
University of Richmond University of Richmond

UR Scholarship Repository UR Scholarship Repository

Honors Theses Student Research

5-4-2021

Cosmological Inflation in N-Dimensional Gaussian Random Fields Cosmological In ation in N-Dimensional Gaussian Random Fields

with Algorithmic Data Compression with Algorithmic Data Compression

Connor A. Painter
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

 Part of the Physics Commons

Recommended Citation Recommended Citation
Painter, Connor A., "Cosmological Inflation in N-Dimensional Gaussian Random Fields with Algorithmic
Data Compression" (2021). Honors Theses. 1556.
https://scholarship.richmond.edu/honors-theses/1556

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/193?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/1556?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1556&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

COSMOLOGICAL INFLATION IN

N-DIMENSIONAL GAUSSIAN RANDOM

FIELDS WITH ALGORITHMIC DATA

COMPRESSION

by

Connor A. Painter

An Honors Thesis

Submitted to:

Department of Physics
University of Richmond

Richmond, VA

May 4, 2021

Advisor: Dr. Ted Bunn

Cosmological Inflation in N-Dimensional Gaussian Random Fields with Algorithmic
Data Compression

Connor A. Painter
Physics Department, University of Richmond, Richmond, VA 23173, USA

The leading modern theories of cosmological inflation are increasingly multi-dimensional. The
“inflaton field” φ that has been postulated to drive accelerating expansion in the very early universe
has a corresponding potential function V , the details of which, such as the number of dimensions and
shape, have yet to be specified. We consider a natural hypothesis that V ought to be maximally
random. We realize this idea by defining the V as a Gaussian random field in some number N
of dimensions. We repeatedly simulate of the evolution of φ given a set of conditions on the
“landscape” of V . We simulate a “path” stepwise through φ-space while simultaneously computing
V and its derivatives along the path via a constrained Gaussian random process, incorporating the
information from prior steps. When N is large, this method significantly reduces computational load
as compared to methods which generate the potential landscape all at once. Even so, computation
of the covariance matrix Γ of constraints on V can quickly become intractable. Inspired by this
problem, we present data compression algorithms to prioritize the necessary information already
simulated, then keep an arbitrarily large portion. Information such as the evolution of the scale
factor and tensor and scalar perturbations can be extracted from any particular path, then statistical
information about these quantities can be gathered from repeated trials. In these ways, we present
a versatile multi-variable program for exploration into how accurately this emergent model can fit
to observation.

I. INTRODUCTION

Characterization of plausible inflationary models is an
extremely high priority in cosmology. Since inflationary
theory was developed in the late 1970s and 80s, the cos-
mological community has sought to constrain its main
free parameter: the inflaton potential. There now exist
libraries of invented potentials which have been exhaus-
tively simulated with various initial conditions in efforts
to gauge how accurately each of their predictions align
with modern cosmological data. Some model potentials
have been shown to be ineffective representatives of our
physical universe, while a surprising (and concerning, to
some) number persistently conjure predictions that fall
within present uncertainties. Computational intensity is
a critical factor behind which models have been tested
most thoroughly. Potentials with high numbers of de-
grees of freedom N have often been omitted from analysis
or reduced to lower dimensions in favor of more detailed
solutions to differential equations. The N -dimensional
Gaussian random potential is an especially bulky choice
since the simulation of any new potential value must in-
corporate all other information known about the poten-
tial in the form of complicated linear systems. In the
following sections, I motivate and present methods for
exploration into the Gaussian random potential model,
including data compression and simplification specifically
adapted for this problem, as well as preliminary findings
from our own supercomputer simulations. I conclude
with the status of the project and a short list of ideas
for future exploration. We begin with a review of some
relevant cosmology.

II. INFLATIONARY THEORY AND NOTATION

Most of the content of this project is accessible through
the premises of basic inflationary theory. We assume
the reader has some elementary knowledge of multivari-
ate calculus, linear algebra, probability, and differential
equations. However, we will not assume any prior knowl-
edge of inflation. We proceed by reviewing a motivation
behind the theory of inflation, examining an inconsis-
tency between the Big Bang model of expansion and ob-
servations in microwave astronomy.

A. The Horizon Problem

The Cosmic Microwave Background (CMB), acci-
dentally discovered in the 1960s, is faint microwave
radiation detectable at every unobstructed point in the
sky [2]. It is a remnant of one of the early stages in
the evolution of the universe, the epoch of recombina-
tion, and it offers important insights in early-universe
cosmology. The CMB is very nearly uniform and
may be approximated to a black-body spectrum at a
characteristic temperature of 2.72548 ± 0.00057 K. The
temperature fluctuates from the mean at various points
in the sky ever-so-slightly, on the order of a few parts
in ten thousand. The large scale homogeneity of the
CMB—the fact that the temperature at one point in the
sky deviates so little from the temperature at the polar
opposite location—indicates that the entire observable
background must have been in contact long enough to
reach thermal equilibrium.

The Big Bang theory provides insight on the angular
separation θ over which regions of the CMB should be

2

causally connected. Two regions of space are causally
connected if light travelling at speed c has had time
to propagate from region A to region B given the
expansion of the universe. Two regions that are not
causally connected have not exchanged any information,
particularly thermal energy, throughout the duration of
the universe. For theory to agree with observation, it
must predict that the entire CMB is causally connected,
i.e. θ = 180◦. To verify the Big Bang theory, let’s
introduce some of its key quantities and measures.

The relative size of our expanding universe at any point
in time is conventionally measured by the scale factor
a(t). The scale factor is defined so that the proper dis-
tance d between two objects at two arbitrary times t1, t2
is related by

d(t1)

d(t2)
=
a(t1)

a(t2)
. (1)

The scale factor is widely accepted to be a monotonically
increasing function of time from the Big Bang, a(t = 0) =
0, to now, a(t = t0) = 1. In other words, the universe
has outwardly expanded continuously since the Big Bang.
Specifically, the theory suggests that a(t) evolved in time
as follows.

a(t) ∝

t1/2 0 < t ≤ 47 000 years

t2/3 47 000 < t ≤ 9.8 billion years

exp(Ht) 9.8 billion years < t

(2)

The piecewise formulation of a corresponds to eras of
different dominant energy densities: radiation, matter,
and dark energy, respectively.

Proper distance d(t) between two distant regions of
space changes while the universe expands. It is a distance
that is hypothetically measured by freezing a moment in
time and extending a ruler from one region to the other.
In early times, closer to the Big Bang, the ruler might
measure two regions to be close together, while today, the
ruler would measure a much greater distance. Proper dis-
tance is defined in terms of the comoving distance χ, part
of a convenient system of comoving coordinates that yield
distances constant in time by expanding synchronously
with the universe. To define these distances rigorously,
imagine that we, on Earth, observe photons emitted at
te from a distant object. The comoving distance between
the Earth and that object is

χ = c

∫ t0

te

dt

a(t)
(3)

Billions of years ago, χ was still be the same value we
computed today, since comoving coordinates factor out
the expansion of the universe. However, the proper
distance to the object factors expansion back in as
d(t) = a(t)χ. At the time in the past when a = 0.5,
correspondingly d = 0.5χ.

Another intimately related quantity is the horizon
distance dhor(t), which measures the diameter of the
causally connected universe at any time t. If the proper
distance between two objects at time t is larger than
dhor(t), then those objects were never causally connected.
The horizon distance can be expressed as an integral sim-
ilar to (3):

dhor(t) = c

∫ t

0

dt

a(t)

The horizon distance today is equal to the comoving dis-
tance to a photon emitted exactly at t = 0 which has
traveled unhindered since then:

dhor(t0) = c

∫ t0

0

dt

a(t)
= 46.9 billion light years,

with a(t) defined as in the traditional Big Bang theory
equation (2).

Finally, we are prepared to verify observations that
the CMB is causally connected. The CMB radiation was
emitted at the “surface of last scattering”, t = tls ≈
379 000 years. The angular separation between causally
connected portions of the CMB is calculable approxi-
mately in terms of dhor(tls) and one other important
quantity, the cosmological redshift z(t):

θ ≈ dhor(tls)

dhor(t0)
z(tls). (4)

Cosmological redshift is the factor by which the wave-
length of light has stretched out due to the expansion of
the universe. The approximation (4) is only valid because
z(tls) = 1100, which is much greater than 1. Once again,
the Big Bang model can be used to produce a value for
the horizon distance at the surface of last scattering:

dhor(tls) = c

∫ tls

0

dt

a(t)
≈ 1.31 million light years.

Substituting, we find θ ≈ 2◦, woefully short of the
required 180◦ angular separation to explain observations
[8].

This failure of the Big Bang theory can be blamed
on the scale factor, which completely determines how
quickly each point on the last scattering surface has
spread away from the others. A clever individual might
propose that equation (2) is wrong, somehow, and that
the universe underwent more rapid growth in early times
than originally theorized. In fact, that turns out to be
the proposed solution. The horizon problem, along with
other similarly puzzling problems left behind by the Big
Bang model, can be explained by assuming there existed
a period of rapid expansion in the very early universe,
called inflation. Prominent inflationary theories suppose
that the scale factor must have increased by a factor of
1022 to 1026 between t = 10−36 and 10−32 seconds, an

3

incredible leap. The details of the mechanism behind
inflation are still unknown, but most models begin by
proposing a potential function, which dominates the
energy density of the universe at early times, and an
associated scalar field evolution (more in part II B).
In any case, such a dramatic expansion in the early
universe would explain the horizon problem: before
inflation, regions of space which now encompass the
entire surface of last scattering settled into thermal
equilibrium, then inflation blasted those regions far away
from one another at rates we failed to conjecture, at first.

Now that inflation is properly motivated, we can ex-
amine more closely the assumption of an inflation-driving
potential function. The specifics of an assumption turn
out to be very important in the subsequent evolution of
its associated model universe.

