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Overdose Prevention Sites Placement Informed by Simulation

Abstract

In Philadelphia, people are experiencing the greatest opioid crisis in a century. Plac-

ing the Overdose Prevention Site (OPS) can alleviate this crisis. However, the journey to

the successful launch of the first OPS in the USA is rough. It was first accused of having a

collision with federal drug laws. While Safehouse won the lawsuit and the OPS was judged

to be legal in 2020, other pressure rose afterward such as the against from the public and

the COVID19, which delayed the plan to open the OPS. Without solid research on the ef-

fectiveness of OPS, we thought it is necessary to provide scientific evidence to support the

OPS program. In our research, we apply both the Markov Chain model and the agent-based

model to investigate the e↵ectiveness of placing OPSs in Philadelphia. Our final conclusion

shows that the OPS can e↵ectively save people from fatally overdosing. In general, we hope

to promote the launch of the OPS and also bring out some public health implications for

future OPS placement based on our research.
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1 INTRODUCTION

All over the United States, and particularly in Philadelphia, people are experiencing the

greatest opioid crisis in a century. To combat this, a non-profit organization called Safehouse

was founded to save lives by providing various types of overdose prevention services. One of

the important services they aim to provide is an Overdose Prevention Site (OPS) in the city.

An OPS is a safe place for people to inject illicit drugs under medical supervision. It also

provides education programs to educate active drug users on how to avoid injection-related

harms and how to safely use drugs. Besides that, an OPS o↵ers clean injection supplies to

reduce disease spread throughout the whole city. However, founding an OPS has encoun-

tered several challenges. The first major challenge was an accusation from the government

that an OPS would break federal drug laws. In 2020, Safehouse won the lawsuit brought

by the federal government when the OPS was judged to be legal. Other pressures arose

afterward. The proposal of opening the OPS encountered public pressure while COVID19

spread globally, which delayed the plan to open the OPS in Philadelphia. Given the lack of

research on the e↵ectiveness of OPS, we decided to investigate the usefulness of placing an

OPS in Philadelphia. Thus, our main goal of this research is to apply simulation models to

make predictions on the e↵ectiveness of placing an OPS in Philadelphia.
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1.1 Research Contribution

In this research, we investigated the e↵ectiveness of placing an Overdose Prevention

Site (OPS) in Philadelphia. We aimed to determine how it can alleviates the serious situation

of the opioid crisis in Philadelphia. We created a Markov Chain type model and an agent-

based model to predict the number of fatal and nonfatal overdoses that would occur after the

OPS has been placed for a year. Our final conclusion shows that the with reasonable design,

the OPS can e↵ectively save people from fatally overdosing. We hope that this research

provides more scientific evidence to support the plan to open the first OPS in Philadelphia.

1.2 Outline

Chapter 2 provides an overview of the current opioid crisis and reviews the previous

work related to the opioid crisis and Overdose Prevention Sites. Chapter 3 talks about the

important parameters and equations that we will use later in both of the models. Chapter 4

introduces the Markov Chain approach with model design, experiment description, and the

results. Chapter 5 describes the experiment to determine the most e�cient programming

language for the agent-based model. Chapter 6 describes the approach for the agent-based

model. Chapter 7 draws the conclusions.
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2 PRELIMINARIES AND RELATED WORK

2.1 Opioid Crisis and Overdose Prevention Site

In the United States, the opioid crisis has become much more severe than 20 years

ago. The research of the CDC showed that the number of drug overdose deaths was four

times higher in 2018 than the number in 1999 [30]. There were three waves of opioid overdose

deaths from 1999 to 2018. The first wave came from an increased prescribing of opioids in the

1990s. The second wave began in 2010 when there was a rapid rise in heroin overdose deaths.

The third wave started in 2013, with serious increases in synthetic opioid overdose deaths.

Currently, the opioid crisis has become one of the biggest social problems in a century,

which needs to be addressed urgently. Pennsylvania has become the fourth highest age-

adjusted overdose death rate in the United States[1]. Among all counties in Pennsylvania,

Philadelphia has the second-highest overdose death rate[8].

Hence, Philadelphia initiated the Resilience Project, mobilizing 35 city departments

to combat Philadelphia’s opioid epidemic in October 2018 [23]. This project focuses on the

most urgent needs and important neighborhoods, centered on Kensington, a highly impacted

neighborhood, and surrounding areas. There are seven mission areas:

• Clearing major encampments.
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• Reducing criminal activity.

• Reducing the number of unsheltered individuals.

• Reducing trash and litter.

• Reducing overdoses and the spread of infectious diseases.

• Increasing treatment options.

• Mobilizing community resources.

As for the mission of reducing overdoses and the spread of infectious disease, in June 2019,

the project has made some significant progress:

• Conducted nearly 2,500 HIV tests in Kensington

• Distributed opioid prescribing guidelines to 16,000 healthcare providers by mail and

another 1,300 by direct, in-person outreach

• Provided all Fire Department ambulances with “leave behind” naloxone (Narcan) to

distribute after responding to overdose calls

• Reduced fatal overdoses 8% in 2018 compared to 2017, with the sharpest reductions

occurring in the Kensington area

Even with that significant progress, there is still an extremely large number of people

using opioids in the city and many people still overdose and die.
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Hence, to better alleviate the opioid crisis, Safehouse was founded. It is a “privately

funded 501(c)(3) tax-exempt, Pennsylvania nonprofit corporation whose mission is to save

lives by providing a range of overdose prevention services” [11]. This organization seeks to

open the first safe injection site in the U.S., which can provide a range of overdose prevention

services (Overdose Prevention Sites (OPS)), including safe consumption and observation

rooms sta↵ed by a medical sta↵ member prepared to administer overdose reversal if needed.

