to some ranking metric. IR is a subtask of fact-checking: in order

to garner appropriate evidence to determine the support for a claim, one must

search for evidence-containing documents. In our framing of the task, there is

a set of evidence documents E?. A step in the task would be to determine the

appropriate document Ec ∈ E? given a claim c. Fact checking in the wild faces

a choice of millions of documents from all over the internet, any subset of which

could lend support to a claim. The crucial execution of this task is a necessity

for the success of other subtasks building on top of it. In this work, we restrict

ourselves to a single document to draw upon.

2 Sentence Retrieval/Support Retrieval subtask Given a claim c and an

evidence document Ec, there can be many possible sentences e1, ... ∈ Ec that may

or may not lend evidence to support or refute c. Sifting through these to arrive

at the correct few is a challenge, and is crucial to next steps in the fact checking

task. Whereas more than one sentence ea, eb, ec may be necessary to make the
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determination of the truth of c, the structure in which such an inference may

be made is not fixed, and can involve a multi-step argument in terms of the eis.

For instance, it may be that ea =⇒ eb; ea ∧ ec =⇒ c. On the other hand,

it could also be the case that ea =⇒ eb =⇒ ec =⇒ c. A simpler case

could be that ea ∧ eb ∧ ec =⇒ c. There are many possible ways to structure an

argument leading to c making it hard to extract sentences from Ec. The challenge

is then to extract the appropriate sentences that will allow the construction of a

valid argument in favor or opposition of c. Because textual writing is generally

topically organized, Ec is likely to have many topically similar sentences, not all

of which may be relevant. Therefore, sentence retrieval may benefit from the

semantic representation of sentences.

3 Natural Language Inference: the NLI subtask A subtask of Fact Check-

ing is Natural Language Inference (NLI). In NLI, we have a premise (p) and a

hypothesis (h), and the task is to determine the truth value of h with respect to

p. NLI involves assigning labels “entailment”, when p =⇒ h, “contradiction”,

when p =⇒ ¬h, or “neutral”, when ¬(p =⇒ h). To extend the inference task

from its single-premise version to be compatible with the dynamic nature of fact

checking, we allow for multiple premises, p1, ..., pn, to either support or refute h,

which in our case will be the same as the claim c. As mentioned in a prior part,

the inference subtask must make a proper inference regardless of the argument

structure needed by the premises.

In this work, we focus on WikiFactCheck-English, a dataset consisting of

claims, context, and evidence triples extracted from the English Wikipedia, and

a corresponding formulation of the fact checking task involving support retrieval

and natural language inference (NLI) (Sathe et al., 2020).
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2.2 Transformers

2.2.1 Motivation

Until recently, recurrent neural network (RNN) and its variant long short-term

memory (LSTM) models were the state-of-the-art and standard for natural lan-

guage understanding thanks to their ability to encode arbitrarily long sequences

(with truncated backpropogation as necessary). However, RNN-based encoder-

decoder architectures rely on the use of latent vectors leading to an information

bottleneck and the inability to maintain long-distance dependencies due to the

limitation of the latent encoding vector. For this reason, recent uses of RNN-

based encoder-decoder architectures utilized attention, i.e., a weighted sum of

all previously computed hidden representations over the input sequence to ob-

tain a latent representation at each decoding timestep, or at classification-time

depending on the task.

2.2.2 Self-Attention and Contextualized Embeddings

An extension of attention over an RNN encoder is self-attention, which entails

getting rid of the time-dependant encoding of the input sequence. Instead, a self-

attention mechanism computes the representation of an input token by averaging

over all input tokens queried by itself (Vaswani et al., 2017). An advantage of this

is the generalizability in terms of architecture it affords. Self-attention allows all

inputs to be interpreted in context, and relaxes constraints on information content

in latent vectors by doing away with them. Self-attention additionally enables

wider parallelism allowing for better and more efficient utilization of modern

GPU architectures. This allows scaling along data, significantly reducing training

times. A simple illustrative example of this is the dot-product attention.