B. The Trajectory

Suppose there existed some “inflaton” field φ(t) which
permeated the early universe homogeneously in space,
but whose time evolution was governed by its asso-
ciated potential function V (φ). In general, φ =
(φ(0), φ(1), ..., φ(N−1)) is a vector of N components while
V is scalar-valued. In addition to its existence, we assert
that the inflaton potential dominates the energy density
of the early universe so that its characteristics may deter-
mine the particularities of large-scale cosmic expansion in
early times. Derived from the Friedmann Equation, the
Fluid Equation, and equations in field theory, the dif-
ferential equation for the evolution of φ in terms of V
is

φ̈+ 3Hφ̇+∇φV = 0 (5)

where overdots signify derivatives with respect to cosmic
time t, H = ȧ/a is the Hubble parameter, and Planck
units c = ~ = 8πG = 1 are implemented throughout.
Component-wise, (1) reads

φ̈(α) + 3Hφ̇(α) +
∂V

∂φ(α)
= 0 (6)

where α = 0, 1, ..., N − 1. This equation recalls the fa-
miliar intuition of a ball rolling around on a surface with
friction, an analogy we can carry with us through this
paper. If φ is the position of the ball in N -dimensional
space (for N = 2, imagine that (φ(0), φ(1), V) is analo-
gous to (x, y, z)), then the ball accelerates downhill in
response to slopes ∇φV , but is resisted by a frictional

term 3Hφ̇.

In practice, it is often useful to measure time in terms
of the expansion of the universe [6]. During inflation, it
is often the case that a(t) ≈ A · Exp(Ht) with A,H > 0,
so a natural unit of time is the “number of e-folds”

Ne(t) = ln

(
a(t)

a(ti)

)
(7)

where ti is the arbitrary start of inflation. Some algebra
transforms (7) into

d2φ(α)

dN2
e

+ (3− ε)dφ
(α)

dNe
+

1

H2

∂V

∂φ(α)
= 0 (8)

noting that H = ȧ/a. To cleverly track the progression
of inflation in our models, we have defined the “slow-roll”
parameter ε as

ε ≡ − Ḣ

H2
=

1

2

∣∣∣∣ dφdNe
∣∣∣∣2 (9)

which signals the end of inflation when ε ↑ 1.

Generally, V is specified by the theorist (more in
III.), who then solves (8) with various initial conditions
φ0, dφ0/dNe for a path evolution φ(t) through critical
periods of inflation. For V to represent a viable infla-
tionary model, there are some general requirements by
which it must abide. Vaguely, models must predict that
the interaction of φ in V initiates a period of rapid ex-
pansion, then diminishes in energy until other densities
of energy (radiation, matter, dark) begin to dominate the
changes in a(t). The relationship between a(t), φ(t), and
V (t) as presented by the Friedmann equation can guide
us toward ensuring this evolution plays out.

3H(t)2 = 3
ȧ(t)

a(t)
=

1

2
|φ̇(t)|2 + V (t) (10)

This differential relationship motivates the following con-
ditions on V :

1. The slow-roll condition. The potential must con-
tain some gradual and gradually changing slopes
∂V/∂φ(α) for a sufficient length along the evolu-
tion of φ. These assumptions intend to allow
V ≈ constant and φ̇ ≈ constant as terminal ve-
locity is reached along a relevant duration. As a
result, (10) reads that ȧ/a ≈ constant and the sim-
plified differential equation solves to a ∝ Exp(Ht).

2. The minimum condition. The potential must have
a local minimum at V = 0 in which the φ solution
settles. If φ settles to some Vmin 6= 0 after its
required inflationary stretch, a will either continue
to increase exponentially (V > 0, eternal inflation)
or start to decrease exponentially (V < 0, universe
collapses). This can be seen by referring, again,

to (10) and noting that φ̇ ≈ 0 when settling in a
minimum. The end behavior of these models will
always be ȧ/a ≈ Vmin, so any nonzero minimum
would not lead to present observations.

As long as the choice of V satisfies these requirements, it
is worthwhile to test further.

4

C. An Example: The Quadratic Model

Perhaps the simplest model potential that yields rea-
sonable solutions is the N -dimensional quadratic poten-
tial

V (φ) =
1

2

N−1∑
α=0

(
kαφ

(α)
)2

for some constants kα. Notice that with low enough kα,
the slow-roll condition is satisfied and the minimum con-
dition is always satisfied since V (0) = 0. For illustra-
tive purposes, we can briefly solve for the trajectory of
φ evolving under this simple potential. We seek to solve
(8), which now reads

d2φ(α)

dN2
e

+ (3− ε)dφ
(α)

dNe
+
k2α
H2

φ(α) = 0 (11)

with arbitrary initial conditions φ(α)(0) = 10 and φ̇(0) =
0. Like in most relevant inflationary models, this differ-
ential equation is not solvable analytically, so we turn to
numerical methods. We implement a simple construction
of this quadratic model in Python (we use this program-
ming language throughout the project), particularly us-
ing the solve ivp function within the scipy.integrate
class. This function integrates the equations of motion
(8) from t = 0 until a stopping condition is met (more in
IV) and yields discrete points in φ, dφ/dNe, and V . A
compilation of trajectory plots for certain kα and N are
found in Figure 1.

D. Observable Quantities

If an inflationary model satisfies the elementary con-
ditions, its predictions can be evaluated against observa-
tions [5]. Specifically, we can extract the following rele-
vant quantities for comparison with modern consensus:

• The total amount of inflation. For an inflationary
model to solve problems left behind by the tradi-
tional Big Bang Theory (such as the Horizon Prob-
lem), the universe has to expand enough during
the relevant period. It is generally accepted that
60 e-folds of inflation must have occurred. That is
Ne(tf) ≥ 60.

• Scalar (matter) perturbations. In the early
universe, quantum fluctuations are theorized to
have distorted space in ways that are observable
today [3]. Each inflationary model evolves these
fluctuations through time in unique ways; different
inflationary models yield different predictions
about their present-day appearance. We can
briefly sketch out the connection between inflation
and these primordial perturbations:

The metric tensor g(x) describes the curvature of
space at every point in space.

g(x) =

g00(x) g01(x) g02(x)
g10(x) g11(x) g12(x)
g20(x) g21(x) g22(x)

 (12)

The superscripts span over coordinates in three-
dimensional space, e.g. (0, 1, 2) = (r, θ, φ), so g is
fully capable of describing curvature along each of
the coordinate axes. In general, the metric tensor
describes the curvature of spacetime, but we are
confining our attention to the spatial indices for
now. One of the most important metric tensors is
the flat space metric η, which is just the identity.

η = I3 =

1 0 0
0 1 0
0 0 1

 (13)

With appropriate choices for coordinates, a metric
tensor can be decomposed into a flat term and its
perturbations around flatness.

g = η + δg (14)

The perturbations can be diagonalized as

δg = P

λ0 0 0
0 λ1 0
0 0 λ2

P−1 = PΛδgP
−1 (15)

where λi are eigenvalues of δg. The diagonalization
Λδg contains all the relevant information about the
deviation in the curvature of space about flatness.
We can further decompose Λδg into two critically
important curvatures: expansion and shearing.

Λδg =
1

3
Tr(Λδg)︸ ︷︷ ︸

Expansion

η +

(
Λδg −

1

3
Tr(Λδg)η

)
︸ ︷︷ ︸

Shearing

(16)

Expansion is curvature of equal magnitude is all di-
rections. It is a scalar quantity still defined at every
point in space, i.e. Tr(Λδg) = Tr(Λδg)(x). Expan-
sion (or contraction) of space is largely caused by
matter, thus perturbations that expand and con-
tract space are sometimes called matter perturba-
tions. Most of the time, these scalar perturbations
are not expressed as a function of position, but as
a function of wavevector k.

PS(k) = |FourierTransform [Tr(Λδg)]|2 (17)

This is the power spectrum of scalar perturbations.
The perturbations are said to be “scale-invariant”
since they generally look the same at every time
during inflation. Mathematically, this means the
power spectrum follows the power law

PS(k) = AS

(
|k|
k0

)nS−1

= AS

(
k

k0

)nS−1

(18)

5

FIG. 1. Sample trajectories from the N -dimensional quadratic potential with kα ∼ N (1, 0.3). The first row is an example with

N = 2 while the second row sets N = 10. The columns plot, from left to right, φ(t), φ̇(t), φ(Ne), and V (t). Notice that the

initial conditions φ(α) = 10 and φ̇(α) = 0 are represented appropriately. Visible on the “velocity” plots is the quick ascent to
slow roll of φ̇, relevant inflationary period, then settling to the quadratic minimum.

where AS is the scalar amplitude, nS is the scalar
spectral index, and k0 = 0.05 Mpc−1 is an arbi-
trary “pivot scale”. The math and physics required
to compute PS(k) from the trajectory is quite in-
tense, so we have relocated it in Appendix A for
the curious reader. The quantities AS , nS have
been well constrained in recent years by the Planck
missions [1], offering a powerful test of inflationary
models.

ln(1010AS) = 3.040± 0.016 (19)

nS = 0.9626± 0.0057 (20)

• Tensor perturbations. The shearing term in the
curvature decomposition (16) represents how much
three-dimensional space is shifted from flat, rect-
angularly gridded space to grid lines that form
parallelepipeds. When space is contorted in this
way, the curvature radiates away as gravitational
waves. Theoretically, signatures of these gravita-
tional waves should be visible in the CMB with
high enough resolution. However, they have yet to
be detected. This leads to a constraint in the form
of an upper bound on a spectral amplitude. To be
specific, we define

Tδg(k) = FourierTransform [Sδg] (21)

where Sδg ≡ Λδg − Tr(Λδg)/3. Now, the power
spectrum of tensor perturbations PT (k) is related

to the absolute square of the eigenvalues of Tδg. As
with scalar perturbations, this power spectrum of
tensor perturbations should resemble a power law.

PT (k) = AT

(
|k|
k0

)nT

= AT

(
k

k0

)nT

(22)

Here, AT is the tensor amplitude and nT is the
tensor spectral index. The constraints from Planck
data come in the form of a tensor-to-scalar ratio:

r(k) =
PT (k)

PS(k)
=
AT
AS
·
(
k

k0

)nT−nS+1

(23)

Specifically, the tensor-to-scalar ratio is constrained
at a particular wavelength kt = 0.002 Mpc−1 to
roughly

r(kt) < 0.1. (24)

In terms of the trajectory, the power spectrum of
tensor perturbations is surprisingly easy to calcu-
late.