There may also be some additional services such as onsite initiation of Medically Assisted

Treatment, recovery counseling, education about substance use treatment, basic medical

services, and referrals to support services such as housing, public benefits, and legal services.

The OPS is not a new measure to prevent overdose in this world. As early as

2003, the first overdose prevention facility in North America was opened in Vancouver,

Canada. Since then it has managed thousands of drug overdoses without a single fatality

on site [28]. In one study [20], they showed that the overdose prevention site led to a

30% reduction in the rate of drug overdose deaths in the neighborhood immediately around

the facility. Even with that great improvement, the proposal of opening OPS was not

smooth in Philadelphia since it collided with the federal drug laws. The opening of OPS

was controversial. Safehouse experienced a two-year legal battle and was finally judged as

legal to open an OPS. In 2020, Safehouse was scheduled to open an OPS in Philadelphia

in March. However, the local opposition from neighbors living near the site impeded its

opening [7]. The COVID-19 pandemic worsened the overdose situation and delayed the
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opening again. Hence, providing some compelling evidence to present to the community

that OPS is beneficial for the whole society is an urgent need. In our work, we applied

simulation modeling to investigate the e↵ectiveness on overdose rate of placing an OPS in

the city of Philadelphia. By the application of both a Markov Chain model and an agent-

based model, we predict the number of users that will fatally and nonfatally overdose with

or without an OPS in a year. Our goal is to investigate the direct and indirect e↵ects that

the OPS brings and also to provide further public health implication information.

2.2 Previous Works

Several papers talk about opioid epidemic modeling and also the evaluation of overdose

intervention practice in Canada. In [22], the authors apply dynamic models to investigate

the opioid epidemic deterministically and stochastically and concluded that stringent control

over how opioids are administered and prescribed is a must to achieve an addiction-free

equilibrium. In [12], the authors develop a stochastic compartment model to dive deeply

into the asymptotic exit optimal control study of the opioid epidemic. There is also dynamic

compartmental modeling on 11 policy responses to the opioid epidemic [3]. Additionally,

in [24], the authors apply an age-stratified ordinary di↵erential equation hepatitis C Virus

transmission model of people who inject drugs aged 15-64 to study opioid use by young

people. Also, in[19], the authors develop a Bayesian hierarchical latent Markov process
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model to estimate monthly overdose and overdose-death risks, along with the impact of

interventions. Finally, in [4], the authors implement an agent-based model to investigate the

potential e↵ects of opioid-related policies and interventions at the local level. None of these

works focused on the e↵ects of placing an OPS.

Our first attempt at simulating the e↵ect of placing an OPS followed [19] and [4],

first building a Markov Model and then generalizing to a more realistic agent-based model.

We used a Markov Model as a first model, thinking most of the relevant information was

what state the user was in currently. As a final part of our project, we are in the process

of developing an agent-based model to combine more personalized features of agents and to

keep track of each user’s behaviors and personal qualities, including their distance from the

OPS, to make a better predictions of the e↵ects of placing an OPS or multiple OPSs in the

city.
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3 MARKOV CHAIN APPROACH

3.1 Model Design

3.1.1 Model Overview

In this section, we will describe the Markov chain model we used to investigate the

e↵ect of Overdose Prevention Sites (OPS) in Philadelphia. We will use this model to make

predictions about the number of fatal and nonfatal overdoses with and without the placement

of an OPS.

In probability, a discrete-time Markov chain is a sequence of random variables, known

as stochastic processes, in which the value of the next variable depends only on the value of

the current variable. Thus, it does not rely on any variables in the past (memory-less) [25].

Here is the mathematical representation [9], where X is a sequence of random variable and

x is the event : if Pr (X1 = x1, . . . , Xn = xn) > 0

Pr (Xn+1 = x | X1 = x1, X2 = x2, . . . , Xn = xn) = Pr (Xn+1 = x | Xn = xn) (1)

What this says is that the probability that someone moves to state x given that they

were in states x1 through xn in the previous iterations, is their probability of moving to

state x only knowing that they were in state xn in the previous iteration. So all information
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about where someone transitions in the model comes from where they currently reside. We

use this Markov property and particular transition probabilities gleaned from data and from

assumptions to determine how each person in our model moves from state to state.

We designed and implemented a Markov Chain Model to simulate the transitions

of those drug users within 6 states: 1) users not currently using drugs (user), 2) users

currently using drugs outside the OPS (using), 3) using in the OPS, 4) nonfatal overdose, 5)

fatal overdose, and 6) recovery. We assigned probability distributions to the Markov model

based di↵erent states. The worst hit neighborhood in Philadelphia is called Kensington

and Safehouse has suggested that the first OPS will be placed there. In collaboration with

the University of Pennsylvania Injury Science Center and the Philadelphia Department of

Public Health, we received first-hand data, collected by the Injury Science Center, containing

demographics for those who overdosed in 2017-2018 and locations of where they overdosed.

