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An Introduction to Obstacle Problems

Calvin Reedy

April 30, 2021

Faculty Adviser:
Dr. Jeremy LeCrone

Abstract

The obstacle problem can be used to predict the shape of an elastic membrane lying over an obstacle
in a domain Ω. In this paper we introduce and motivate a mathematical formulation for this problem,
and give an example to demonstrate the need to search for solutions in non-classical settings. We then
introduce Sobolev spaces as the proper setting for solutions, and prove that unique solutions exist in
W 1,2(Ω).
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1 Description of Problem

Acknowledgement: The description given of the formulation of the obstacle problem and the outlines for
the proofs of Theorem 2.1 and Theorem 5.1 are drawn from a survey paper by Figalli [1].

The obstacle problem seeks to describe the shape of an elastic membrane lying over an obstacle. Math-
ematically speaking, we will have a domain Ω ⊂ Rn, and the obstacle will be a function φ : Ω → R. The
membrane will be described by some function v satisfying v ≥ φ inside Ω and the boundary condition
v|∂Ω = 0. (To make this possible, we will assume that φ|∂Ω ≤ 0). For example, in the image below, the
membrane is in orange and the obstacle is in green, with the contact set between the two colored purple. In
particular, the domain is Ω = (−2, 2) ⊂ R, the obstacle is φ(x) = 1 − x2, and the membrane must satisfy
the boundary conditions v(−2) = v(2) = 0.

Because the membrane is assumed to be perfectly elastic, it will assume the shape that minimizes its
total surface area, subject to the constraint that it must lie above the obstacle. (Note that we disregard the
effects of gravity, so the membrane does not simply fall onto the obstacle and adhere to it.) The suface area
of the membrane is given by

∫
Ω

√
|∇v|2 + 1 dA. If we assume that there is little variation in the membrane’s

surface (in particular, if we assume |∇v| is small), then we can approximate
√
|∇v|2 + 1 by inserting |∇v|2

into the first two terms of the Maclaurin series for
√

1 + x, which gives
√
|∇v|2 + 1 ≈ 1 + 1

2 |∇v|
2. Thus

we are led to minimize the Dirichlet integral
∫

Ω
1
2 |∇v|

2 over all candidate functions v which lie above the
obstacle and meet the boundary conditions.

2 Properties of Solutions

Consider the example given above, where Ω is (−2, 2), the boundary conditions are v(2) = v(−2) = 0, the

obstacle is φ(x) = 1− x2, and we wish to minimize the Dirichlet integral
∫ 2

−2
1
2 |v
′(x)|2dx. For the moment,

we assume that a continuous minimizer function u exists.

Theorem 2.1. Let u be a sufficiently smooth minimizer of the Dirichlet integral for our example problem.
Then u′′ = 0 on the non-contact set {u > φ} = {x ∈ Ω|u(x) > φ(x)}.

Proof. If we assume that u is continuous (and we know that φ(x) = 1 − x2 is continuous), it follows that
the set {u > φ} is open. If {u > φ} is non-empty, then there exists a point x0 ∈ Ω and a radius r > 0
such that the interval Br(x0) = (x0 − r, x0 + r) is contained in {u > φ}. (Note that since x0 is an arbitrary
point in {u > φ}, we wish to show that u′′(x0) = 0.) Fix a test function ψ ∈ D(Br(x0)), where D(Br(x0)) is
the set of infinitely differentiable functions whose support is contained in a compact subset of Br(x0); that
is, their value is 0 outside a compact subset of Br(x0). Take an arbitrary ε > 0, and consider the function
uε = u+ εψ. (Intuitively, this function simply adds a small perturbation to the function u inside some strict
subset of Br(x0) while maintaining the smoothness of u).
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We first wish to show that uε is a candidate for our minimization problem; in other words, that uε ≥ φ
on Ω. Outside of Br(x0), uε = u due to the compact support of ψ, and we are already assuming u to be a
valid minimizer, so uε ≥ φ outside Br(x0) and boundary conditions are met. Let M be the maximum of |ψ|
on Br(x0), and let c > 0 be the minimum of u− φ on Br(x0) (these both exist on account of the continuity
of ψ, u, and φ). Then we can make ε small enough that c−εM ≥ 0, and for any x ∈ Br(x0), u(x) ≥ φ(x)+c.
Thus we have

uε(x) ≥ u(x)− εM ≥ φ(x) + c− εM ≥ φ(x),

so uε(x) ≥ φ(x) for all x ∈ Ω, as desired.