PT (k) =
2

π2
H(k)2 (25)

For an inflationary model, k(t) ∝ a(t)H(t) is an-
other monotonically increasing function of time
and is, thus, a valid temporal variable at which
to measure time-dependent quantities such as H.

6

The wavenumber represents the “horizon-crossing
mode” at time t, or the shearing mode that is com-
parable in wavelength to the horizon distance at
that time during inflation.

These observable quantities will serve as our guides in
determining which parameters for our inflationary model,
the Gaussian random potential, tend to yield plausible
trajectories.

III. THE GAUSSIAN RANDOM POTENTIAL

Our choice of potential is interesting in that it does
not have a formulaic definition, but a statistical one. We
posit that V = V (φ0,φ1, . . . ,φN−1) is realized via a
Gaussian random process with mean zero, variance V 2

0 ,
and coherence scale s [9].

A. Generation: Two Points

Suppose for the moment that V (φ) is a function of
just one variable, i.e. φ = (φ(0)). Now, I want to know
the value of a brand-new potential function at just one
point φ0. With no constraints from previous data, the
first value is just a random number generated from a
Gaussian distribution. We say V (φ0) ∼ N (0, V 2

0), read
“V (φ0) is drawn from a Normal distribution of mean
zero and variance V 2

0 .”

Now that we know the first point, we ask for the value
of the potential at another location φ1. Importantly,
V (φ1) will not be completely random, but constrained
to some extent by V (φ0). This constraint comes so that
the curves of V are smooth; if every generated point were
completely random, V would end up awfully discontinu-
ous and “staticky.” The mathematical constraint comes
in the form of a correlation function,

〈V (φ0)V (φ1)〉 = V 2
0 exp

(
−|φ0 − φ1|2

2s2

)
, (26)

where angular brackets represent expected value. When
φ1 is very near φ0, V (φ1) is highly constrained to be
near V (φ0), or else V would have to change unreasonably
rapidly. On the other hand, if φ1 is relatively far from
φ0, then V (φ1) “doesn’t care much” about V (φ0) and
should be left mostly to randomness. Notice that (26)
includes both the coherence scale s and the inflationary
energy scale V0. The coherence scale how far is “far”
when measuring distance between φ0 and φ1 in φ-space.
If |φ0−φ1| < s, then I expect V (φ0)−V (φ1) to be fairly
small; the points are highly correlated. If |φ0 −φ1| � s,
I have no way of predicting any relationship between
V (φ0) and V (φ1); the points are weakly correlated. The
inflationary energy scale is the standard deviation of V
if randomly regenerated over and over at the same φ. To
see this, notice that (26) reduces to V 2

0 when φ0 = φ1.

In a sense to be clarified soon, s2 and V 2
0 are variances

in the φ and V directions.

To generate V (φ1), we construct the covariance matrix
Γ of constraints on V as

Γ = [Γ(ij)] = [〈V (φi)V (φj)〉] (27)

where i, j span through all points in φ. So far, Γ is
2×2, and V (φ1) can be calculated using its components.
V (φ1) can be considered the sum of two predictions made
by Γ. We can say V (φ1) = µ+σ, where µ is the expected
value of V (φ1) and σ is a random deviation from that
mean, constrained appropriately. The predicted mean is
calculated from Γ as

µ =
Γ(10)

Γ(00)
V (φ0)

= V (φ0) · exp

(
−|φ0 − φ1|2

2s2

)
.

The random deviation is slightly more complicated. De-
fine the conditional covariance ΓC as

ΓC = Γ(11) − Γ(10)Γ(01)

Γ(00)

= V 2
0

(
1− exp

(
−|φ0 − φ1|2

s2

))
This quantifies how constrained V (φ1) is from V (φ0).
Notice that if φ1 and φ0 are very close together, ΓC ≈ 0,
meaning that there will be almost no deviation from µ.
Completing the derivation, sample one number y from a
standard normal distribution (y ∼ N (0, 1)), then set

σ = y
√

ΓC

and V (φ1) = µ+ σ.

For example, let’s say I sample V (φ0) at f1V0 and I

want to sample V again at φ1 = φ
(0)
0 + f2s, for some

fractions f1, f2. In this case, I have

µ = f1V0 exp

(
−f

2
2

2

)
,

ΓC = V 2
0

(
1− exp(−f22)

)
, and

σ = y · V0
√

1− exp(−f22),

which evaluate V (φ1) to

V (φ1) = V0

(
f1 exp

(
−f

2
2

2

)
+ y
√

1− exp(−f22)

)
.

For f1 = 1, f2 = 0.5, that’s

V (φ1) ≈ V0(0.882 + 0.470y).

For f1 = 1, f2 = 2, that’s

V (φ1) ≈ V0(0.135 + 0.991y).

7

FIG. 2. One-two sigma contour illustrations of the correlation between two points as a function of their separation. Given

V (φ
(0)
0) = f1V0 and simulating V (φ

(0)
0 + f2s), the figure shows µ (black line) and the normal distributions for possible variation

about µ. When |f2| is small, the evaluation points are close together and V will be highly constrained around f1V0. When f2
is large, V is very loosely constrained and will generate as if the original point is weakly influential.

Notice how µ (the first term) decreases from f1V0 to
0 as f2 increases, and how σ (the second term) increases
from 0 to yV0 at the same time. This behavior verifies the
intuition that sampling V (φ1) far away from φ0 should
be similar to unconstrained sampling from a Normal dis-
tribution with mean 0, variance V 2

0 , just like we did to
find V (φ0). See Figure 2 to visualize this trend.

B. Generation: Many Points

When I ask to generate a third bit of data V (φ2),
things would seem to get more complicated. After all,
I will have to take into account both previous points.
What if I have n data points and ask for point number
n + 1? What if I ask for multiple points at the same
time? Thankfully, the methods described in the previ-
ous section generalize well to handle many points at once.

Imagine we have sampled n potential values at
φ0,φ1, . . . ,φn−1 and we want to simulate p more values
at φn, . . . ,φn+p−1. We can start again, with the covari-
ance matrix Γ, defined as in (27), which is (n+p)×(n+p)
in this case. This time, we want a vector of p new cor-
related potential values as output, so let’s call it vN ,
read “v-new”, at the risk of confusion with N , the di-
mension of V . Correspondingly, call all the points we
already know listed in a vector vO, for “v-old”. All the
points together in a vector, we can simply label v. Some
properties to note:

• Γ = 〈vvT 〉, where vT is a row vector.

• Γ is symmetric. Mathematically, Γ(ij) = Γ(ji).

• Γ can be broken up into four blocks:

Γ =

[
ΓOO ΓON
ΓNO ΓNN

]
– ΓOO = 〈vOvTO〉 is the n × n upper-left block

and contains all information correlating old
points with old points.

– ΓNO = ΓTON = 〈vNvTO〉 are the p × n lower-
left and n × p upper-right blocks, correlating
old points with new points.

– ΓNN = 〈vNvTN 〉 is the p× p lower-right block,
correlating new points with new points.

• The current problem reduces to the problem in the
previous section with n = p = 1.

Now, the new points will still be the sum of two predic-
tions by Γ. We can extend the scalar equation from the
previous part to a vector equation, vN = µ+σ, where µ
and σ are the expected potential value and the random
correlated skew at each new point. Let’s generalize the
expressions for µ and σ to this multi-point problem. The
predicted mean is

µ = ΓNOΓ−1OOvO, (28)

the conditional covariance is now a matrix,

ΓC = ΓNN − ΓNOΓ−1OOΓON , (29)

and the skew is

σ = LCy (30)

where ΓC = LCL
T
C is the lower-triangular Cholesky

decomposition of ΓC and y is a vector of p randomly
drawn real numbers from a standard normal distribution

8

FIG. 3. A 1-dimensional Gaussian random potential generated many points at a time. Given fifty sampled potential values
(blue), it is possible to generate fifty new potential values (green) all at once. The new values are appropriately constrained so
as to form a continuous and differentiable curve with the old points.

[4]. These linear algebra techniques allow us to simulate
any number of potential values constrained by any other
number of values (see Figure 3). Mathematically, we say
“vN is drawn from a multivariate Gaussian distribution
with mean µ and covariance matrix ΓC .”

C. Generation: Derivatives of V

In addition to V , we need to randomly simu-
late first derivatives ∂V/∂φ(α) and second derivatives
∂2V/∂φ(α)∂φ(β). No new linear algebra machinery is
needed to do this. If I include values for derivatives of V
inside the vector v, then it is only necessary to populate
Γ with the correct correlation functions. For instance,〈

V (φi)
∂V

∂φ
(α)
j

(φj)

〉
=

∂

∂φ
(α)
j

〈V (φi)V (φj)〉

=

(
φ
(α)
i − φ(α)j

s2

)
〈V (φi)V (φj)〉

where 〈V (φi)V (φj)〉 is given by (26). Correlations be-
tween derivatives and second derivatives can get tedious
to calculate and implement as there are many cases for
different indices of φ.

D. The Minimum Condition

In Section II B, I detailed necessary conditions on
inflationary potentials so that they evolve φ in physically
meaningful ways. In the N -dimensional Gaussian ran-
dom potential model, the slow-roll condition is satisfied
for many choices of s, V0, and N , but the minimum condi-
tion is not naturally satisfied. There is nothing inherent
in the mathematics of the simulation that forces minima
to spawn at exactly V = 0, as there was in the quadratic

model. Observe that the V (φ) simulated in Figure 3
has extrema, but none are minima at exactly V = 0,
nor will I ever find one. Thus, for this model to yield
physically meaningful results, I must manually impose
the minimum constraints before simulating the potential.

By definition of a minimum, I need to impose the fol-
lowing N2 +N + 1 constraints on V .