We approximated the distances from the OPS for all users based on this overdose data and

considered the population of users in the model at 12 distances from the OPS placed in

Kensington. Therefore we ended up with 72 total states, the 6 di↵erent states spelled out

above for each of the 12 locations (see Figure 1). The OPS is shared by all users. The main

idea here is that users will be less likely to use the OPS if they live farther away from it, so

the placement of the OPS will determine who it serves and helpful it is.The Figure 1, created

by Dr. Ami Radunskaya, shows the transition possibilites for the Markov Chain model.
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Figure 1: OPS Design

3.1.2 Assumptions

In our model, users exist in one of the following 6 states at one of the 12 distances

from the OPS:

1. Users in the user state are not currently using the drugs. They have three

options: to use drug which means to go to the using state, to use drugs in the OPS which

means to go to the OPS state, and do not use drug anymore which means go to the recovery

state.

2. The using state means patients are currently using drugs outside of the OPS.

From this state, a user can fatally or nonfatally overdose. If they do not overdose, they go

back to State 1, or they may go to the Recovery state.

3. The OPS state means patients are using drugs in OPS. Users in this state may
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nonfatally overdose, come back to the users state which means they are currently not using

the drugs, or recover. It is important to notice that we assume there will be no fatal overdoses

in the OPS. No fatal overdoses have been reported in OPSs.

4. In the recovery state, people are recovered which means they are in treatment

and not currently using drugs. People in this state can either stay in this state or go back

to being a user.

5. In the nonfatal overdose state, users also overdose but they do not die. We assume

that all overdoses are nonfatal if they occur in the OPS. From this state, a user can either

return to the user state, or go to the recovery state.

6. In the fatal overdose state, users remain in this state since they died. In the

language of Markov Chains, this state is an absorbing state.

3.2 IMPORTANT PARAMETERS AND EQUATIONS

In this section, we discuss the important parameters and equations used when build-

ing the Markov models. Many of these same parameters are also used later when building

the agent-based model. Many of these parameters are the transition probabilities between

di↵erent states in the model.
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Active Users and Users in Recovery

We estimated that there were 55,000 current opioid users in Philadelphia [18]. Since

we assumed that about 15% of users enter treatment [2], and that of those that go into

recovery 50% go back to using each year, we also started with around 13,000 users in the

recovery state. We used the equilibrium amount for a model that contained only the user

and recovery states to decide on the number of users initially in recovery.

Distribution of Users Based on Distance from OPS and Willingness to Visit OPS

In Philadelphia, there are many hotspots where opioid users cluster. Assuming that

the OPS is placed in the Kensington neighborhood, and utilizing the overdose data provided

by the city of Philadelphia, we approximated the percent of users in rings around the OPS.

We also approximated the willingness of users at those distances to go to the OPS using

Behrends, et.al, [5]. We first assumed that users closest to the OPS would have around a

two-thirds likelihood of going to the OPS, assuming that they would likely go if they were

very close but that still a significant portion of them would not. The willingness below is

then multiplied by this amount, decreasing as distance from the OPS increases.

The data in Table 1 is the user percentage related to the distance from the OPS and

also the willingness to visit the OPS in regards to the distance the user lives from the OPS

18



[5].

Distance From OPS User proportion Willingness

0.25 0.025098527 1

0.5 0.075295582 0.84

0.75 0.091682224 0.716

1 0.113047086 0.585

1.5 0.071147065 0.463

2 0.055382701 0.298

2.5 0.055382701 0.185

3 0.043559428 0.095

4 0.111180253 0.0513

5 0.096245592 0.0227

6 0.134826799 0.0101

> 6 0.127152 0.002667855

Table 1: User Distribution & Willingness

The data points of the willingness to visit OPS within 3 miles was taken from [5],

while the willingness for distance data greater than 3 miles was estimated. To estimate

the larger distance data, we created a function fit to the previous data assuming that the

willingness to go to the OPS will decay exponentially with distance.

The function fitted to the first three miles of willingness data that we then used to
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approximate the greater distances is

P (d) = (1.3326⇥ 0.443d)

where d is the user’s distance from the OPS, and P is the willingness of visiting the OPS.

Transitions

We first distribute all of the users, both active and recovered, into their distances

from the OPS so that we have the correct proportion in each location. After this, we step

through the simulation in time steps of one-half hour. Every half hour, we use the transition

probabilities defined below to determine which state each of the users moves to in the next

time step. For each parameter that we found in the literature as a yearly percentage, x, we

converted this to a half-hourly rate, P , using the compound discount formula:

x = 1� (1� P )365·48

Transition Probabilities

Below is a description of how users transition from state to state. A summary of the

transition probabilities is given in Table 2. We assume users do not change housing in the

year and stay in the same distance ring throughout the year.
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• Users to Recovery: represents the annual probability of a user“recoverying” which

means “not using drugs.” We assume it to be 15% per year.

• Users to Non-fatal Overdose & Users to Fatal Overdose: represents the rate of users

non-fatally overdosing and the rate of users fatally-overdosing. We used the data from

Philadelphia Department of Public Health and calculated the proportion of fatally and

non-fatally overdosing users from 2017-2018 and assuming 55,000 users, we ended up

with rates of 0.0188 and 0.069 per year respectively.