Say we have input tokens T1, T2, . . . . Let the embeddings be given by emb(·),

parameterized by an embedding layer. Then, the attention corresponding to
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Figure 2.2: Figure taken from Bloem (2019) illustrating self-attention mechanism in

transformers. xi represent input embeddings; yi are contextualized embeddings.

tokens i, j will be given by:

a′i,j = emb(Ti) · emb(Tj) (2.1)

Now in order to compute the contextualized representation of Tis, first we

compute a softmax over the attention values to obtain a normalized collection

of weights for our weighted sum.

ai,? = softmax(a′i,?) (2.2)

Then, each contextualized vector x is simply a weighted average of the input

embeddings.

xi =
∑

j=1,2,...,n

ai,j · emb(Tj) (2.3)

A more nuanced form of attention than dot-product attention is self-attention,

which utilizes key, query, value (K,Q, V ) transformations of input embeddings

to compute attention weights, illustrated in figure 2.2.

The self-attention mechanism is applied multiple times in different attention

heads to allow for the possibility of picking up on nuanced relations between
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Figure 2.3: Schematic illustration of BERT in action with sample input from

WikiFactCheck-English: a claim (c) and a candidate support sentence (ei). BERT

computes contextualized representations of each token from c and ei, including special

tokens [CLS], [SEP].

input tokens. Attention heads are followed by multi-layered perceptrons (MLPs)

to complete an encoder block. A transformer consists of multiple encode blocks

followed by a number of decoder blocks. We will skip the implementation details

of the above-mention concepts, as well as a description of the decoder block, as

that will not be necessary for our purposes.

In this paper, we use Bidirectional Encoder Representations from Transform-

ers (BERT) models (Devlin et al., 2018) that have been pretrained on Masked

Language Modeling and Next Sentence Prediction tasks using data from the

datasets BookCorpus and WikiText. We utilize the easy-to-extend open-source

implementations provided by Huggingface (Wolf et al., 2020), and modify to

support our architecture. Figure 2.3 sketches a schematic of the BERT model ar-

chitecture used in this paper. BERT accepts tokenized input with special tokens.

Among these are [CLS], a dummy token used for pooled representation fed into

a classifier, and [SEP], a separator token placed between input sequences.
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2.2.3 Transfer Learning and Finetuning

Many instances of using pretrained BERT to finetune on a downstream task have

shown promising performance, including attaining state-of-the-art results on a

large number of tasks. It is systematically seen than the approach of starting

with a pretrained BERT, finetuning it to a task, and possibly further finetun-

ing it gives promising results (Rogers et al., 2021). In addition to introducing

BERT in the WikiFactCheck pipeline, we also sought to identify the effects of

various intermediate task finetuning, and compare the results between various

tasks, including, no task, i.e., the vanilla pretrained BERT.



Chapter 3

Related works

In this section we review various relevant resources and machine learning ap-

proaches to fact-checking.

3.1 Resources and Datasets related to Fact-checking

Fact checking was introduced as a task close to the year 2014 to overcome obvious

limitations with manual fact-checking in various websites. Researchers did this

by creating a dataset consisting of statements made by prominent persons. The

ratings (labels) were judged by journalists, and URLs to evidence was provided

(Vlachos and Riedel, 2014). The procedure above supplied a somewhat domain-

specific dataset where the statements are misleading by design.

A newer dataset, FEVER, was built using introductory sentences from Wikipedia.

Annotators mutated the sentences to generate positive as well as negative sen-

tences. Participants also provided a sentence-level annotation.

A common limitation of these efforts is the limited size and the homogeneous

and synthetic nature of the data thanks to the way it was sourced.

In this work, we use WikiFactCheck-English (Sathe et al., 2020), which was

designed to address some such issues by creating a large dataset of real-world

claims and evidence.

13
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NLI is a subtask of our fact-checking pipeline, as illustrated in figure 2.1. In

the following, we provide an overview of work relating to NLI.

In NLI one must identify relationships between two text sequences. PASCAL

intiated the Recognizing Textual Entailment (RTE) challenge in 2005 (Dagan

et al., 2010). The challenge highlighted the common underlying paradigm across

many kinds of tasks, which may be broadly be termed together as Natural Lan-

guage Understanding (NLU). In these tasks, there is variation in the kind of

semantic expression. However, being able to tackle any one task in theory should

mean being able to tackle any other task. As we will see later, crucial to fact-

checking is this semantic variability of expression through text.

For a comprehensive review, see Sathe et al. (2020).