V (0) = 0 (31)

∂V

∂φ(α)
(0) = 0 for all α (32)

∂2V

∂(φ(α))2
(0) > 0 for all α (33)

∂2V

∂φ(α)∂φ(β)
(0) = 0 for all α 6= β (34)

In words, we want the potential to be zero, flat, and con-
cave up at the origin (I could have chosen any φ as long
as I was consistent). More precisely, we want the Hessian
matrixH of second partials of V to be positive-definite—
contain only positive eigenvalues—at the origin. Con-
straints (33) and (34) are equivalent to diagonalizing H
at the origin and forcing the diagonal elements to be pos-
itive. Visually, we are exploiting the freedom to rotate
our coordinate axes along the principal directions of cur-
vature. This is a surefire method of enforcing minimum
behavior in a local neighborhood, as long as the sub-
sequently generated points are correlated properly. See
Figure 4 to visualize the culmination of these efforts in a
2-dimensional simulation, visualized many different ways.

IV. COMPUTATIONAL PROCESS

In this section, I outline the computational methods
and resources used to simulate V , evolve solutions, and
test its predictions. The project is encompassed in an
intricate yet efficient object-oriented Python program.

9

FIG. 4. A 2-dimensional Gaussian random potential generated at nodes on a 30 × 30 grid evenly spaced in φ(0), φ(1). The
leftmost plot shows cross sections of V at constant values of φ(0). The center plot shows a “bird’s eye view” of the lattice with
color indicating value for V . The rightmost plot is a traditional 3-d projection with axes (φ(0), φ(1), V). Minimum conditions
(31)—(34) were imposed before generating the 900 values. Solving the differential equation (8) for φ under potentials like these
will resemble a ball rolling around on this “landscape” under the influence of gravity and friction.

The code is all-original to this project, the product of
over one thousand hours of effort. The relevant Python
function within the code I have named bushwhack, since
my solutions are found by numerical solving differen-
tial equations, step by step, in previously unknown,
uncharted “landscapes”. The bushwhack function takes
many inputs and yields an object from an original
class BStuff, which has dozens of attributes including
information about the trajectory, observable quantities,
and the computational process involved. All inputs and
outputs relating to bushwhack are detailed in Appendix
B. Recall that generating my Gaussian random potential
is only the first step; I must solve for the evolution of
φ from its initial conditions until a stopping condition
is met, and that differential equation is governed by my
randomly generated V . After the trajectory is solved,
I must extract from it observable quantities so that I
can evaluate my model against Planck data and other
theoretical constraints.

The code runs, roughly, in the following sequence.

• Supply initial conditions. The user supplies start-
ing values of φ and dφ/dNe, as well as details about
the potential, such as s, V0, and N .

• Force the minimum. Seed the random generation
of V with minimum conditions (31)—(34).

• Generate V and ∇φV at φi. At first, this is a point
specified by the initial condition φ0, but this step
is repeated at other points.

• Solve for φi+1. Use equation (8) along with the V
information generated at the previous point to nu-
merically compute the next φ value after one time
step.

• Repeat the previous two steps cyclically. Cycle be-
tween generating the potential and solving the dif-
ferential equation until the stopping condition ε ↑ 1
is met.

• Check if the trajectory is plausible. Perform ele-
mentary tests to confirm the φ solution hit major
checkpoints, like converging to the origin and accu-
mulating enough e-folds of inflation.

• Extract observable quantities. If the trajectory is
plausible, carry forward extracting predictions for
perturbation spectra.

See Figure 5 for a flowchart. I will further detail each of
these steps in the process below.

A. Initial Conditions

Initial conditions on the simulation are important
knobs I can tweak to test which regions of “parameter
space” statistically produce the most viable inflationary
models. Now that we have seen Figure 4, we can visualize
what each of s, V0, and N physically change.

• Changing s changes the width of the landscape. In-
creasing s results in the hills and valleys spreading
farther apart from one another.

• Changing V0 changes the height of the landscape.
Increasing V0 makes the slopes steeper.

• Changing N changes the number of dimensions of
V . V is a function from RN → R, so, as usual, our
spatial axes available for visualization run out at
N = 2.

10

FIG. 5. Flowchart illustrating the chronology of the computational process involved in solving for the trajectory and extracting
observable quantities. Each of these steps are thoroughly detailed in Section IV.

In addition to properties of the inflaton potential, the
user has the option to place the inflaton field at any start-
ing value φ0 and at any starting velocity dφ0/dNe. There
is no preferred axis among the N dimensions of V , so
the only important quantity related to φ0 is its distance
from the imposed minimum. My minima will always be
imposed at the origin so that this distance is just the
magnitude |φ0| = φ0. My initial value for dφ/dNe is
interesting because I assign it after the potential infor-
mation at φ0 has been generated. Specifically, I want
the inflaton field to start out at slow roll, an equilibrium
or terminal velocity that balances the frictional term in
(8) with the slope term. This is found most easily by
using (6) and (10). Since we want the acceleration of the

inflaton field to be zero during slow roll, we set φ̈ ≈ 0.
Now,

φ̇ ≈ −∇φV
3H

(35)

Assuming |φ̇|2 is negligibly small as well, (10) reduces to
3H2 ≈ V . Substituting and rearranging, we have

1

H

dφ

dt
≈ −∇φV

V
. (36)

Finally, we observe that

dNe
dt

=
d(ln a)

dt
=

1

a

da

dt
= H, (37)

which resolves the left-hand side of (36) to dφ/dNe. So,
once the first values of the potential in the trajectory are
known, the initial velocity condition can be set to slow
roll by (36).

B. Force the Minimum

Before simulating any information about V , we need
to impose conditions (31)—(34) to ensure the subsequent
generation can plausibly represent our universe. I man-
ually impose conditions (31), (32), and (34), initializ-
ing arrays such as Γ, v, φ, and dφ/dNe. Condition
(33) is imposed by randomly simulating N independent
second derivative values, taking their absolute values to
force them positive, and storing them as the diagonals
of the Hessian of V at the origin. These values will
remain the first N2 + N + 1 entries of v throughout
the entire simulation, propagating into the upper-left
(N2 + N + 1) × (N2 + N + 1) block of Γ = 〈vvT 〉 as
constraints on the rest of the potential.

C. Simulate the Potential

Now that I have forced the minimum, I can begin to
simulate correlated potential values near the minimum.
Importantly, I will only generate potential values exactly
on the path evolution of φ, not in the surrounding
regions. The potential in the regions near the path does
not influence equations of motion nor is it relevant when
extracting observable quantities. This is a time saving
technique, as it is easier to perform linear algebra with
smaller Γ (more in Section V).

I start with the user-supplied initial condition φ(0) =
φ0, generating V (φ0) and ∇φV (φ0). This is done, for

11

the initial point in the trajectory as well as for every
other point, exactly as detailed in Section III B with
n = length(vO) and p = N + 1. The covariance ma-
trix Γ is broken up into blocks and the newly generated
potential values are constrained, via linear algebra, by
the old potential values which are securely stored in vO.
Once the trajectory is complete, both V and ∇φV will
be known at every value of φ along the path.

D. Solve the Differential Equation

Let’s return to the beginning of the trajectory for a
moment. With V (φ0) and ∇φV (φ0) simulated properly,
we can numerically solve (8) for incremental inflaton val-
ues φ1 and dφ1/dNe after some time step ∆Ne. Euler’s
method, the most elementary numerical differential equa-
tion solving technique, would equate[

φ1

dφ1/dNe

]
≈
[

φ0

dφ0/dNe

]
+

[
dφ0/dNe
d2φ0/dN

2
e

]
∆Ne, (38)

where d2φ0/dN
2
e is found by substituting known values

into (8) and solving for the first term. I used the more ac-
curate numerical technique “fourth-order Runge-Kutta”,
which takes into account information from many previous
time steps to predict the next inflaton field value. The
solution technique is manipulable via the method param-
eter in the bushwhack function, but Runge-Kutta is ade-
quate for most relevant circumstances. Just like I used to
numerically find solutions with the quadratic potential,
the code for these numerical techniques is attributable to
the solve ivp function of the scipy module.

E. Repeat

Steps C and D are repeated over and over again, one
time step at a time, storing inflaton field and potential
information at each point. Additionally, ε = 1

2 |dφ/dNe|
2

is monitored at every step. It turns out that for plausible
inflationary models, ε starts between 0 and 1 and rapidly
increases through 1 as φ makes its final acceleration
off the slopes of V into the minimum at 0. This makes
ε ↑ 1 a perfect stopping criterion, since all physically
meaningful behavior occurs when V is significantly
greater than 0 (see Figure 1 to recall damped oscillatory
behavior when φ settled in the quadratic minimum).
Figure 6 gives an example of a usual progression of ε.

There are some stopping criteria in addition to ε that
help to end simulations that are going awry. The follow-
ing quantities are monitored at every time step, just like
ε, in an effort to identify solutions that are not worth
integrating further.

• Inwardness. I have assigned the lowercase Greek
letter iota to measure how much the slopes of V

FIG. 6. One representative ε(Ne), a stopping criterion for
numerically solving the differential equation (8). Notice how
ε rapidly increases to 1 around Ne = 80, signaling the end of
inflation.

“point” toward the minimum at the origin, the “in-
wardness”:

ι(φ) = ˆ∇φV · φ̂ (39)

Overhats indicate unit vectors. When ι ≈ 1, the
slopes of V point directly downhill toward the ori-
gin, and thus the inflaton field is expected to accel-
erate in that direction. If ι < 0, the inflaton field
is likely to diverge away from the minimum at the
origin, leading to an unrealistic evolution. So, if φ
evolves into a region where ι < 0, I admit that the
simulation failed.

• Altitude. Another simple indication of failure is if
V (φ) < 0 at any point. It is unlikely that this fail
criterion would be triggered before the inwardness
criterion, but if V falls below zero, the cycle will
immediately halt.

Failing criteria are of critical importance when testing
initial values φ0 far away from the origin. The farther
away φ starts from the origin, the more likely it is that
the solution will diverge to another minimum in the ran-
dom potential. The program relies on failing criteria to
identify divergent behavior before the solver wastes too
much time or crashes by taking square roots of negative
quantities.