• Users to OPS: represents the rate that users try to go to the OPS as described above.

• Users from OPS to Recovery & Users from Non-fatal Overdose to Recovery: means the

annual probability of an individual “recoverying” after visiting the OPS or the annual

probability of an individual non-fatally overdosing going to recovery. We assume that

the value is the same as the general probability of each user recovering, which is 15%.

• User from OPS to Nonfatal Overdose: The probability of an individual non-fatally

overdosing while at the OPS. Since we assume that all people who fatally overdose in

the OPS will be revived, there will be no users dying in the OPS. At the same time,

those who are saved from fatally overdosing will non-fatally overdose. Hence, the value

of probability of users from the OPS to non-fatally overdose is the sum of the probability

of users to non-fatal overdose and the probability of users to fatal overdose.

• Users from OPS to Fatal Overdose: The probability of a user fatally overdosing while
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at the OPS. Since there will be no users dying in the OPS, the probability of users from

the OPS to fatal overdose is 0.

• Users from OPS to Using on the Street: This is determined by the number of times a

users uses drugs per day, which we assumed was 4.

• Users from non-fatal overdose to OPS: The probability of a user overdosing but not

dying, and then visiting the OPS. We assume it is the same as the probability of users

to OPS [5].

• Users from non-fatal overdose to using outside the OPS : The probability of a user

overdosing but not dying, and then using again outside of the OPS. Hence, the value

is 1 minus the sum of probability of users from non-fatal overdose to recovery and the

probability of users to OPS.

In the next part, I will talk about our setting related to the OPS program.

• Time Steps: We let the time steps in our experiment to be 48, which means each time

step is a half hour.

• Total Time of the Simulation : It means the total time of the OPS program in our

simulation which is a year: 365 days.

• Working Hours: It represents the working hours for the OPS which we set as 20 hours.

The OPS closes for 4 hours a day and no one can enter then.
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• Maximum Capacity: It represents the maximum capacity of an OPS. In our baseline

model, we set it as 30. The maximum capacity is important since it determines how

many users will be a↵ected by the OPS program. If the OPS is full, then the users

attempting to go to the OPS will come back to their original states.

3.3 Experiment Description

In this section, we present the results from our experiments using the Markov model.

They can be divided into five separate parts: direct e↵ects, location e↵ects, indirect e↵ects,

increasing the recovery rate for all users, and varying the willingness to go to the OPS. For

each experiment, we ran 3000 simulations for each choice of parameters and each time set

new random seed to ensure that the simulations chose di↵erent random numbers. A random

seed specifies the start point when a computer generates a random number sequence[27].

After picking a random seed, for each set of parameters, we run 3000 year-long simulations

and the output we want to generate is the average from all of the simulations of the total

number of fatal and nonfatal overdoses after one year.

The time step for simulation is one-half hour. The length of the whole program is a

year so each simulation runs for a whole year with 55000 active users and 12896 recovering

users. Each half-hour, we track each person in the simulation and use the transition prob-

abilities to determine what their state will be in the next half-hour. The working hours of
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Name of Variables Description Estimated value

Users to Recovery (u2r) Annual probability of a user “re-

covering” (not using)

.15

Users to Non-fatal Overdose (u2od nf) Annual probability of a user non-

fatally overdosing

.069

Users to Fatal Overdose (u2od f) Annual probability of a user tak-

ing a fatal overdose

.0188

Users to OPS (u2ops) Probability for the user to OPS Average frequency of use * dt *
2
3 *(1-(u2r+u2od nf+u2od f))

Users from OPS to Recovery (P OPS Recover) Annual probability of an individ-

ual “recovering” (not using) after

visiting the OPS

.15

User from OPS to Nonfatal Overdose (P OPS OD nonfatal) Probability of a user over-dosing

but not dying while at the OPS

(we assume that all users who

overdose at the OPS are resusci-

tated)

u2od nf+u2od f

Users from OPS to Fatal Overdose (P OPS OD fatal) Probability of a user dying from

an overdose while at the OPS

0

Users from OPS to Using on the Street (P OPS user) Probability of an individual leav-

ing the OPS and using outside

the OPS

1 - P OPS Recover - u2od nf - u2od f [5]

Users from Non-fatal Overdose to Recovery (P OD nonfatal Recover) Probability of a user over-dosing

but not dying, and then ceasing

to use drugs (recovering)

.15

Users from non-fatal overdose to OPS (P OD nonfatal OPS) Probability of a user over-dosing

but not dying, and then visiting

the OPS

u2ops[5]

Users from non-fatal overdose to using outside the OPS (P OD nonfatal user) Probability of a user over-dosing

but not dying, and then using

again outside of the OPS

1-P OD nonfatal Recover-u2ops

Time Steps (TimeSteps for Markov Chain Model) Time step for people entering

OPS each day

48

Total Time of the Simulation (Tfinal) Total time of the simulation 365

Number of Users (N) Number of users 55000

Working Hours (workinghours) The working hours for OPS 20

Maximum Capacity (MaxCapacity) The maximum capacity for the

OPS

30

Table 2: Parameters
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the OPS, suggested by Safehouse, was set at 20 hours a day which means, if the users try to

enter the OPS in the other 4 hours, they will be rejected (since it is closed). For our baseline

simulation, the maximum capacity also suggested by Safehouse was set at 30. We later vary

this capacity to see how expanding services would a↵ect our results. If users are using or in

the OPS, they might overdose. If they are in the OPS, they can only overdose non-fatally

as described above. At the end of the simulation, we determine how many nonfatal and

fatal overdoses have occurred and also determine how far from the OPS these occurred. We

also keep track of how many people are in recovery at the end of the year. Below we vary

parameters to determine possible e↵ects of the OPS.