3.2 Machine Learning Approaches to Fact-checking

Zhong et al. (2020) reiterate that fact-checking is a complex task where more

than one sentence may support or reject a claim. It is therefore important to

consider multiple possible bases for the inference step. In the mentioned work,

the authors take an approach of created semantic graphs and reason over these

structures to address the FEVER task (Thorne et al., 2018). Whereas we will

use an approximation of the argument structure of inference, it is worthwhile to

note the complexity of inference that may be required.

Soleimani et al. (2020) tackled the FEVER task using a two-step pipeline.

The authors employed BERT in the evidence retrieval component to rank the

evidence by relevance to the claim to be verified. The authors also employed

BERT in the second component to use the retrieved evidence to verify a claim.

Lee et al. (2020) took an interesting approach to the otherwise traditional

pipeline of fact-checking in FEVER- and WikiFactCheck-like tasks. The authors

considered verifying claims independent of the available evidence, which in the
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case of FEVER would be a subset of the data used in the pretraining of BERT.

The authors queried BERT as though a knowledge base and used its masked

predictions to decide if the claim was true. Whereas it is a novel approach, in

practice, it doesn’t provide a promising performance gain. On WikiFactCheck-

English, such an approach did not go beyond baseline approaches previously

reported.

In this work, we add to the currently limited but growing body of work of

using transformer-based models, particularly BERT, to perform fact checking.



Chapter 4

Methods

In this section, we describe our approach to Fact Checking as it relates to our

dataset, WikiFactCheck-English. As previously mentioned, we specifically ad-

dress the subtasks of support retrieval and natural language inference.

4.1 Fact Checking Pipeline

We describe the detailed pipeline for the present work in figure 4.1. The following

parts describe components of the pipeline.

4.1.1 Sentence Retrieval

Recall that the sentence retrieval/support retrieval subtask of fact-checking in-

volves retrieving sentence(s) from the evidence document Ec that lend support

to or refute a claim c. In this paper, we focus on retrieving the top k sentences

(e1, e2, ..., ek) ∈ Ec.

Baseline

We explored various approaches of retrieving the top 1 sentence using simple

textual similarity. These included: Levenshtein distance (LD) and Cosine simi-

16
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larity. Empirically, LD worked better for sentence retrieval (Sathe et al., 2020).

In the absence of true annotations of supporting text, we are forced to compare

approaches in this subsection using only the overall results.

Current approach

To improve upon the baseline, we utilized Sentence-BERT or SiameseBERT

(SBERT) (Reimers and Gurevych, 2019). SBERT is a model architecture for

computing representations over sentences rather than tokens. A flavor of SBERT

is trained to jointly compute representations of sentence pairs, and a classifier

on top of it is trained to compute sentence pair semantic textual similarity as a

scalar. Because our claims and evidence are drawn from distinct sources that may

be dissimilar in their style and choice of words, we believe that an approach in-

volving semantics would work better as compared with a purely textual approach

(such as LD or cosine similarity). In order to compute semantic similarity, we

use a pretrained SBERT architecture finetuned to the sts-b (semantic textual

similarity) corpus part of a popular NLU benchmark for generalized language

understanding and evaluation, GLUE (Wang et al., 2018).

As illustrated in figure 4.1, we rank sentences in Ec by similarity with [context |c]

(context concatenated with the claim c). We pick the top k sentences, where

k = 1, 3, 5. In the case of k = 1, we have a direct comparison with the baseline

approach from Sathe et al. (2020).

4.1.2 Natural Language Inference

As shown in figure 4.1, the next step in the WikiFactCheck pipeline is to perform

classification on retrieved support and the claim and context.
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Baseline

Our first baseline is as reported in Sathe et al. (2020) combined with the baseline

approach to support retrieval. This baseline utilizes support vector machines

(SVM) and logistic regression (LR) using bag-of-words and special handcrafted

features on the top 1 relevant evidence sentence together with the claim. With

SVMs, we achieved 66% accuracy and 69.6% F1. With LR, we obtained 68%

accuracy and 70.8% F1. It is noteworthy that these performances are despite

an approximating assumption: that the top-1 most textually similar sentence

contains sufficient information to make an inference about the claim. To relax

this assumption, we allow for multiple-sentence inference in the current work.