F. Plausibility Check

Once the iteration has ended, either by ε ↑ 1 or a failing
criterion, the code performs some quick checks to judge
whether to perform further analysis on the trajectory.
The plausibility checks are as follows.

1. Did the solution fail by diverging? In other words,
was ι(φf) < 0? If so, do not analyze further. If
not, proceed to the next check.

12

2. Did the solution fail by submerging? In other
words, was V (φf) < 0? If so, do not analyze fur-
ther. If not, proceed to the next check.

3. Did the solution accumulate enough inflation? In
other words, was Ne(tf) ≥ 55? If so, this solution
is plausible enough and observable quantities can
be extracted. If not, do not analyze further.

This step is very quick. Even if a solution does not pass
the plausibility checks, the bushwhack function still out-
puts a BStuff object with trajectory attributes so that
the failure may be examined or recorded.

G. Extract Observables

Finally, properties of tensor and scalar perturbation
spectra can be extracted from the trajectory via methods
described in Section II D and Appendix A. With each
trajectory that passes the plausibility checks, there is
an associated AS , nS , AT , nT , r, Aiso, and niso. Even
with the same set of parameters and initial conditions,
randomized potentials will yield different trajectories,
which will yield different values for these observable
quantities. It is only with many repeated trials that
the program can state the statistical predictions of a
particular set of parameters.

There are many different variables and symbols associ-
ated with the trajectory of φ and its extracted observable
quantities; it can be overwhelming. See Figure 7 to vi-
sualize all the different ideas side-by-side for one specific
2-dimensional trajectory.

V. DATA COMPRESSION AND EFFICIENCY

The covariance matrix Γ of constraints on the poten-
tial can grow very large, very quickly. With N + 1 rows
and columns added to the matrix at every time step, Γ
can easily grow to contain millions of elements before the
simulation finishes. This reduces efficiency when popu-
lating new rows and columns of the matrix and increases
the chance for numerical instabilities during linear alge-
bra steps such as inverses and Cholesky decompositions.
Several measures were implemented to ease this compu-
tational intensity during the simulate-solve cycle.

A. Predicting Plausibility

No matter how well-optimized the simulate-solve cycle
becomes, we never want to waste time finding solutions
that are destined to be implausible from the beginning.
If there is a way to perform the sort of plausibility
check detailed in Section IV F before the simulation even
starts, it could save lots of time, especially when I need

to perform as many simulations as I can.

It turns out we can estimate the total number of e-folds
of inflation a trajectory will yield with just the very first
simulated potential values V (φ0) and ∇φV (φ0). In the
slow roll approximation, equation (36) can be solved for
dNe.

dNe ≈ −
V

∇φV
dφ (40)

If V = V (φ) is a function of one variable, the number of
e-folds accumulated over a portion of the trajectory can
be approximated by an integral.

Ne ≈ −
∫ φf

φi

V (φ)

V ′(φ)
dφ =

∫ φi

φf

V

V ′
dφ (41)

Near the minimum, the Gaussian random potential can
be approximated to a quadratic V = kφ2. Also, we in-
tend to integrate over the entire trajectory, from the ini-
tial point φi = φ0 to the final point φf = 0. Substituting,
that is

Ne ≈
1

2

∫ φ0

0

φ dφ =
φ20
4
. (42)

This is a fairly good approximation, but we can actu-
ally improve by allowing V = kφm for some constant m,
instead of forcing m = 2 in the quadratic approxima-
tion. In this approximation, V/V ′ = φ/m, thus initial
conditions yield m = (V ′(φ0)/V (φ0))φ0, and the integral
becomes

Ne ≈
1

φ0

V (φ0)

V ′(φ0)

∫ φ0

0

φ dφ =
φ0
2

V (φ0)

V ′(φ0)
. (43)

This approximation generalizes naturally back to higher
dimensions of V .

Ne ≈
|φ0|

2

V (φ0)

|∇φV (φ0)|
(44)

For instance, in the simulation visible in Figure 7, the
number of e-folds of inflation totaled Ne = 182.32. At
the beginning of the simulation, the quadratic approxi-
mation (eq. (42)) for V would have predicted a total of
Ne = 204.62 (standard error of about 10.9%), while the
more general approximation (43) predicted Ne = 188.15
(standard error of 3.1%).

After the very first potential values in the trajectory
are simulated, I use equation (44) to estimate the total
number of e-folds the run will accumulate. If the estima-
tion is below a lower bound, I choose to discard the en-
tire run. I set the bound generously low at (Ne)LB = 45
because the estimation is not always very accurate. How-
ever, this cutoff saves a lot of time when experimenting
with initial conditions φ0 close to the origin, since it effi-
ciently isolates the few runs that will accumulate enough
inflation to be reasonable.

13

FIG. 7. Visualizations of different quantities related to the trajectory. Every one of these plots contains information about
the same trajectory, simulated under a Gaussian random potential with s = 30, V0 = 5 · 10−9, and N = 2. Row 1 contains
information about φ over time, row 2: V (φ) over time, row 3: stopping and failing conditions over time, row 4: inflation and

second derivatives of V over time, row 5: (φ(0), φ(1)) plot and Hubble parameter, row 6: perturbation spectra.

14

B. Simulating Along the Path

The number of potential data points that need to be
stored in v, and thus the number of constraints within
Γ, are greatly reduced by simulating potentially along
the only relevant curve in φ-space: the solution curve.
As mentioned previously, the only potential information
that is relevant to the progression of the trajectory
and the extracted observable quantities are the values
encountered along the path evolution of φ. It would be
a waste of time to simulate elsewhere.

Second derivatives of the potential ∂2V/∂φ(α)∂φ(β) are
not simulated during the trajectory because they are only
necessary in the calculation of the scalar perturbation
power spectrum (Appendix A.). However, if a certain
run passes all the plausibility tests, I need to return to Γ
to simulate second derivatives along the path. This is a
computationally intensive step for a few reasons:

• Γ is already large because it encompasses all of the
information about the trajectory.

• There are (N2 +N)/2 independent second deriva-
tives, including mixed partials, to be calculated all
along the path. When N gets large, this quickly
becomes intractable.

• The sorting and length of formulas involved in ap-
plying the correct correlation functions to second
derivatives is considerably more computationally
difficult than correlating zeroeth and first deriva-
tives. Recall, every new entry in Γ is computed via
a correlation function.

I reduce computational intensity at this step by simulat-
ing only the independent second derivatives (either the
lower or upper triangle of the Hessian H) at sparsely
spaced points throughout the trajectory. Often times,
the trajectory yields discrete points that are dense in
φ-space, unnecessarily dense for the purposes of second
derivatives. I can sample much more sparsely (say, 10
times instead of 500) and perform CubicSpline interpo-
lation to fill the gaps reasonably.

C. Avoiding Matrix Inverses

Equations (28) and (29) reveal that it is necessary to
take inverses of ΓOO in order to properly simulate new
potential values constrained by old ones. This is not a
problem in theory; Γ, and by extension ΓOO, is positive-
definite and thus invertible no matter what. Compu-
tationally, taking inverses of these matrices can result in
nightmarish errors. In almost every simulation, potential
data is simulated and stored that yield relatively redun-
dant constraints. Redundancy is quantifiable by examin-
ing the eigenvalues of Γ, which rank the importance, in
a sense, of each constraint. Two points of potential data

that contain almost exactly the same information (be-
cause, for instance, they are evaluated at very proximate
values) would appear in the spectrum of Γ as one mod-
erate eigenvalue and one very small eigenvalue. Matri-
ces with very small eigenvalues are called ill-conditioned,
well known to data scientists. Ill-conditioned matrices
cause numerical instabilities in both matrix inversion and
Cholesky decomposition, two vital steps in generating po-
tential values, so we need to deal with them effectively.
We employ two techniques detailed below.

• Add noise to Γ. As careless as it may sound, it
is possible to surpass many numerical instabilities
in both inversion and Cholesky decomposition by
adding small multiples of the identity to Γ mo-
mentarily while the computation is done. In other
words, let

Γ̃ = Γ + ñIlength(Γ) (45)

where ñ is called noise and In is the n×n identity.
If ñ is sufficiently small, it can resolve numerical
instabilities while contributing a vanishingly small
influence on the simulation of new points. In prac-
tice, ñ must be increased to a surprisingly high
fraction of the highest eigenvalues of Γ before any
peculiarities in the simulation are noticeable. In
my code, I determined that an optimal value for
ñ is a minute 10−12. Even that value is conser-
vatively high so as to avoid crashes at any point.
The un-noised version of Γ is the only matrix that
is stored; noise is only added when it comes time
to perform linear algebra. This solution completely
satisfies Cholesky decompositions, but inversion is
still prone to yield heart-wrenching numerical er-
rors without implementing the next fix.

• Rephrase matrix equations. Often times, matrix
equations can be rewritten in equivalent forms
that seem identical to humans, but make a world
of difference to computers. For instance, if I want
x = A−1y, I can find this by inverting A and
performing matrix multiplication, or I can rephrase
the equation as Ax = y and solve the system of
equations for x. For computers, the latter option
is often much more reliable.

Equations (28) and (29) are the problematic ones,
so we seek to rephrase them in efficient ways. First,
Cholesky decompose ΓOO into

ΓOO = LOOL
T
OO. (46)

The matrix LOO is lower-triangular, making it ex-
ceptionally versatile and efficient when solving lin-
ear systems. Exploiting that property, I solve the
matrix equation

LOO(L−1OOΓON) = ΓON (47)

15

for L−1OOΓON using the phenomenal
solve triangular function within the
scipy.linalg module. Now, (29) becomes

σ = ΓNN − (L−1OOΓON)T (L−1OOΓON) (48)

= ΓNN − ΓNO(L−1OO)TL−1OOΓON

= ΓNN − ΓNO(LOOL
T
OO)−1ΓON

= ΓNN − ΓNOΓ−1OOΓON .