3.3.1 Parallel Computing

All simulations were created in R. Initially, we tried running this model on our local

laptops. However, it took about 2 hours for the model to be simulated for only 30 days.

We decided we needed to increase the execution e�ciency of our simulations. After testing

di↵erent virtual machines, we finally decided to use Quark, which is the supercomputer at

the University of Richmond used mostly by the Physics Department. It has about 30 clusters

each with 12 nodes available. Here we applied the “parallel” library in R to be able to run

many simulations at once. In this way, the execution e�ciency was largely increased. It now

takes about 85 hours to run 3000 iterations with one set of parameters.
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Number of fatal overdose Number of nonfatal

Without

OPS

1045 3933

With OPS 1038 3939

Table 3: Baseline Results

3.3.2 Experimental Results

Below we report the experimental results of baseline model, direct e↵ect of the OPS,

location e↵ects of the OPS,indirect e↵ects of the OPS, combination of both direct and indi-

rect e↵ects of the OPS, educational e↵ects of the OPS and the e↵ect from the willingness to

go to the OPS.

Baseline Model

Our first experiment consisted of running the two baseline models: the simulations

run with and without OPS. As for the simulation with the OPS, we set the maximum

capacity of OPS as 30. All other are given in Table 2.

Table 3 shows the baseline results after running 3600 simulations for the model with

and without the OPS.

Here we can see that with the OPS at 30 capacity, the number of fatal overdose
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users would be reduced 7 per year, which means 7 people can be saved with the inclusion

of an OPS. Additionally, there are 6 more nonfatal overdoses, which means those 7 people

become nonfatal overdose users and the extra 1 is the minor di↵erence during the simulation.

The 7 revived people are saved from the fatal overdosing stage into the nonfatal overdosing

stage. In the OPS, since we assume all people who overdose are revived, the probability of

users going to the fatal overdose stage is added into the probability of users going to the

nonfatal overdose stage in the OPS (see Table 2). Thus, all the users who are saved in the

OPS from death are directly transferred to the nonfatal overdose stage.

Direct E↵ect of OPS

Since the previous two experiments have a limited e↵ect on the number of reductions

in both the number of nonfatal and fatal overdoses, we next varied the maximum capacity

of the OPS to see what expanded services would do to overdose rates. To really have an

impact, the OPS would need to be able to serve more than 30 users at a time since there

are so many active users in Philadelphia.

Thus, we investigated the e↵ects of the maximum capacity changes, which means

the OPS can serve more users, on the number of users who fatally overdose and nonfatally

overdose. Hence, we designed the experiment to make the maximum capacity increase from
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30 to 240 by adding 30 each time. From the result, we can see that by increasing 30 slots

in the OPS each time, the number of users who fatally overdose will be reduced by 5 or

6. At the same time, the number of users nonfatally overdosing will also increase in the

range of 5 to 7, which corresponds to the reduction of fatally overdosing users. The re-

duction in fatal overdose and the increase in nonfatal overdose are almost the same. This

is because we assume that all users who go to the OPS will be revived. Additionally, the

nonfatal overdose rate in the OPS is equal to the original fatal overdose rate plus the original

nonfatal overdose rate to represent that all saved users will nonfatally overdose. This experi-

ment confirms that the maximum capacity of OPS is one key factor to reduce fatal overdoses.

Location E↵ect of OPS

Besides the e↵ects of the OPS’s maximum capacity, we also investigated the location

e↵ects of the OPS which means the e↵ect of the distance from OPS to each group of users.

The Figure 2 and the Figure 3 are the results.

From the chart about population distribution, it can be seen that the population

within 1.5 miles from the OPS only accounts for 38% of the overall population in Philadel-

phia. However, 86.2% of the people revived from the OPS live within 1.5 miles from the

OPS. Thus, for the OPS with 300 capacity, it is mainly e↵ective for the users living within
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Figure 2: Population Distribution

Figure 3: Revived Users Distribution

29



a 1.5 miles radius. It also implies that there should be more than one OPS opened in Kens-

ington county to guarantee that all the population can reach one of the OPSs in 1.5miles.

Demographic di↵erences in Philadelphia suggest that other OPSs will be needed in other

parts of the city also. We will investigate this in future work.

Indirect E↵ect of OPS

In the OPS, there are more services provided than helping the users revive from

overdose. There are some indirect ways that overdoses might be reduced in number. For

example, the OPS can provide a place for safer injection, provide safety instructions and clean

injection instruments, such as clean needles and also test drugs from more deadly unwanted

additions such as fentanyl, all of which can potentially decrease the nonfatal overdose rates

of users in the OPS.

Hence, in this simulation, we investigate the e↵ect of the OPS on reducing the non-

fatal overdose rate. It is important to notice that users will never become fatally overdosed

in the OPS because we assume that in the OPS all users will be saved from death. Hence,

in all of our simulations, the baseline overdose rate for the OPS is the nonfatal overdose rate

plus the fatal overdose rate.