Now note that because u is a minimizer and uε is a candidate function for the minimization problem, we
have ∫ 2

−2

1

2
|u′(x)|2dx ≤

∫ 2

−2

1

2
|u′ε(x)|2dx =

∫ 2

−2

1

2
|u′(x) + εψ′(x)|2dx

=

∫ 2

−2

1

2
|u′(x)|2dx+ ε

∫ 2

−2

u′(x)ψ′(x)dx+ ε2
∫ 2

−2

1

2
|ψ′(x)|2dx.

This yields ∫ 2

−2

u′(x)ψ′(x)dx+ ε

∫ 2

−2

1

2
|ψ′(x)|2dx ≥ 0.

Since ε can be arbitrarily small, this implies that
∫ 2

−2
u′(x)ψ′(x)dx ≥ 0. Integration by parts gives∫ 2

−2

u′(x)ψ′(x)dx = u′(x)ψ(x)
∣∣2
−2
−
∫ 2

−2

u′′(x)ψ(x)dx = −
∫ 2

−2

u′′(x)ψ(x)dx,

noting that u′(x)ψ(x)
∣∣2
−2

is 0 because of the compact support of ψ, so we have −
∫ 2

−2
u′′(x)ψ(x)dx ≥ 0.

Then, because ψ is an arbitrary test function, we can replace it with −ψ to obtain −
∫ 2

−2
u′′(x)ψ(x)dx ≤ 0

as well, so
∫ 2

−2
u′′(x)ψ(x)dx = 0. We wish to conclude from this property holding for every ψ ∈ D(Br(x0))

that u′′(x0) = 0.

One example of a test function in D(Br(x0)) is ψx0,ε, which for an arbitrary 0 < ε < r is defined by

ψx0,ε(x) =

{
exp

(
− ε2

ε2−|x−x0|2

)
|x− x0| < ε

0 otherwise.

This function takes on positive values in the interval (x0 − ε, x0 + ε) and 0 values elsewhere. While the
proof requires more advanced arguments than we can present here, it turns out that a minimizer u will
have continuous second derivatives on the non-contact set. Since u′′ is continuous at x0, then if u′′(x0) 6= 0,
there exists an open interval (x0 − ε, x0 + ε) on which |u′′(x)| > 0 and ψx0,ε(x) > 0, so we would have∫ 2

−2
u′′(x)ψx0,ε(x)dx 6= 0. Since we must have

∫ 2

−2
u′′(x)ψx0,ε(x)dx = 0, we conclude that u′′(x0) = 0, as

desired.

It is worth noting, however, that while solutions have continuous second derivatives on the non-contact
set, are not guaranteed to have continuous second derivatives on the whole domain, or even to have second
derivatives at every point. Consider the example problem we are working with. We have concluded that
a minimizer u must have u′′(x) = 0 for any x where u(x) > φ(x); in other words, that outside the set
where u = φ (where the membrane contacts the obstacle), u must be linear. The only single line that gives
u(−2) = u(2) = 0 is the flat line u = 0, which lies underneath the obstacle and is therefore not a candidate.
This means somewhere in Ω the solution u must deviate from being a single line, at which point its second
derivative will be undefined. In any case, we can conclude that a minimizer does not exist in C2(Ω).
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3 Sobolev Spaces

