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ABSTRACT

Motion planning is a difficult but important problem in robotics. Research has

tended toward approximations and randomized algorithms, like sampling-based plan-

ning. Probabilistic RoadMaps (PRMs) are one common sampling-based planning

approach, but they lack safety guarantees. One main approach, Medial Axis PRM

(MAPRM) addressed this deficiency by generating robot configurations as far away

from the obstacles as possible, but it introduced an extensive computational burden.

We present two techniques, Medial Axis Bridge and Medial Axis Spherical Step,

to reduce the computational cost of sampling in MAPRM and additionally propose

recycling previously computed clearance information to reduce the cost of connection

in MAPRM. We provide experimental results that demonstrate the effectiveness of

our proposed methods by: (1) showing that Medial Axis Bridge and Medial Axis

Spherical Step both reduce the sampling time of MAPRM by nearly 50% while

guaranteeing the same degree of safety, and (2) showing a nearly 50% decrease in

connection time in MAPRM.
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1. INTRODUCTION

Motion planning is an important problem in many domains, such as robotics,

bioinformatics, virtual prototyping, and graphic animation [17]. The motion plan-

ning problem is the search for a contiguous sequence of valid (e.g., collision-free)

states that begins at an initial position and ends at a desired goal region. In most

cases, it is computationally infeasible to find a path deterministically. As such, re-

search has focused on probabilistic methods that achieve efficiency and applicability

at the cost of completeness.

Sampling-based approaches [13][19] perform well in solving a number of difficult

motion planning problems. They generally compute solutions to a motion planning

problem by constructing a random graph that represents the planning space and

finding solution paths within that graph. Probabilistic RoadMap (PRM) is one

such approach. However, PRM performs poorly in situations that require paths

to pass through narrow passages. Additionally, PRM generates very jagged paths

and/or paths that are close to obstacles, which can be dangerous for a robot.

PRM variants have been developed to overcome the above issues. Some meth-

ods [1][5][11][27] find samples near the boundaries of obstacles and in narrow passages

to improve sampling. Other methods [20][26][28] sample away from obstacles and

thus provide safety.

In all of these variants, collision checking is considered to be the computational

bottleneck early on in their executions [18]. Various techniques have been proposed

to make the planning process more efficient by decreasing the time spent on collision

checking. Some methods [4][23] use laziness to avoid unnecessary collision checking.

Other research [3][25] uses the idea of utilizing clearance information to define a

1



(a) Medial Axis
Bridge

(b) Medial Axis
Spherical Step

Figure 1.1: Proposed sampling methods: (a) Medial Axis Bridge and (b) Medial
Axis Spherical Step.

safety certificate in the form of a valid hypersphere to eliminate unnecessary collision

checks.

This work applies biased sampling with exploitation of valid hyperspheres to

improve the efficiency of planning on the medial axis of the space, i.e., set of all

points equidistant to two or more obstacles. Specifically, we improve Medial Axis

PRM(MAPRM) [26]. As such, our methods accelerate the sampling and total

planning processes used within MAPRM.

1.1 Research Contribution

This work proposes two approaches to make MAPRM sampling more efficient.

The first approach, Medial Axis Bridge (Figure 1.1(a)), uses filtering to perform in-

expensive checks to quickly rule out initial samples that typically cause MAPRM to

perform poorly. The second approach, Medial Axis Spherical Step (Figure 1.1(b)),

employs clearance from past collision detection to exploit valid hyperspheres in gen-

erating samples to prevent unnecessary collision checks. We provide additional en-

2



hancement to MAPRM by improving edge generation using valid hyperspheres.

This work provides empirical evidence that shows the effectiveness of our techniques

in reducing computation cost in a variety of environments.

1.2 Outline

Chapter 2 provides an overview of the motion planning problem and reviews

related approaches. Chapter 3 describes our Medial Axis Bridge and Medial Axis

Spherical Step approach. Chapter 4 provides empirical results of Medial Axis Bridge,

Medial Axis Spherical Step approach, and medial axis sampling with valid hyper-

spheres and compares them to related approaches. Chapter 5 summarizes the work

and discusses future research directions.

3



2. PRELIMINARIES AND RELATED WORK

First, we review the basics of motion planning, and then we describe related ap-

proaches to our proposed methods. Specifically, we focus our discussion on planning

variants that provide safety guarantees or improve the efficiency of planning.

2.1 Motion Planning Problem

A robot is a movable object with d Degrees of Freedom (dofs). dofs parameterize

a unique placement of the robot (e.g., joint angles or center of mass position). A

configuration q = 〈x1, x2, ..., xd〉 is a specification of the values for the dofs, where

xi is the ith dof. The set of all possible configurations is the configuration space,

denoted as Cspace [21]. The subset of all feasible configurations is the free space,

Cfree, and the set of all infeasible configurations is the obstacle space, Cobst. The

comparison between workspace, i.e., the robot’s natural two- or three-dimensional

world, and Cspace is shown in Figure 2.1. A car-like robot in a two-dimensional

workspace is a point in a three-dimensional Cspace. A path in the workspace is a

swept volume, whereas in Cspace it is a one-dimensional trajectory.