Also, I solve a separate matrix equation,

LOO(L−1OOvO) = vO, (49)

for L−1OOvO so that the predicted mean in (28) is

µ = (L−1OOΓON)T (L−1OOvO) (50)

= ΓNO(LOOL
T
OO)−1vO

= ΓNOΓ−1OOvO

Now, I have developed clever tricks to bypass all the in-
verses required to simulate new potential points. In the
mean time, I have ensured that the process remains nu-
merically stable.

D. Matrix Updates

As Γ and its associated matrices grow large, I need to
avoid recalculating 〈vvT 〉 as much as I can. This means
that I populate each incrementally larger covariance ma-
trix in a vectorized manner. If length(vO) = n and
length(vn) = p, then updating Γi to Γi+1 proceeds as
follows.

1. Create an (n + p) × (n + p) matrix of zeros. This
looks like

newGamma = zeros((n+p, n+p)).

2. Populate the upper-left n × n block with Γi all at
once. This looks like

newGamma[:n, :n] = Gamma.

3. Populate the rest of the new matrix with appro-
priate correlation functions. Vectorizing this step
involves populating every element that requires the
same correlation function at the same time, involv-
ing extensive, tedious coding.

Another matrix that needs to be updated incrementally
is the Cholesky decomposition L of Γ. This is a common
problem for data scientists and the solution is a Rank 1
Cholesky update. If Li = LOO is the Cholesky decom-
position of ΓOO at some time step, then Li+1 = L =
chol(Γ) can be expressed as

L =

[
LOO 0

L−1OOΓON chol(ΓC).

]
(51)

This update allows us to use the previous Cholesky de-
composition to populate the majority of a current de-
composition, then perform less computationally intensive
linear algebra to populate the remainder of the lower tri-
angle.

E. Unprincipled Forgetting

Even with all the previous optimizations, Γ can be-
come large and cumbersome, particularly apparent when
populating new rows and columns. To refresh, we have
previous information about the potential stored in vO
and we want future information about the potential, vN .
If the length of vO is (N + 1)n, for N + 1 data points at
n time steps, and I need to populate N + 1 more rows
and columns for vN , that is

new entries = (N + 1)2(n+ 1)2 − (N + 1)2n2

= (N + 1)2(2n+ 1)

more entries of Γ that need to be filled. With N = 3
and n = 200, a conservative example likely near the
middle of the simulation, that is 6416 entries, or over
3200 correlation functions that need to be computed.
That number only increases, too.

Thankfully, there are ways to further ease the compu-
tational heftiness of Γ. I can execute “forgetting steps”
when the matrix reaches a predetermined upper limit
on size to reduce its number of rows and columns while
retaining its most important constraints. There are two
methods of forgetting that I have implemented within
the simulate-solve cycle, methods that we have lovingly
named “principled” and “unprincipled” forgetting.

Unprincipled forgetting is temporarily removing rows
and columns of Γ that correspond to older simulated
points stored in vO. Points that were simulated toward
the beginning of the trajectory may be relatively far
away in φ-space from new points that need to be
simulated in a different region. If I need to simulate
V (φ200), equation (26) tells us that the importance of
previously generated potential data points depends on
how far away they were generated from this new point,
φ200. In a continuous trajectory, the most recent points
(V (φ199), V (φ198), etc.) are the most important in this
generation since they are the most proximate. Potential
data generated in the beginning of the trajectory
(V (φ0), V (φ1), etc.) will have much less influence. As it
turns out, the constraining power of Γ is almost entirely
contained in its data generated closest to the new point
of evaluation. The “constraining power” of Γ is revealed
by ΓC , which determines the scale of σ (eq. (30)), and
thus how much a newly sampled potential point can
vary. We can justify that removing rows and columns
of Γ can have negligible impact on constraints with an
example.

16

FIG. 8. Constraints on the value of a simulated point depend
on how much previous information is incorporated into the
calculation. As more information is removed (higher values on
the horizontal axis), the constraints become more relaxed (ΓC
increases). However, the constraining power of Γ is retained
even with many rows and columns removed.

Take the simulation shown in (7) and imagine a
covariance matrix of constraints from only V along the
trajectory, not its including derivatives or data at the
minimum. That is, vO is made up entirely of numbers
that look like V (φi), and ΓOO = 〈vOvTO〉. Imagine I
want to simulate a new potential value at the origin
constrained by this partial covariance matrix. ΓOO
contains all information about the trajectory, but the
data in the later rows and columns are most important
to this simulation since it was generated closer to 0.
ΓC = ΓC is a scalar in this case since we are only
generating one constrained random number. We can
calculate ΓC with ΓOO, and that will give us an idea of
how constrained the new potential value will be. We can
then begin removing the oldest rows and columns of Γ
and recalculating ΓC to see if that constraint changes.
The result is visualized in Figure 8.

As more information is removed from the simulation
of V (0), the constraints ΓC become more relaxed, as
expected. However, the difference between the constrain-
ing power of Γ when all information is incorporated
(rows/columns removed = 0 in Figure 8) to when 100
rows/columns are removed is negligible. In this example,
Γ is only approximately 300× 300, so removing 100 rows
and columns reduces the size of Γ by about 55 percent.

Unprincipled forgetting, done properly, is inconsequen-
tial to the constraining power of the covariance ma-
trix, but highly effective in reducing computational in-
tensity. In fact, unprincipled forgetting—ignoring rows
and columns of Γ during simulation—can be performed
multiple times over the course of a run to keep Γ at a
manageable size. Even though newly simulated poten-
tial along the path will only be constrained by its closer
neighbors (and the minimum), in practice there is negli-
gible difference.

F. Principled Forgetting

Principled forgetting uses linear algebra and data com-
pression techniques to algorithmically compress the co-
variance matrix Γ in a way that maximizes its constrain-
ing power while minimizing its overall size. When vO
gets large and redundant, we seek to find a compression
matrix A such that

ṽO = AvO, (52)

where ṽO is a smaller, compressed version of vO. In this
case, we can define other compressed matrices.

Γ̃OO = 〈ṽOṽTO〉 = AΓOOA
T (53)

Γ̃NO = 〈ṽN ṽTO〉 = AΓNOA
T (54)

Γ̃C = ΓNN − Γ̃NOΓ̃−1OOΓ̃ON (55)

The goal in specifying A is to keep Γ̃C as close to ΓC as
possible, information-wise. Information about the con-
straints from vO on vN are found in the eigenvalues of
the second term of Γ̃C . Mathematically, we seek to max-
imize the trace of that term:

τ = Tr(Γ̃NOΓ̃−1OOΓ̃ON) (56)

= Tr
(
ΓNOA

T (AΓOOA
T)−1ΓON

)
. (57)

This constrained maximization problem, with some
clever linear algebra tricks, is reformulated as a gener-
alized eigenvalue problem.

ΓONΓNOa = λΓOOa, (58)

The eigenvalues λ and eigenvectors a calculable via
(58) are exactly the eigenvalues and vectors of the
matrix in (56). Since we seek to maximize τ , we rank
the eigenvalues λ from highest to lowest and populate
the rows of A with the eigenvectors a corresponding
to the highest ones. We can choose to populate A
with as many rows as we want, but it is a trade-off
between accuracy and efficiency. If we populate A with
many eigenvectors, the trace τ will be very close to the
uncompressed trace, but the covariance matrix won’t be
compressed very much. If we only populate A with a
few eigenvectors, we can achieve staggering compression,
but we risk forgetting too much information.

For the majority of trajectories, it is possible to keep
an astounding portion of the trace—up to one part in a
hundred million—while compressing the covariance ma-
trix over 99.9%. Algorithmic compression, or principled
forgetting, yields far better compression than simply
ignoring earlier rows and columns, the method I called
unprincipled forgetting.

I encountered two problems that left me unable to im-
plement this algorithmic compression method efficiently:

17

1. ΓONΓNO turns out to be more complicated than
just multiplying two matrices; its elements must
be found by very lengthy, tedious formulas, found
by integrating the product of two correlation func-
tions. I already needed to take care with indices
when correlating derivatives of V , and now ele-
ments of this matrix demand that I manage for-
mulas with twice as many indices. The number of
independent formulas necessary to properly popu-
late this matrix is overwhelming, but not totally
impossible to handle, in theory.

2. Even if I write down and implement all formulas
for ΓONΓNO, as I did up through the first deriva-
tives of V , I actually have to compute the matrix
when the compression steps come. This involves
populating a matrix that is just as big as ΓOO, los-
ing any time we hoped to gain after compressing Γ.
Updating the matrix incrementally, as I have done
with Γ and L, does little to help.

Algorithmic compression was implemented at one point,
but is currently removed from my simulate-solve cycle for
the reasons stated above, so it is possible to improve the
rigor with which I optimize the program. However, un-
principled forgetting has propelled the code to a level of
efficiency adequate for performing high numbers of sim-
ulations in N ≤ 3 dimensions in reasonable time (more
in Section VI).

G. Code Parallelization

For a given set of parameters and initial conditions, I
need to simulate large numbers of different random paths
to determine the statistical predictions of that particular
inflationary model. Since the simulation of any one Gaus-
sian random potential and subsequent field evolution is
completely independent from the next, I implemented
methods to parallelize simulations. These methods orig-
inate largely from the concurrent.futures module in
Python, allowing independent simulations to run on dif-
ferent cores on a computer simultaneously. The Univer-
sity of Richmond supercomputing cluster is optimized
to handle parallelized code, boasting hundreds of cores
spread throughout dozens of nodes. Code parallelization,
when paired with the cluster, improved the efficiency of
my program by an order of magnitude.

VI. RESULTS AND PREDICTIONS

The results of this project will be presented in the form
of statistical predictions of perturbation spectra made
by a Gaussian random potential with three sets of fixed
parameters. I chose these parameters through a mixture
of theory and trial-and-error to exemplify the promise of

my model.

s = 30

V 2
0 = 5 · 10−9

N ∈ {1, 2, 3}

The three sets of parameters are, thus (30, 5 ·
10−9, 1), (30, 5 · 10−9, 2), and (30, 5 · 10−9, 3). The pa-
rameter space to explore within these three degrees of
freedom s, V 2

0 , N is huge, leaving plenty of room for fur-
ther analysis.