At this point there is an apparent tension in our approach: we can make meaningful statements about the
second derivatives of solutions at some points, but we have no guarantee that second derivatives of solutions
exist at all points. As mentioned before, it turns out that u has continuous second derivatives on the non-
contact set, but this does not give us a general setting in which to look for solutions. We cannot search
for solutions among functions that are smooth on the non-contact set, because we do not know what the
non-contact set will be until we know what the solution is. We will resolve this tension in the following way:
the absence of solutions in C2(Ω) motivates a search for solutions outside of classical settings. In particular,
we will show that unique solutions exist for obstacle problems in the Sobolev space H1(Ω), where derivatives
exist not in a classical sense but rather in a distributional sense. To make this argument, we must first
lay out some preliminary concepts, including Banach spaces, Hilbert spaces, Lebesgue spaces, and Sobolev
spaces themselves.

Acknowledgement: The material in this section and the following section is drawn largely from a text
by Renardy and Rogers [2].

Definition: A Banach space is a complete normed vector space. A norm is a mapping from the
elements of the vector space to the non-negative real numbers which satisfies the triangle inequality and two
other properties, and generalizes the notions of the size of an element and the distance between two elements
(we denote the norm of an element x by ||x||). A complete normed vector space is one in which every Cauchy
sequence converges to an element of the space; recall that a Cauchy sequence {xj} is one where for any ε > 0,
there exists an N such that m,n ≥ N implies ||xm − xn|| < ε. In a Banach space, for every such sequence,
there exists an element x such that limj→∞ ||xj − x|| = 0.

Definition: A Hilbert space is a complete inner product space. An inner product space H derives its
norm from an inner product, a mapping from H × H to R denoted by (x, y) for x, y ∈ H. The norm of
an inner product space is given by ||x|| =

√
(x, x), and a Hilbert space is an inner product space that is

complete as a normed vector space (meaning that every Hilbert space is also a Banach space).

Definition: The Lebesgue space Lp(Ω) is the set of equivalence classes of functions f : Ω → R for
which |f |p is Lebesgue integrable. Two functions are considered equivalent (and hence correspond to the
same member of the Lp space) if they agree except on a set of Lebesgue measure zero. Lp space is endowed

with the norm ||f ||p =
(∫

Ω
|f |p

)1/p
, and under this norm every Lp space is a Banach space. Of the Lp spaces,

only L2 space is a Hilbert space, with the inner product (f, g) =
∫

Ω
f(x)g(x)dx.

Notation: For a domain Ω ⊂ Rn, a function f(x1, . . . , xn) mapping Ω to R, and an n-tuple α =
(α1, . . . , αn) of non-negative integers (this is called a multi-index), define |α| to be the sum of all the
entries of α, and define Dαf to be the result of taking αi derivatives of f with respect to each xi (so that a
total of |α| derivatives are taken).

As noted before, the derivatives we are considering will not necessarily correspond to the classical sense
of derivatives. Instead, members of Lp space can be identified as distributions, which have derivatives in a
weaker sense.

Definition: Before defining distributions, recall from our proof of Theorem 2.1 that a test function is
an infinitely differentiable real-valued function on a domain Ω with compact support, meaning that its values
on Ω are 0 outside of some closed and bounded set. We denote the set of test functions on Ω by D(Ω).

Definition: A distribution is a continuous linear mapping T : D(Ω) → R, denoted by T (ψ) = (T, ψ)
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for test functions ψ. For a distribution T and a test function ψ, we define distributional derivatives as

follows:
(
∂T
∂xi

, ψ
)

= −
(
T, ∂ψ∂xi

)
. Note that while distributions may not even correspond to pointwise-defined

functions, much less differentiable ones, distributional derivatives of arbitrary orders always exist because
test functions are infinitely differentiable. An integrable function f on Ω can be identified as a distribution
through the mapping (f, ψ) =

∫
Ω
f(x)ψ(x)dx for ψ ∈ D(Ω). It is worth noting, though, that while some

distributions have a representation as a function (that is, are equal to the distribution given by a function f
as described above), others do not. An example of a distribution that does not have an identification with
a pointwise function is the Dirac delta, defined by (δ, ψ) = ψ(x0), which would require a “function” with
infinite value at the point x0 and 0 values elsewhere.