In the current experiments, we assume that the OPS provides other services that
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could lower the nonfatal overdose rate in the OPS. We varied the nonfatal overdose rate in

the OPS by multiplying it in increments of 0.1 from 0.9 to 0.1, with a reduction of 0.1 each

time. The lower the scaling factor, the better e↵ect of the OPS on reducing nonfatal overdose.

We did the simulation by modifying on the baseline model whose OPS has 30 maximum

capacity. The model predicts that the OPS would save 2 or 3 users from overdosing while

reducing the scaling factor by 0.1. While changing the overall overdose rate in the OPS, the

number of users fatally overdosing remains the same. The result is valid since we already

assume that all users in the OPS will be prevented from death. Additionally, the OPS only

has 30 spots which will always be full to serve current users who tend to go to the OPS

compared with about 550000 users in general. The capacity of the OPS is too small to make

a change. We also experimented with 0.1 as the scaling factor and increased the maximum

capacity by 30 from 30 to 300. The model predicts that the number of people nonfatally

overdosing will decrease in the range of 17 to 21.

Based on these two experiments, we are interested to see more generally the e↵ect

of the combination of these two factors.

Combination of Direct and Indirect E↵ect of OPS

From the experiments with direct e↵ects and indirect e↵ects, we found that increasing
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Figure 4: Results of Combination of Indirect and Direct E↵ects

maximum capacity leads to increase the number of nonfatally overdosed users because less

people fatally overdose when the maximum capacity is increased. We also saw that decreasing

OPS scaling factor, or increasing the e↵ect of the OPS on reducing nonfatal overdoses, leads

to an decrease in nonfatally overdosing users. Hence, these two factors have opposite e↵ects.

We next investigated the e↵ect of the combination of these two factors and determined the

balancing point of these two e↵ects.

Figure 4 shows the experimental result. It can be seen that when the scaling factor

reaches 0.8 which means when the OPS can help to reduce the nonfatal overdose rate by 20%

in the OPS, these two e↵ects come to the balance point for total nonfatal overdoses. Hence,

it means that when the OPS reduces more than 20% of overdose rate for the users in the

OPS, the increase in nonfatal overdoses due to those who would have fatally overdosed but

were revived would balance with the decrease overall of overdoses in the OPS. Also, as the

overdose rate decreases even more, the number of nonfatal overdoses will be reduced from

baseline, even with an increased maximum capacity.
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Educational E↵ect of OPS

Besides these two factors, other services of the OPS should also be considered – the

educational programs. There will be education provided to users about entering recovery.

The OPS can provide a safe place for the users to seek treatment and also safe drug use

instructions. To see the broader e↵ects on the community, we varied the overall e↵ect of

having an OPS on the entire population by changing the annual recovery rate for every user

from values of 0.05 to 0.5, with increments of 0.5. We expect that the OPS will help people

overall not just when they are in the OPS and this is one way to test these e↵ects. Table 4

presents the results.

From Table 4, it can be seen that by only increasing the recovery rate from 15% to

20%, the number of fatal overdosing users can be lowered by 17 and the number of nonfatal

overdosing can be lowered by 90. Also, when the user to recovery increases to 0.25, there will

be about 24 less fatal overdoses. The educational program can lead to less people using drugs

in general. Thus, the implication here is that the educational program should be enhanced

so that users can be well-educated on how to use drugs safely so that users are helped with

recovery.

33



U2r (rate enter recovery) fatal nonfatal recovery

0.05 1084 4111 8581

0.1 1061 4025 10731

0.15 (baseline) 1038 3939 12899

0.2 1015 3849 15088

0.25 990 3758 17295

0.3 965 3663 19524

0.35 940 3567 21779

0.4 912 3466 24062

0.45 884 3359 26378

0.5 856 3251 28734

Table 4: Results of Education E↵ect of the OPS
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Varying the Willingness to go to the OPS

Besides the objective factors above, we also tested the “subjective” or “more human”

side of the model – the willingness for people to enter the OPS. We first made the assumption

that 2/3 of the closest people would choose to go to the OPS to use drugs and others’

willingness would scale by distance. Then we tested with 40 percent and 20 percent and the

result did not change. The reason is that even if the willingness decreases, the people trying

to enter the OPS is far more than the maximum capacity – 30 each time step. Thus, there is

no change in the number of overdoses. We expect this result would change if the availability

of the OPS increased significantly.

4 EXPERIMENT ON PROGRAMMING LANGUAGES FOR

AGENT-BASED MODEL

4.1 Overview

Using the Markov Chain model, our simulation can only replicate a situation where

transitions are only based on the current state and there is no memory in the simulation

or heterogeneous features of the users. Whereas Markov models lump users together into

homogeneous groups, agent-based models can be used to simulate particular agents and hold
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information about each user, including information about their past or personal character-

istics.

Thus, we next decided to adopt an agent-based modeling approach to investigate the

opioid problem and to see how placing an OPS could help reduce overdoses.