Current approach

In this paper, we will break this step down into two parts: natural language infer-

ence (NLI) and attention-based aggregation. Because our dataset only contains

ground-truth labels at the document-level, we do not possess item-level labels

for NLI with each sentence from Ec. We therefore utilize the multiple instance

learning (MIL) technique (Angelidis and Lapata, 2018; Ilse et al., 2018) to learn

item-level labels in a semi-supervised manner by aggregation over multiple labels

and computing loss at the document level.

Let BERT denote the pretrained BERT model to use.

Let BERT([CLS], T1, T2, . . . ) represent the contextualized representations of

input tokens [CLS], T1, T2, · · · . We initialize a binary (“supported”/“refuted”)

NLI classifier over the contextualized inputs such that:

y = ReLU (W ·BERT([CLS], ...)0 + bW ) (4.1)

where y〈, 〉 is the output of an MLP from the [CLS] token of the input se-

quence. The [CLS] token is a special token whose representation is meant to

capture relevant features of the input for classification (Devlin et al., 2018).



Chapter 4. Methods 20

Notice that for a claim c and top-k relevant support e1, e2, . . . , ek, we will

have k input pairs 〈ei, [context|c]〉 or 〈ei, c〉 (either with or without context). For

each such pair, we will have an NLI prediction yi. However, we only have the

ground truth ŷ corresponding to 〈Ec, c〉. Therefore, we will use another MLP to

transform the same representation used for NLI to compute attention over the

items.

a′ = Sigmoid (V ·BERT([CLS], ...)0 + bV ) (4.2)

Similar to the concept of attention as used within transformers, we use the

attention thus computed to aggregate outputs like so:

a = softmax(a′) (4.3)

Here, ai is the attention weight for aggregating the predictions for 〈c, ei〉.

Then our aggregated document-level predicted label is

y? = a⊗ y (4.4)

where y? is a two-item vector containing predictions for two labels. Loss is

computed using Cross Entropy loss with the appropriate ground truth label. In

case k = 1, the attention weight for the single prediction is trivially 1, and this

automatically reduces to a vanilla NLI case without any need for backpropogation.

4.1.3 Implementation and Experimentation

We built off of the implementation given by the open-source transformers library

‘Huggingface’ (Wolf et al., 2020) and PyTorch. We used ‘Weights and Biases’ to

document our experimental setup and hyperparameters to understand what the

most important factors were during a pilot experiment (Biewald, 2020).
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Experiments and Results

In this section, we outline the questions at hand based on our set up in the

methods section. We then outline how we perform experiments to address these

questions. Finally, we discuss results.

1. Do claims draw on more than one sentence to be accurately classified?

(a) Can we learn aggregate fact checking without item-level annotations?

(b) How many supporting sentences are a good amount of support?

2. Does using context help classify a claim?

3. Does intermediate task transfer learning help fact checking?

(a) What tasks are helpful?

5.1 Experimental Setup

Data We initially used a small subset of training data to understand the behav-

ior of the model and importance of various factors. Our initial experimentation

used fewer than 2k examples at training time (out of 24k in the training set).

After hyperparameter tuning, we used at mos 10k examples to train the pipeline.

21
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Our pipeline was constrained by the time taken due to hardware-related issues,

and so we were unable to scale to the full 24k examples available for training.

Intermediate task finetuning We experiment with bert-base-uncased, i.e.,

the simple pretrained variant of BERT (in the ‘base’ size). This variant is the

vanilla variant without any finetuning to an NLU task. All BERTs used have

been pretrained on the same large unsupervised corpora. When finetuning occurs,

it is performed in addition to pretraining (Pruksachatkun et al., 2020). We also

use BERT models finetuned on MultiNLI.

Using context We experimented with using context along with claim in the

NLI step by concatenating context and claim together. However, pilot results

revealed that using context consistently hampered performance and the model

was unable to reach the level of performance of claim-only NLI. We elected to

not use context in our extended experiments.

Similar sentences We used k ∈ {1, 3, 5} for the aggregate NLI step.

Training procedure We used learning rates 10−5, 50−5, 10−4 during hyperpa-

rameter search with Adam optimizer and linear learning rate decay. We settled

on 10−5 as the optimal learning rate for later use. We use a constant 50 warmup

steps based on initial pilot experimentation. We train for 3 epochs and update

gradients every 4 steps, picked based on pilot experiments with 1, 4, 8, 16 update

steps. For evaluation, we compute accuracy, F1, precision, and recall on the

training and validation sets.