Now that we have defined Lebesgue spaces and the sense in which we are taking derivatives, we can
define Sobolev spaces, the setting in which we will show existence and uniqueness of solutions for the obstacle
problem.

Definition: The Sobolev space W k,p(Ω) is the set of all elements f ∈ Lp(Ω) for which Dαf ∈ Lp(Ω)
for all multi-indices α satisfying |α| ≤ k. In other words, if we consider f as a distribution and take up to
k distributional derivatives, the result will be a distribution which has a representation as some member of
Lp(Ω). Recalling the definition of the p-norm ||f ||p from Lp space, the norm in a Sobolev space extends this
norm to also include the p-norms of derivatives:

||f ||k,p =

∑
|α|≤k

(||Dαf ||p)p
1/p

.

All Sobolev spaces are Banach spaces; for p = 2, the Sobolev spaces are Hilbert spaces (denoted by
Hk(Ω)), with the inner product

(f, g)k =
∑
|α|≤k

∫
Ω

Dαf(x)Dαg(x)dx.

Specifically, we will show that unique solutions exist for the obstacle problem in the Sobolev space
W 1,2(Ω) = H1(Ω).

4 Further Preliminaries

In order to prove this result, there are several concepts and theorems that need to be laid out first. In
particular, we must define dual spaces of Banach spaces and note some of their properties, and we must also
state (without proof) several theorems that will be used in the argument.

Definition: A linear functional on a Banach space X is a continuous linear mapping from X to R.

For such an operator L, we assign the norm ||L|| = sup||x||6=0
|Lx|
||x|| . Under this norm, the vector space of

linear functionals on X forms a Banach space, called the dual space of X and denoted by X∗.

These spaces take on a special significance with regard to Hilbert spaces, for which we have the following
result:

Theorem [Riesz Representation]: A Hilbert space H is isometric to its dual space, meaning that
there is a linear bijection L from H to H∗ such that ||Lx|| = ||x|| for every x ∈ H. (This bijection exists in
Hilbert spaces because it is based on the inner product: an element x ∈ H is identified with the functional
lx(y) = (x, y).) Note that this also means H∗ is isometric to (H∗)∗, H is isometric to (H∗)∗, and so on.
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Using the relationship between Banach spaces and their dual spaces, we can develop weaker notions of
convergence for both a Banach space and its dual space:

Definition: Let X be a Banach space, and let {xn} be a sequence of vectors in X. We say that
{xn} converges weakly to x ∈ X (denoted by xn ⇀ x) if f(xn) → f(x) for all f ∈ X∗. Along similar

lines, we say that a sequence of functionals {fn} in X∗ converges weakly-∗ to f (denoted by fn
∗
⇀ f) if

fn(x)→ f(x) for all x ∈ X.

In our existence and uniqueness argument, we will also use the following theorem of Alaoglu:

Theorem [Alaoglu]: Let X be a Banach space that contains a countable dense subset and let {fn} be
a bounded sequence in X∗. Then {fn} has a weakly-∗ convergent subsequence.

5 Existence and Uniqueness of Solutions in H1(Ω)

Theorem 5.1. Let Ω ⊂ Rn be a bounded domain with a continuous boundary, and let φ : Ω → R be a
member of C1(Ω) satisfying φ|∂Ω ≤ 0. Among elements v ∈ H1(Ω) satisfying v|∂Ω = 0 and v ≥ φ, there

exists a unique minimizer for the Dirichlet integral
∫

Ω
|∇v|2

2 .

Note: There is some difficulty in defining the relations v|∂Ω = 0 and v ≥ φ in a Sobolev space: elements
of Sobolev spaces are equivalence classes of functions that only have to agree up to a measure zero set.
Therefore neither of these relations can be intended in a pointwise sense, because there is not a unique
pointwise representation for v ∈ H1(Ω). We can interpret the relation v ≥ φ in a distributional sense: we
say v ≥ φ if (v, ψ) ≥ (φ, ψ) for all ψ ∈ D(Ω).