In [10], it mentions the following: “An agent-based model (ABM) is a computa-

tional model which is modeled as a collection of autonomous decision-making entities called

agents. Each agent individually evaluates its situation and makes decisions based on a set

of programmed rules. Agents may execute various behaviors suitable for the system they

represent. At the simplest level, an agent-based model consists of a system of agents with

heterogeneous traits and the relationships between them related to di↵erent events. A simple

agent-based model can exhibit complex behavior patterns and provide valuable information

about the dynamics of the real-world system that it emulates. Also, agents may be capable

of evolving, allowing unanticipated behaviors to emerge. A sophisticated ABM sometimes

incorporates neural networks, evolutionary algorithms, or other learning techniques to allow

realistic learning and adaptation.”

Next, we built an event-oriented agent-based model to simulate user’s behaviors. We

define a finite set of events corresponding to the users in the agent-based model. During

the execution, the agent-based model will have an event list which maintains the execution

times chronologically and goes to the next event. After initializing the event list, the model
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will execute in the following sequence of steps: (1) the next event in simulated time is found

in the event list; (2) the simulation clock is set to the time of that event; (3) an algorithm

related to the specific type of the event is executed; and (4) the event list is updated including

the future event generated by the current event[13].

Our first attempt involved building a baseline agent-based model in NetLogo. How-

ever, the computational e�ciency seemed quite low. To make the computation as e�cient

as possible for the agent-based model, we decided to test three programming languages:

NetLogo, Java with Mason, and Python to find the quickest programming language and

platform. To test the speed of the software, we applied a test program – epiDEM basic, a

simple model simulating the spread of an infectious disease in a closed population [6]. We

chose this model as the toy model to do the experiment because it shows every necessary

element an agent-based model needs and it is easily implemented.

NetLogo is a multi-agent programmable modeling environment, implemented in Java

[29]. Mason is a Java-based agent-based model environment that is extremely fast and has

been optimized for execution time [26]. In python, we used the Mesa library, which is a

modular framework for building, analyzing, and visualizing agent-based models [21].

4.2 Flow Chart for the Experiment Model

Figure 5 is the flow chart of our baseline model. This model comes from a classical
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Figure 5: Flow Chart of epiDEM

susceptible-infective-recovered (SIR) model [17] in epidemiology. Initially, the simulation

start will 95% of the population susceptible and 5% infected. In each iteration, the simulation

first checks whether all users are infected. If so, the simulation finishes. If not all users are

infected, then the users will move randomly. For each user, if they are infected, they may

infect other users and also check whether they recover or not. If the user is not infected,

then they directly go to the final step of the current iteration, which is to update the current

status and assign color based on the current state.

The NetLogo code was taken from sample code on the NetLogo website. Then we

implemented the same program with the same logic but di↵erent programming languages:
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Python and Java. We made sure that every parameter is the same as for the original. Then,

for each program, we increased the population size, from 100 to 2000, and ran the program

recording the execution time. We ran each program 10 times with the specific population

and then took the average execution time. Our goal was to determine the execution e�ciency

and find the fasted language. Once determined, we would use that language to build the

agent-based model related to the OPS. Figure 8 in the appendix is the sample code of the

main method of the Java program. Figure 9 in the appendix shows the piece of code from

the Python with Mesa. Figure 10 in the appendix shows the piece of Netlogo code with the

go procedure, which is the main method in the Netlogo.

4.3 Results

The results in Figure 6 were surprising: Java with the Mason library stands out over

the other two programming languages. From the Figure 6, it is clear that Python has the

longest execution time and Java works best. For example, when the population is 2000, it

takes Python 76.55 seconds to execute. However, Netlogo takes 0.86 seconds, better than

Python, but still worse than Java with Mason which takes 0.53 seconds. Thus, we decided

to use Java to implement our agent-based model. It makes sense that Java works much

faster than Python. The reason is that Java is a compiled language. In [15], it mentions the

following: “ Its e�ciency depends on its Just-In-Time compiler. The Just-In-Time compiler

is a component of the runtime environment that compiles bytecodes to native machine code
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at runtime to improve the performance of Java applications.”

Figure 6: Bar Chart of the result

As for Python, the main reason that why Python is slow is because of its dynamic

typing. Python is dynamically typed rather than statically typed. This means that at the

time the program executes, the interpreter does not know the type of the variables that are

defined which makes the program slower[14].

5 AGENT-BASED MODELING APPROACH

In this section, we will introduce the agent-based model approach used for testing

the e↵ects of the OPS. Currently, we have finished the prototype of the model. Future work

will focus on more comprehensive in-depth execution of the model to explore the solutions
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related to placement of OPS.

In our research, the agent-based model can:

• keep track of heterogeneous traits of users, which can help us determine who the OPS

will help

• keep track of past events of importance, like last time to the OPS

• consider the e↵ects various OPS placements around the area of Philadelphia utilizing

the users distances to the various OPSs

Instead of only “remembering” the previous state, the agent-based model can keep track of

various attributes of users. Additionally, the transitions of the behaviors of each user do not

need to happen on a timestep. Instead, their “next event time” is drawn from a distribution

of times, and simulation time acts more continuously.

5.1 Model Design

Our simulation is an “event-oriented” agent-based model to simulate users’ behaviors. In

the simulation:

1. The next event in simulated time is found in the event list, which is the first item of

the sorted list.
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2. The simulation clock is set to the time of that event [13].

3. An algorithm related to di↵erent states: drug-using, recovering, relapsing, and leaving

the OPS is executed.

4. The sorted event list is updated with the new event generated by the current event with

binary insertion. The binary insertion sort applies the binary search to find the right

position to insert an element into a sorted list [16].