A. The Importance of Repeated Trials

With any fixed parameter set, I need to gather a large-
enough sample of data to represent all possible successful
trajectories under those generations. Success, phrased
in the language of Section IV F, means not failing. The
trajectory has to:

1. converge to the origin, and

2. accumulate enough e-folds of inflation along the
way.

To compute a representative sample of successful trajec-
tories, and subsequently their predicted observable quan-
tities, I need to vary my initial starting condition φ0. As
previously mentioned, the only relevant quantity related
to this initial condition is its distance from the minimum
at the origin, |φ0| = φ0. There are successful trajecto-
ries evolved under potentials generated by my parameter
set that start at φ0 = s/4 all the way out to φ0 = 2s.
Here is my method to handling this variety within a given
parameter set:

• To account for all of these trajectories, I subdivide
φ-space into N -dimensional shells centered around
the origin with thicknesses of s/10 each. The first
shell measures from φ0 = 0.3s to 0.4s, and the last
from φ0 = 2.0s to 2.1s.

• Within each shell, I conduct 1000 simulations.
That is, I randomly choose φ0 such that its magni-
tude falls within the first shell, develop a random
trajectory, and compute its predictions for pertur-
bation spectra if possible, all 1000 times. Then, I
move on to the next shell farther out and do the
same.

• Once I have computed and stored the trajectories
and predictions within each shell, I move on to the
next parameter set and repeat the whole process.

By the time the University of Richmond supercomputing
cluster outputs all of the simulated information, it will
have computed at least 36000 trajectories. Currently,
these jobs take around 22 hours when submitted to one
node of the cluster. Once the jobs are complete, it is time
to analyze the data properly.

18

B. Success Probabilities

To calculate the statistical prediction of, say, AS from
a given set of parameters, it is not mathematically sound
to take the simple mean and standard deviation of the
AS values associated with the entire bunch of trajecto-
ries. It is necessary to account for the fact that there
is not an equal likelihood that a trajectory with a given
φ0 is successful. Trajectories with low φ0 (starting close
to the minimum at the origin) have a very high chance
of converging, but a low chance of accumulating enough
e-folds of inflation. On the other hand, trajectories with
high φ0 (starting far from the origin) are unlikely to con-
verge to the origin, but if they do, they almost always
accumulate a surplus of inflation. A meaningful predic-
tion of AS and other quantities comes by weighting the
mean and standard deviation appropriately:

• For each shell, there is an associated probability of
success P (S). The probability is easily calculable
by taking the ratio of the number of simulations
that converged and accumulated enough inflation
to the total number 1000.

• Since shells correspond with ranges for φ0, P (S)
can be considered a function of radial distance. At
its extremes, P (S) ↓ 0 as φ0 ↓ 0 and P (S) ↓ 0 as
φ0 ↑ ∞. Interestingly, P (S) should have a maxi-
mum at some φ0 > 0.

• The weighted mean of some quantity q is then

µq =

∑
l wlql∑
l wl

(59)

where wl is the P (S) in a particular shell l and ql
is the simple mean of the q within l. The appropri-
ately weighted variance is

σ2
q =

∑
l wlq

2
l∑

l wl
− µ2

q (60)

For our sets of parameters, we can visualize the prob-
ability of success as a function of φ0. Analyzed from
a supercomputer output, the curves are shown in Fig-
ure 9. Theoretically, this curve is likely the product of
two probability distributions: the probability of conver-
gence to the origin P (C) and the probability of attaining
enough inflation P (I). As the probability of convergence
to the origin rapidly decreases as φ0 grows, P (C) is likely
modeled by exponential decay. P (I) most likely follows
a power law in φ0, proportional to the volume in φ-space
enclosed at by a sphere of radius φ0.

C. Perturbation Spectra

Finally, predictions for the perturbation spectra are
presented in this section. First, we can examine weighted

FIG. 9. The probability that a trajectory starting at an initial
distance φ0 from the origin will both converge and accumulate
enough inflation. I did not simulate in the shells between
1.4s and 2.0s to save time, since the behavior would be well
documented by a single data point at 2.0s.

histograms detailing the value of some quantity q by
the frequency of its prediction, weighted by the general
successfulness of trajectories in each shell in Figure 10.
Each histogram corresponds to predictions for a partic-
ular quantity under a particular set of parameters. For
instance, the second column of plots corresponds to the
parameter set (s, V 2

0 , N) = (30, 5 · 10−9, 2). Five his-
tograms for five different observable quantities related to
perturbation spectra (AS , nS , AT , nT , and r) are pre-
sented separately in each row. Notice a few things:

• Predictions for each observable quantity appear to
be distributed near-normally, so standard devia-
tions of these quantities are an appropriate statistic
to measure.

• Different φ0 shells (colors) sometimes yield differ-
ent distributions for predictions. Individually, the
shells may predict different means and standard de-
viations of each quantity, but the statistics for indi-
vidual shells are not as important as overall statis-
tics for the set of parameters (the weighted sum of
all shells).

– A good example of this phenomenon is clearly
visible in the nT histograms. Shells close
around the origin (darker blues) tend predict
higher values for nT than shells farther from
the origin (warmer colors). The secondary
peaks near nT = 0 are very curious!

• The horizontal scales are the same across each row.

• There are predicted values outside the horizontal
plot range shown, but the ranges shown encompass
the vast majority of the information.

19

FIG. 10. Weighted histograms of observable quantities AS , nS , AT , nT , and r. Different colors on each histogram correspond
to different initial positions φ0. Each column of plots corresponds to a different set of parameters (in this case, just changing
the number of dimensions N) which defined how the Gaussian random potential was generated.

20

Now that we have a good way to visual the weighted
predictions in each parameter set, we can introduce the
numerical predictions for quantities in the form q = µq±
σq. For N = 1,

log10(AS) = −9.4727± 0.0909 (−8.680)

nS = 0.96360± 0.00205 (0.9626)

log10(AT) = −10.404± 0.118

nT = −0.01600± 0.00218

log10(r) = −0.90242± 0.07248 (< −1.0)

where the values in parentheses are the mean predictions
by Planck data, if available, or the general constraint for
r. For N = 2,

log10(AS) = −9.4875± 0.2465

nS = 0.96024± 0.02427

log10(AT) = −10.440± 0.073

nT = −0.01781± 0.00101

log10(r) = −0.92279± 0.06822

Finally, for N = 3,

log10(AS) = −9.5013± 0.2834

nS = 0.95786± 0.02705

log10(AT) = −10.453± 0.089

nT = −0.01909± 0.00095

log10(r) = −0.92139± 0.07632

These predictions are very promising. Values for the
spectral index nS are spot-on; the accepted value
lies within one standard deviation for all N = 1, 2, 3.
Quantities AS and r are not far off. These predictions
come from only three sets of parameters out of a huge
volume of parameter space. Given the proximity of
predicted values to the accepted values, it seems that
further effort in tweaking s, V 2

0 , and N could certainly
close the gaps between predictions and observations.

There is one more productive way to visualize the per-
turbation spectra predictions by my model. I can place
one quantity q1 on a horizontal axis, another q2 on a
vertical axis, and scatter plot points (q1, q2) for each tra-
jectory. The result looks like a slightly skewed cloud of
points centered on (µq1 , µq2). Mathematically, they will
appear to be points randomly sampled from a multivari-
ate Normal distribution. With this data we can perform
a Gaussian kernel density estimation to describe the den-
sity of the plotted points at each point in the space of the
quantities. This is done for a few quantities in Figure 11.
Notice a few more things about this representation:

• The scatter plots are on the left side. Each point
represents an individual trajectory, with coloring
exactly the same as in Figure 10. As with the his-
tograms, there are some data points not encom-
passed within the chosen domains. In fact, the data

presented in these scatter plots is exactly the same
as the data presented in their corresponding his-
tograms.

• The kernel density estimations are on the right.
The lighter colors correspond to the regions on the
scatter plot most densely populated with points.
The closed black curves are analogous to lines of
one and two standard deviations from the weighted
mean.

• The kernel density estimations look more compact
than the scatter plots, but that is only because
there is such a high density of points in the cor-
responding regions of the scatter plots.

• Approximately 11000 points are plotted on each of
the scatter plots, plotted on top of each other in or-
der from low φ0 (blues) to high φ0 (oranges). This
plotting method effectively shows some of all the
colors, but hides some of the blue points.

Kernel density estimations could be applied to every dis-
tinct pair of perturbation spectra quantities, an effective
way to represent the high-density data.

VII. CONCLUSIONS

The N -dimensional Gaussian random potential is a
highly promising inflationary model that is hefty to test
computationally, but responsive to data compression and
optimization methods. The potential function does not
naturally spawn the minimum at V = 0 customary
in most inflationary models, but the minimum can be
seeded by imposing the appropriate conditions. The
covariance matrix of constraints on V is the source of
both triumphs and problems in this project. While it
effectively simulates data about potential functions, in-
cluding derivatives, it can quickly become unwieldy and
ill-conditioned. Data compression and efficiency algo-
rithms are necessary to generate the requisite amount
of information to accurately produce statistical predic-
tions, especially in higher N . Preliminary results suggest
that some regions of (s, V0, N) parameter-space produce
potentials that evolve their corresponding universes in
ways that nearly match observed properties of our own
universe. Other inflationary potentials have successfully
replicated these same properties, but characterization of
the Gaussian random model to the extent possible with
data compression algorithms is unique to this project.

A. Future Work

There are quite a few tasks left to extend this project
to its full potential. Some major steps going forward are
enumerated below.

21

FIG. 11. Gaussian kernel density estimations (KDEs) of scatter-plotted predictions for perturbation spectra. Each cross on the
scatter plots corresponds to the prediction of one individual trajectory. The colors of crosses are identical to those in Figure
10. About 11000 individual points are plotted, but many are obscured by points plotted slightly later. The KDEs express the
density of the points on the scatter plot. The closed black curves indicate the areas enclosing 68% (inner) and 95% (outer) of
the weighted distribution of data.