There is a particular difficulty in defining boundary conditions, because ∂Ω is a measure zero set in Rn, so
representatives for the same Sobolev function v can differ substantially on ∂Ω. To resolve this difficulty, we
define the set W k,p

0 (Ω) to be the closure of the set of test functions D(Ω) in the W k,p(Ω) topology. (Note that

by definition W k,p
0 (Ω) is a closed set, and it also turns out to be a subspace of W k,p(Ω).) On the boundary of

Ω, we say that two Sobolev functions u and v are equal in the sense of traces of Sobolev functions if
u− v ∈W k,p

0 (Ω). Thus v|∂Ω = 0 if v ∈W k,p
0 (Ω). Intuitively, it makes sense to say that a function is 0 on ∂Ω

if it can be approximated by a sequence of test functions, because test functions are compactly supported,
so they are always 0 near the boundary.

Having defined these relations, there are two other theorems worth noting before we begin the proof of
Theorem 5.1: the Poincare inequality and the lower semicontinuity of the L2 norm.

Poincare Inequality: Let Ω ⊂ Rn be contained in the strip |x1| ≤ d < ∞ (i.e. Ω is bounded in one
direction). Then there exists a constant c, depending only on k and d, such that for all u ∈ Hk

0 (Ω),

||u||2k,2 ≤ c
∑
|α|=k

||Dαu||22.

Semicontinuity: Let {vn} be a sequence in L2(Ω) converging weakly to v ∈ L2(Ω). Then ||v||2 ≤
lim inf
n→∞

||vn||2.

Proof of Theorem 5.1: The remainder of this section will consist of a proof of Theorem 5.1.
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Note that we are seeking to minimize the Dirichlet integral over the set

Kφ = {v ∈ H1(Ω) : v|∂Ω = 0, v ≥ φ}.

Proposition 5.2: The set Kφ defined above is closed in H1(Ω); that is, any converging sequence {vj}
in Kφ has its limit in Kφ.

Lemma 5.3: Given a Banach space X, a functional T ∈ X∗, and an α ∈ R, the set S = {x ∈
X : T (x) ≥ α} is closed.

Proof: By definition, linear functionals are continuous, so if a sequence {xn} in S converges to
some x ∈ X, then the sequence L(xn) in R converges to L(x). Note that the set {y ∈ R : y ≥ α}
is closed in the topology for R, so L(xn) ≥ α for all n implies L(x) ≥ α. Therefore x ∈ S, so the
limit of any converging sequence in S is also contained in S.

Proof of Proposition 5.2: We show this by showing Kφ to be the intersection of two closed sets. The
set {v ∈ H1(Ω) : v|∂Ω = 0} is closed by definition, because the functions satisfying v|∂Ω = 0 are members
of H1

0 (Ω), which is defined as the closure of D(Ω). We now note that for a given ψ ∈ D(Ω), the mapping
Tψ(v) = (v − φ, ψ) is a linear functional on H1(Ω) and therefore a member of the dual space H1(Ω)∗.
As a result, the set {v ∈ H1(Ω) : Tψ(v) ≥ 0} is closed by the preceding lemma, so for each ψ, the set
Sψ = {v : (v, ψ) ≥ (φ, ψ)} is closed. The set Sφ = {v ∈ H1(Ω) : v ≥ φ} is the intersection of the closed sets
Sψ over all ψ ∈ D(Ω), so it is a closed set as well. Then Kφ is the intersection of Sφ with H1

0 (Ω), so Kφ is
closed, as desired.

Proposition 5.4: Kφ is convex, which means that for any two elements u, v ∈ Kφ, the line segment
between them, which is all points tv + (1− t)u for t ∈ [0, 1], is also contained in Kφ.