In addition to computing typical metrics, we computed correlations and rela-

tive parameter importance using linear models, with help from (Biewald, 2020).
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5.2 Results

Table 5.1 shows evaluation metrics for several runs of the pipeline on validation

data. We see at least a 10-point climb across the board compared with results

reported in Sathe et al. (2020). This improvement comes after two modifications

to the pipeline; (1) using BERT-based sentence similarity for ranking relevant

sentences, (2) using BERT-based NLI in an individual and aggregate fashion.

Whereas it is not possible to attribute the climb accurately to any single factor, it

is likely the combination of changes and new experimentation that has contributed

to the increase in performance.

We observe that using MNLI-finetuned BERT affords an advantage early in

the training process, but this advantage subsequently disappears as multiple pre-

trained BERTs converged to similar accuracy values.

Correlations revealed that accuracy and F1 scores are positively correlated

with k across multiple runs. Instances with k = 3, 5 tend to outperform single-

sentence-support instances. This suggests that WikiFactCheck-English has a non-

trivial amount of examples that need more than a one-step single-sentence infer-

ence, but might require more nuanced, and multi-step inference. We also witness

that using a Multiple Instance Learning and attention-based approach allows us

to perform inference over multiple sentences despite not having fine-grained labels

to train this inference directly.

We see noisiness in the training process compared with typical GLUE task

training (Wang et al., 2018). We believe this may simply be due to the complex

nature of our task, and because of our modifications to the typical BERT-training

architecture. Nevertheless, overall, we see convergence to a fact checking model.
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finetuning model k acc f1 pre rec

bert-base-uncased1 5 76.21 75.121 80.291 71.831

bert-base-uncased 3 0.786 0.770 0.834 0.715

bert-base-uncased 1 0.778 0.757 0.834 0.693

aloxatel/bert-base-mnli 5 0.780 0.760 0.835 0.697

aloxatel/bert-base-mnli 3 0.773 0.755 0.819 0.701

aloxatel/bert-base-mnli 1 0.778 0.760 0.827 0.703

Table 5.1: Results from experiments on extended (n = 10,000) amount of data. 1Run

did not finish executing due to hardware malfunction.

Figure 5.1: Accuracy from several runs on the validation set
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Figure 5.2: F1 from several runs on the validation set
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Conclusion and Future Work

We see that BERT-based pipeline significantly pushes the performance on Wiki-

factcheck, even with half the data withheld compared to SVM and LR baselines.

This highlights the promise of large pretrained language models’ use in downstram

tasks, and particularly tasks other than NLU, but more nuanced, multi-step tasks

as well, for example, fact checking.

Beyond simply commenting on an overall performance gain, we also saw some

interesting specific results. We see that k > 1 helps inference. This is an interest-

ing finding, and one that matches intuition, that a single sentence likely has more

than one sentence as their actual support. It may also indicate that BERT is

able to pick up on argument structure beyond single sentences with proper set up

and training. However, common intuition also says that it is likely not too many

sentences that will form an argument for a claim. To investigate whether a large

k would hurt rather than help fact checking NLI step, we would have to perform

more experiments. However, until then, this result is promising, and suggests

that using BERT may allow for more experimentation in semi-supervised and

unsupervised settings, since datasets need not be as granualar. This might also

encourage newer dataset creation that relies less on annotators.

We observe that intermediate task training helps, but significantly so with

26
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less data. When we introduced an order of magnitude more data, this advantage

disappeared at the end of training. We believe the advantage conferred is likely

to be temporary and more starkly visible in a resource-constrained manner. This

is in line with existing findings that intermediate task training is helpful towards

similar tasks, and greatly improves few-shot learning. In the future, we would

like to explore more tasks for intermediate fine-tuning.

With regards to context, it was our intuition that using context should pro-

vide an advantage to perform inference. However, using context adds several

sentences to the claim, and that may be throwing off BERT at the NLI stage. To

make comparison on equal footing, in the future, we will compare with a BERT

that has been given a gibberish context as opposed to actual relevant context to

compensate for length.
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