5.1.1 Flowchart

The flow chart in Figure 7 shows the basic flow of the simulation. For all users, the

simulation will first initialize their current status. The majority will be active users and the

rest are those who are in the recovery stage. After initializing the next recovery time and

next use time for every active user, the model will put the earliest event of each agent in the

event list. After the initialization, the model sorts the event list in order of time and then

starts to go through the events in order.

For the agent who acts first, if the event is to use drugs, then the model will decide

whether the agent wants to go to the OPS, based on their distance and willingness, whether

the OPS is open, and whether the OPS has a spot for them. If so, then the agent will use

drugs in the OPS and the model will check whether the agent is overdosing or not. If they

are overdosing, then they will go to the nonfatal overdose stage and the nonfatal overdose
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counter will increase by one. Then the agent will have a leave OPS time chosen and if this

is before their next recovery time, this will be set as their next event. Then this updated

event will be inserted into the event list.

As for those users who use drugs on the street or at home, the model will check

whether they nonfatally overdose or not. If not, the model will check whether they fatally

overdose. If so then the agent will directly die and the event list will never consider this agent

anymore. Otherwise, a new next event time will be generated for that agent. By comparing

with the recovery time, the model picks the earliest time as the agent’s next event time.

Then the updated event of this agent will be inserted into the event list. Below, we list the

conditions that decide the next event time:

• If the agent does not use drugs but instead goes to recovery, the only possible next event

is to relapse. The model will generate the next relapsing time and insert this event into

the event list.

• If the agent relapses at the current state, it will generate a new recovery time and then

generate the next use time. The model then picks the earliest event to be the next

event and inserts it into the event list.
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Figure 7: Flow chart of the agent-based model about the OPS

• If the agent currently leaves the OPS, then it will generate the next drug use time. The

model then picks the earliest event to be the next event and inserts it into the current

event list.

These are the transition scenarios of all of the users. At the end of each iteration, the model

will pick the current earliest next event for all of the users to continue the simulation.

To date, we have completed a first draft of the code for the agent-based model in

Java. Future work will be to simulate results using the parameters above and to include

more heterogeneous parameters into the model so that we can answer more questions than
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we were able to with the Markov model.

6 CONCLUSIONS

In this work, we presented two approaches to demonstrate the e↵ectiveness of placing

an OPS in the Kensington neighborhood of Philadelphia. Specifically, we determined how

the OPS can reduce the number of fatal and nonfatal overdoses. With su�cient experiments,

our model suggests that an OPS with the capacity of 30, without regard to other indirect

e↵ects, can save 7 people from fatally overdosing in a year.

As for the direct e↵ect of the OPS, each time we increase the capacity of the the OPS

by 30 slots, the number of users who fatally overdose will be reduced by around 6. Hence,

the maximum capacity of the OPS is a key factor to revive users from fatally overdosing.

The larger the OPS, the more people will be saved. This is only limited by the number of

users and overdoses that occur each year. Having multiple OPSs could have the same e↵ect.

As for the location e↵ect of the OPS, the experiments show that the population

within 1.5 miles from the OPS only accounts for 38% of the overall population in Philadel-

phia while 86.2% of the people revived from the OPS live within 1.5 miles from the OPS.

To reach di↵erent segments of the user population more than one OPS should be opened in

Philadelphia to guarantee that all segments of the population are helped.

As for the indirect e↵ects, our experiments showed that those indirect solutions to
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regulate the whole process of using drugs, such as providing a safer environment and fentanyl

testing, will lead to a greater reduction in nonfatal overdose.

Nonfatal overdoses, whose total numbers increase when people are revived in the

OPS, can be reduced overall as long as the OPS program guarantees the indirect solutions

can provide a 20% reduction in the overall overdose rate. Results also suggest that the

education programs of the OPS can e↵ectively increase the e↵ectiveness of the OPS. By en-

hancing the educational program to the users in the area so that the recovery rate increases

from 15% to 20% in the whole population, other lives will be saved.

Our modeling techniques can be applied to other cities if they replace the Philadel-

phia data with their own. As far as agent-based modeling platforms, Java was much more

e�cient than NetLogo and Python. We were able to design and build an agent-based model

for our system in Java. Future work will consist of utilizing our Java built agent-based model

to make better predictions about the e↵ects of placing an OPS in Philadelphia.
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7 APPENDIX

Figure 8: Java Code for Testing

Figure 9: Python Code for Testing
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N Netlogo Python Java

100 0.83 0.9 0.041

200 0.88 2.63 0.066

300 0.83 3.51 0.101

400 0.84 6.84 0.121

500 0.84 8.97 0.151

600 0.82 10.91 0.202

700 0.85 13.69 0.164

800 0.74 14.37 0.262

900 0.87 18.86 0.246

1000 0.88 23.66 0.227

1100 0.89 28.35 0.285

1200 0.89 32.52 0.34

1300 0.87 33.17 0.308

1400 0.85 32.39 0.439

1500 0.84 35.13 0.443

1600 0.86 39.69 0.453

1700 0.89 43.77 0.356

1800 1.12 51.01 0.687

1900 1.24 68.21 1.214

2000 1.23 76.55 0.533

Table 5: Results from the programming languages testing
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Figure 10: Netlogo Code for Testing
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