Proof: Note that becauseH1
0 (Ω) is a linear subspace ofH1(Ω), v and u being inH1

0 (Ω) implies tv+(1−t)u
is in H1

0 (Ω) as well, so boundary conditions are met. Moreover, because distributions are linear mappings,
for any ψ ∈ D(Ω), (noting that (u, ψ) ≥ (φ, ψ) and (v, ψ) ≥ (φ, ψ)) we have

(tv + (1− t)u, ψ) = (tv, ψ) + ((1− t)u, ψ)

= t(v, ψ) + (1− t)(u, ψ)

≥ t(φ, ψ) + (1− t)(φ, ψ)

= (φ, ψ),

showing that tv + (1− t)u ∈ Kφ, as desired.

It turns out, based on results that we will not prove here, that because Kφ is convex and it is closed in
the H1(Ω) topology, it is also closed in the weak H1(Ω) topology, which means that any weakly converging
sequence in Kφ has its weak limit point in Kφ as well.

To show the existence of a minimizer in Kφ, we wish to show that the infimum of all possible values of
the Dirichlet integral for elements of Kφ is attained. To do this, we will consider a minimizing sequence for
the Dirichlet integral in Kφ, show that the sequence is bounded in H1(Ω), and use Alaoglu and Riesz Repre-
sentation to show that this sequence has a subsequence with a weak limit point in Kφ. Then semicontinuity
of the L2 norm will imply that the infimum is attained at this weak limit point.

First, let α = inf
v∈Kφ

∫
Ω

|∇v|2

2
. Note that α is finite, since, for example, the function V = max{φ, 0} is

a member of Kφ (noting that we assume φ|∂Ω ≤ 0) and satisfies
∫

Ω
|∇V |2

2 < ∞. Then we can consider a

sequence {vk} ⊂ Kφ such that
∫

Ω
|∇vk|2

2 → α.
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Note that because
∫

Ω
|∇vk|2

2 → α, there exists a k0 ∈ N such that for all k ≥ k0,
∫

Ω
|∇vk|2

2 ≤ α+ 1.

Now note that for each k, the function vk − V is in H1
0 (Ω), so we can apply the Poincare inequality to

obtain a constant CΩ such that

||vk − V ||2 ≤ ||vk − V ||1,2 ≤ CΩ||∇vk −∇V ||2.

By applying the triangle inequality to ||vk − V + V ||2, we can say that

||vk||1,2 = ||vk||2 + ||∇vk||2 ≤ ||vk − V ||2 + ||V ||2 + ||∇vk||2.

By the Poincare inequality as described above, we have

||vk||1,2 ≤ CΩ||∇vk −∇V ||2 + ||V ||2 + ||∇vk||2.

Applying the triangle inequality to ||∇vk −∇V ||2 gives

||vk||1,2 ≤ (CΩ + 1)||∇vk||2 + ||V ||2 + CΩ||∇V ||2.

Note that for all k ≥ k0, ||∇vk||2 =
√∫

Ω
|∇vk|2

2 ≤
√
α+ 1. Thus, for all k, ||vk||1,2 is bounded by the

constant

max

{
max
k<k0

||vk||1,2, (CΩ + 1)
√
α+ 1 + ||V ||2 + CΩ||∇V ||2

}
,

so {vk} is a bounded sequence in H1(Ω).

By Riesz representation, the bounded sequence {vk} in H1(Ω) can be identified with the sequence of
functionals {fk(v)} = {(vk, v)} in the dual space H1(Ω)∗, which is also bounded because H1(Ω) is isometric
to its dual space under this mapping.

Then, by Alaoglu, there exists a weakly-∗ convergent subsequence of the sequence {(vk, v)}; that is,
a sequence of functionals {fkj (v)} = {(vkj , v)} such that for some f ∈ H1(Ω)∗, fkj (v) → f(v) for all
v ∈ H1(Ω). By Riesz representation, f can be identified as the functional f(v) = (u, v) for some u ∈ H1(Ω),
so there exists a u ∈ H1(Ω) such that (vkj , v)→ (u, v) for all v ∈ H1(Ω).