22

1. Implement principled forgetting efficiently. Algo-
rithmic data compression described in Section V F
is promising in its ability to effectively compress
the covariance matrix of constraints on V , but
left unimplemented due to computational struggles.
Resolving these struggles is likely the path to accu-
mulating large quantities of data about Gaussian
potentials with high numbers of dimensions.

2. Explore parameter space. A very restricted region
of parameter space has been explored thus far.
Continuing to utilize the supercomputing capabili-
ties of the University of Richmond cluster, we can
continue to tinker with s, V0, and N in hopes of
closing the gap between predictions and observed
constraints.

3. Translate to other languages. Python is a good
choice programming language for alpha testing, but
it is not the most efficient language for scientific
computing. Translating the code to languages such
as C or FORTRAN are necessary to fully maximize
computational efficiency.

4. Incorporate other observable quantities. Some in-
flationary models have been tested against a hand-
ful of other observable quantities, such as non-
Gaussianity of the CMB [7], to provide more rig-
orous tests of plausibility. Working out the the-
ory and incorporating these additional tests could
“make or break” the Gaussian random model; they
could either provide additional depth of certainty
in the plausibility of the model or seed doubt in its
predictions.

VIII. ACKNOWLEDGMENTS

This thesis was supported by two Summer Research
Fellowships from the University of Richmond School of
Arts & Sciences from May 2019 to July 2020. My re-
sults were only obtainable in such great quantity thanks
to the University of Richmond supercomputing cluster.
A special thanks to the Physics Department in their un-
wavering support. I am indebted to Dr. Ted Bunn for
the brilliant insight, relentless patience, and inspiring cre-
ativity that characterizes this project to its core.

IX. APPENDIX

A. Deriving PS(k) From the Trajectory

The mode matrix Ψ is an N ×N matrix of functions
of time that obeys the following differential equation,

element-wise.

d2Ψ(IJ)

dN2
e

+ (1− ε)dΨ(IJ)

dNe

+

(
k2

a2H2
− 2 + ε

)
Ψ(IJ) + C(IL)Ψ(LJ) = 0 (61)

where Einstein summation convention is employed on the
last term and C(IJ) is the coupling tensor,

C(IJ) =
∂2V

∂φ(I)∂φ(J)
+

1

H2

(
dφ(I)

dNe

∂V

∂φ(J)
+
dφ(J)

dNe

∂V

∂φ(I)

)
+ (3− ε)dφ

(I)

dNe

dφ(J)

dNe
. (62)

This equation is the lone place in this project in which
the second derivatives of the potential are necessary. The
differential equation (61) can be solved for the mode ma-
trix with initial conditions

Ψ(IJ)(Ne = 0) =
1√

2k(0)
δ(IJ) (63)

dΨ(IJ)

dNe
(Ne = 0) = − i

a(0)H(0)

√
k(0)

2
δ(IJ) (64)

where δ(IJ) is the Kronecker delta. Then, define the δφ
power spectrum matrix as

P(IJ)
δφ (k) =

k3

2π2

1

a2
Ψ(IL)(Ψ∗)(LJ) (65)

where A∗ is the Hermitian adjoint of A. Now, the power
spectrum of scalar perturbations is the 00 term of the
following matrix, expressable in terms of the δφ power
spectrum matrix.

P(IJ)
S (k) =

1

2ε
ωIωJP(IJ)

δφ (k) (66)

In this case, ωI = φ̇(I)/|φ̇| and functions a and ε are
functions of k. To be clear, PS(k) = P00

S (k).

B. Inputs and Outputs of bushwhack

The most important function that I coded for this
project is labeled bushwhack. The user has many input
parameters to change that change the simulation of the
trajectory, the extraction of observable quantities from
the trajectory, or the computational process underlying.
They are listed with their variable names, default values,
and described purposes in Table I.

The bushwhack function outputs an object from a com-
pletely original class BStuff. BStuff objects are de-
signed to hold all the necessary information about the
trajectory, predicted observable quantities, and the com-
putational process involved in the corresponding run.
The structure and design of this object is critical for ef-
ficient manual analysis and code development. Find the
attributes of BStuff objects described in Table II.

REFERENCES 23

Parameter
Name

Default Value Purpose

s 30 Value for the coherence scale of the potential.

V0 5e-9 Value for the inflationary energy scale of the potential.

N 2 Value for the number of inflaton fields, i.e. the number
of dimensions of V .

from0 bounds (0.2, 0.8) Bounds on the starting distance from the origin. φ0

will be randomly generated from a uniform distribu-
tion between these two values.

nE bounds (45, 500) Bounds on the acceptable predicted number of e-folds
of inflation. If the program predicts (as in Section
V A) a value for total Ne that is outside these bounds,
the program restarts.

psi integrate (−3, None) Parameter for the integration bounds when finding a
solution of the differential equation (61).

fails coef 100 The number of times a run is allowed to predict a
failure before completely shutting down. Scaled by
2N since there is a higher chance for failure in higher
dimensions.

maxJumpFrac 1/20 The maximum fraction of the coherence length that
the differential equation solver can jump in one time
step.

nE buffer 2 Another parameter for solving equation (61).

state None If entered, reverts the computer back to a previous
random state and successfully replicates a previously
generated random potential. Powerful parameter for
analysis.

method ’RK45’ The numerical solution method for the differential
equations of the trajectory. Passed immediately into
solve ivp. Defaults to fourth-order Runge-Kutta.

name None Adds a completely unnecessary attribute to the resul-
tant BStuff object so that it is callable by a different
name other than its variable name.

TABLE I. All input parameters into the bushwhack function.

REFERENCES

[1] Y. Akrami et al. “Planck2018 results”. In: Astronomy
Astrophysics 641 (Sept. 2020), A10. issn: 1432-0746. doi:
10.1051/0004-6361/201833887. url: http://dx.doi.
org/10.1051/0004-6361/201833887.

[2] Scott Dodelson. Modern Cosmology”. 1st ed. Academic
Press, 2003. isbn: 9780122191411.

[3] D. Langlois. “Inflation and Cosmological Perturbations”.
In: Lecture Notes in Physics (2010), pp. 1–57. issn: 1616-
6361. doi: 10.1007/978-3-642-10598-2_1. url: http:
//dx.doi.org/10.1007/978-3-642-10598-2_1.

[4] William H. Press et al. Numerical Recipes 3rd Edition:
The Art of Scientific Computing. 3rd ed. USA: Cam-
bridge University Press, 2007. isbn: 0521880688.

[5] Layne C. Price et al. “Designing and testing inflation-
ary models with Bayesian networks”. In: Journal of Cos-
mology and Astroparticle Physics 2016.02 (Feb. 2016),
pp. 049–049. doi: 10.1088/1475- 7516/2016/02/049.
url: https://doi.org/10.1088/1475-7516/2016/02/
049.

[6] Layne C. Price et al. “MULTIMODECODE: an effi-
cient numerical solver for multifield inflation”. In: Journal
of Cosmology and Astroparticle Physics 2015.03 (Mar.
2015), pp. 005–005. issn: 1475-7516. doi: 10.1088/1475-
7516/2015/03/005. url: http://dx.doi.org/10.1088/
1475-7516/2015/03/005.

[7] Sébastien Renaux-Petel. “Combined local and equilat-
eral non-Gaussianities from multifield DBI inflation”. In:
Journal of Cosmology and Astroparticle Physics 2009.10
(Oct. 2009), pp. 012–012. issn: 1475-7516. doi: 10.1088/
1475-7516/2009/10/012. url: http://dx.doi.org/10.
1088/1475-7516/2009/10/012.

[8] Barbara Ryden. Introduction to Cosmology. 2nd ed. Cam-
bridge University Press, 2002. isbn: 9781316889848.

[9] S.-H. Henry Tye, Jiajun Xu, and Yang Zhang. “Multi-
field inflation with a random potential”. In: Journal
of Cosmology and Astroparticle Physics 2009.04 (Apr.
2009), pp. 018–018. issn: 1475-7516. doi: 10.1088/1475-
7516/2009/04/018. url: http://dx.doi.org/10.1088/
1475-7516/2009/04/018.

REFERENCES 24

Attribute Name Description

phi Values of inflaton field φ along the trajectory.

dphi Values of dφ/dNe along the trajectory.

V Values of the inflaton potential V along the trajectory.

dV Values of ∇φV along the trajectory.

ddV Values of all the mixed second partial derivatives of V
along the trajectory.

t Values of cosmic time t along the trajectory.

nE Values of the number of e-folds Ne along the trajec-
tory.

params A list of parameters on the potential: (s, V 2
0 , N).

H Values of the Hubble parameter along the trajectory.

a Values of the scale factor along the trajectory.

epsilon Values of the stopping criterion ε along the trajectory.

k Values of the horizon-crossing modes k along the tra-
jectory.

inw Values of the inwardness ι along the trajectory.

vcov The (potentially compressed) covariance matrix Γ of
constraints on the potential.

vcov L The (potentially compressed) Cholesky decomposition
of Γ.

beefCov The uncompressed covariance matrix containing all
constraints on the potential.

beefCov L The uncompressed Cholesky decomposition of the co-
variance matrix.

vFull The ordered list v of all potential information, includ-
ing derivatives.

bowl Information about the minimum constraints at the ori-
gin.

state The random state of the computer at the time of the
simulation.

nfev The number of times the numerical differential equa-
tion solver was called.

simtime The amount of time the simulation took to finish.

success Details about if and how the trajectory was deter-
mined to be remotely plausible.

forgets The number of times the code executed an “unprinci-
pled forgetting” step as in Section V E.

name Completely unnecessary name of the run; just for fun.

coupler The coupling tensor C from equation (61).

A s The predicted scalar amplitude.

n s The predicted scalar spectral index.

A t The predicted tensor amplitude.

n t The predicted tensor spectral index.

r The predicted tensor-to-scalar ratio.

TABLE II. All attributes of the outputs of the bushwhack function.

	Cosmological Inﬂation in N-Dimensional Gaussian Random Fields with Algorithmic Data Compression
	Recommended Citation

	tmp.1623354189.pdf.cldPY