With this notion, the motion planning problem becomes that of finding a contin-

uous trajectory in Cfree between a start and goal configuration qs, qg ∈ Cfree. It is

intractable to solve the motion planning problem in general [24]. However, we can

quickly perform a collision detection test (e.g., [6][22]) in the workspace to determine

if a configuration is feasible or not — the basic operation of efficient randomized plan-

ning algorithms. Randomness helps overcome the intractability of motion planning

by sacrificing a complete solution for a probabilistically complete one — if a solu-

tion path exists, the probability of finding a path approaches one as the algorithm

continues to run.

4



(a) Workspace (b) Cspace

Figure 2.1: Example of (a) workspace and (b) Cspace for a car like robot with 3 dofs.

2.2 Probabilistic RoadMaps

Sampling-based planners, like Probabilistic RoadMaps (PRMs) [13] and Rapidly-

exploring Random Trees (RRTs) [19], solve the motion planning problem by gen-

erating random roadmaps, i.e., undirected graphs, that represent Cfree. One such

approach PRM (Algorithm 1 and Figure 2.2) divides planning into a learning phase

and a query phase. In the learning phase, PRM constructs a roadmap in Cfree by

generating random valid (i.e. collision-free) configurations and connecting neighbor-

ing samples that have collision-free transitions (e.g. straight-lines) between them.

In the query phase, user defined start and goal configurations are connected to the

roadmap and a path from the start to the goal configuration will be extracted using

a graph search algorithm (Figure 2.2(c)). The learning phase and the query phase

will be repeated until a path is found.

In practice, PRM can solve high-dimensional motion planning problems quickly.

However, in many cases, as PRM uniformly generates random samples, the less

volume a corridor in Cfree takes up, then the smaller probability it will have any

samples in it [12]. With this drawback, PRM performs poorly in the scenarios that

5



(a) Sample (b) Connect (c) Query

Figure 2.2: Example execution of PRM construction: (a) sampling, (b) connecting,
and (c) querying.

Algorithm 1 PRM [13]

Input: Start configuration qs, goal configuration qg
1: Roadmap R = (V,E)← (∅, ∅)
2: while ¬done do

3: V ←sample()
4: E ←connect(V )
5: R.findPath(qs, qg)

require solution paths to pass through narrow passages. In order to have enough

samples in narrow passages, PRM needs to sample and connect more configurations,

which is inefficient. Meanwhile, PRM does not provide any safety guarantees — it

can generate jagged paths and/or paths that are close to the obstacles, which are

dangerous for a robot.

In order to improve planning in narrow passages, PRM variants have been de-

veloped with techniques that bias or filter sampling towards the boundaries of Cobst.

Obstacle-Based PRM (OBPRM) [1][27] pushes samples near the surface of the ob-

stacles. Gaussian PRM [5] and Bridge Test PRM [11] use filtering technique that

performs inexpensive tests to find samples near the boundaries of Cobst or in narrow

passages respectively. As shown in Figure 2.3(a) and 2.3(b), Gaussian PRM uni-

6



(a) Successful sample (b) Unsuccessful sample

Figure 2.3: (a) Successful and (b) unsuccessful Gaussian PRM sampling attempts.

formly generates a random sample and a second sample at a random distance away

from the first sample based on a Gaussian distribution. A sample is added to the

roadmap if and only if one is valid and the other is invalid. Bridge Test [11] uni-

formly samples a random configuration q′ and finds q′′ at a random distance away

from q′ based on a Gaussian distribution. If q′ and q′′ are both invalid, it finds the

middle point q of these two samples. The middle point q is added to the roadmap if

and only if it is valid, as shown in Figure 2.4(a), otherwise, samples q, q′ and q′′ are

discarded (Figure 2.4(b)). The downside of these approaches is that it may fail many

times before it successfully finds the sample that bridges the gap between the narrow

passage. This class of PRM variants samples close to obstacles, thus, generating

dangerous paths for a robot.

2.3 Efficient Collision Checking Variants

Collision detection is considered to be one of the main computational bottle-

necks in sampling-based planning in practice [18]. Many variants that reduce the

number of collision detection tests to accelerate the planning process exist. Lazy

PRM [4] minimizes the number of collision detection calls during planning by delay-

7



(a) Successful sample (b) Unsuccessful sample

Figure 2.4: (a) Successful and (b) unsuccessful Bridge Test PRM sampling examples.

ing them until needed. It initially assumes that all nodes and edges in the roadmap

are collision-free and only perform collision checks if a solution path is found. Fuzzy

PRM [23] uses the idea of laziness to avoid unnecessary collision detection calls to

solve manipulation planning problems. It uses a fuzzy roadmap, which is an edge

probability annotated roadmap. In the fuzzy roadmap, edges are not verified by local

planners but are assigned a number which represents the probability of its feasibility

and later verified if they are a part of a potential solution path.