Equivalently, since inner products are symmetric, we can say that (v, vkj ) → (v, u) for all v ∈ H1(Ω).
Finally, by Riesz representation, this is the same as saying that l(vkj ) → l(u) for all linear functionals
l ∈ H1(Ω)∗. Thus there exists a subsequence {vkj} of {vk} converging weakly to u ∈ H1(Ω).

Because {vkj} is a weakly converging sequence in Kφ and Kφ is closed in the weak H1(Ω) topology, the
weak limit point u of {vkj} is an element of Kφ. Finally, lower semicontinuity of the L2 norm under weak
convergence gives ∫

Ω

|∇u|2

2
≤ lim inf

j→∞

∫
Ω

|∇vkj |2

2
= α,

so u ∈ Kφ attains the infimum of the possible values for the Dirichlet integral. Thus a minimizer for the
Dirichlet integral in Kφ exists.

It remains only to show that the solution we have found in H1(Ω) is unique. To show this, we will employ
the following proposition:

Proposition 5.5: In a real inner product space H, the square of the norm induced by the inner product
is a strictly convex operator. In other words, for any v, w ∈ H such that v 6= w and any t ∈ (0, 1),

||tv + (1− t)w||2 < t||v||2 + (1− t)||w||2.
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Proof: Given v, w ∈ H such that v 6= w and given t ∈ (0, 1), we wish to show that

t||v||2 + (1− t)||w||2 − ||tv + (1− t)w||2 > 0.

Note that

||tv + (1− t)w||2 = (tv + (1− t)w, tv + (1− t)w) = t2||v||2 + (1− t)2||w||2 + 2t(1− t)(v, w).

It follows that we can rewrite the left-hand side of our desired inequality as

(t− t2)||v||2 + ((1− t)− (1− t)2)||w||2 − 2t(1− t)(v, w),

or
t(1− t)(||v||2 + ||w||2 − 2(v, w)),

or
t(1− t)||v − w||2.

It follows from the assumption that v 6= w that ||v − w||2 > 0, which proves our desired inequality.

Finally, to conclude uniqueness, suppose that u1, u2 ∈ Kφ. By the above proposition, if ∇u1 6= ∇u2,
letting t = 1

2 yields ∣∣∣∣∣∣∣∣12∇u1 +
1

2
∇u2

∣∣∣∣∣∣∣∣2
2

<
1

2
(||∇u1||22 + ||∇u2||22).

In other words, ∫
Ω

∣∣∣∣∇u1 +∇u2

2

∣∣∣∣2 < 1

2

(∫
Ω

|∇u1|2 +

∫
Ω

|∇u2|2
)
.

As a result, if u1 and u2 are both minimizers of the Dirichlet integral over Kφ, we must have ∇u1 = ∇u2,
or else 1

2 (u1 + u2), which is also a member of Kφ because Kφ is a convex set, would have a lower value of
the Dirichlet integral. Because ∇(u1−u2) = 0, we conclude by the Poincare inequality that ||u1−u2||2 = 0.
Therefore u1 and u2 are equal in an L2(Ω) sense, so they must also correspond to the same member of
H1(Ω). Thus we cannot have two distinct minimizers, so solutions to the obstacle problem are unique in
H1(Ω), as desired.

6 Conclusion

There are several interesting properties of solutions to the obstacle problem that we are not able to discuss in
detail here. The advantage of proving existence and uniqueness of solutions in H1(Ω) is that with the setting
for solutions established, we can begin to characterize them rigorously. For example, we can generalize the
results of Section 2 of this paper to say that in a distributional sense, if u is the unique solution, ∆u ≤ 0
inside Ω, and ∆u = 0 in the non-contact set. (Note that ∆u represents the Laplacian operator, defined by
∆u = ux1x1

+ · · · + uxnxn .) We can also characterize the growth of solutions by saying that the growth of
the distance of the solution from the obstacle is bounded by a quadratic function of the distance from the
contact set. These results and many others may be explored once the foundation has been laid for the H1(Ω)
setting.
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