The idea of using clearance information to define a safety certificate, i.e., a hyper-

sphere in both Cfree and Cobst has been considered [3] [25]. As shown in Figure 2.5,

when a configuration is collision checked, the planner stores the clearance and defines

a region, that will have the same state (i.e., in Cfree or in Cobst) as the center of the

hypersphere (the configuration that was collision checked). The use of hyperspheres

improves the efficiency of PRM by reducing unnecessary collision checks. In both of

the sampling and connection processes, the nearest neighboring hyperspheres of the

configuration are searched. If the configuration is located inside of a hypersphere,

it can forgo the collision detection since its state of validity is known. The benefits

8



(a) An existing hyper-
sphere

(b) Sampling within a
hypersphere

(c) Sampling outside
any hyperspheres caus-
ing a validity test

Figure 2.5: PRM sampling using hyperspheres: (a) an existing hypersphere, (b)
sampling within a hypersphere, and (c) sampling outside any hyperspheres causing
a validity test.

of using hypersphere increases quickly in spaces that are relatively free of obstacles.

However, in a high dimensional space with many obstacles, it takes more time before

the benefit of using hypersphere becomes substantial [3]. Also, the trade-off between

fewer collision detection calls and increased neighbor finding calls is unclear.

2.4 Medial Axis PRM

Another solution to solve the narrow passage problem efficiently is to sample

inside narrow passages but as far away from the obstacles as possible [26]. The medial

axis or generalized Voronoi diagram has this appealing property [2][8][9][10][14][16].

The medial axis of a polyhedron is the set of all points equidistant to two or more

obstacle boundaries [7]. The medial axis has one lower dimension than Cspace, but it

is still a complete representation of a motion planning problem (e.g., the medial axis

in a two dimensional problem is a one dimensional graph-like structure, as shown in

Figure 2.6). The medial axis provides high clearance, and thus safe paths for a robot

to travel. Unfortunately, it is inefficient to compute the exact medial axis.

Medial Axis PRM (MAPRM) [26] generates samples on or near the medial

axis of free space. Based on the clearance of a configuration q, MAPRM retracts

9



Figure 2.6: MAPRM roadmap for a 2D point robot composed of 1000 samples.

q sampled from Cobst or Cfree onto the medial axis of the free space without the

explicit computation of the medial axis. Shown in Algorithm 3, MAPRM begins by

uniformly generating a random configuration q in Cspace (Figure 2.7(a)). Using the

clearance, the witness configuration w, i.e., the closest configuration on the boundary

of Cobst to q, can be computed. If q is is in Cfree, the retraction direction is set to ~wq

and the start configuration q does not change. If q is in Cobst, the retraction direction is

set to ~qw and the start configuration q is set to w. Starting at q, MAPRM moves the

sample in the direction of ~v with step size dist until a configuration q′ with a different

witness point than w is found (Figure 2.7(b)). Then, a binary search is performed

between q and q′ with a resolution parameter δ to find a configuration m, which is at

most δ distance away from the actual medial axis, as shown in Figure 2.7(c). After

all random samples are retracted onto the medial axis, MAPRM tries to connect

valid configurations and answer queries. Since MAPRM samples in both Cobst and

Cfree, the number of samples found in the narrow passages is less dependent of the

volume of the passage. Uniform MAPRM (UMAPRM) improves on MAPRM so

that it generate samples uniformly on the medial axis of Cfree [28]. However, it does

10



Algorithm 2 Initialize

Output: Configuration q, w, direction ~v

1: q ← randomCfg()
2: w ← witness(q)
3: if q ∈ Cfree then
4: ~v ← ~wq

5: else

6: ~v ← ~qw, q ← w

7: return (q, w,~v)

Algorithm 3 Sample MA [26]

Output: Configuration m on the medial axis
1: (q, w,~v)←initialize()
2: q′ ← q

3: while witness(q′) = w do

4: q ← q′

5: q′ moves in direction ~v with step size dist

6: binarysearch(q, q′, δ) for a configuration m which has two nearest witness
points

7: return m

not make MAPRM significantly more efficient.

MAPRM greatly increases the probability of sampling in a narrow corridor.

Moreover, MAPRM works well in two or three dimensions. However, the bottleneck

of MAPRM is the retraction process as it needs to invoke collision detection checks

often and compute clearance of configurations to validate q on each step of the

retraction. Due to the difficulty in computing witnesses, MAPRM cannot easily or

efficiently be applied to high dimension spaces.

A witness approximation method that can be applied to high dimensional prob-

lems was introduced in [20]. It casts rays out in multiple random directions and

moves configurations along each ray by a given step size until the collision state (i.e.

11



(a) Initialize (b) Retract (c) Binary search

Figure 2.7: Process of generating samples on the medial axis: (a) initializing the
sample and retraction direction, (b) retracting a sample to the medial axis, and (c)
binary search for a configuration that is ǫ-close to the medial axis.

valid and invalid) changes on a specific ray. Then, a binary search is used to find a

more accurate approximation of the witness point of q. As the number of random

stepping directions is increased, the approximate witness point approaches the true

witness point. With the approximated witness point, MAPRM can be applied to

solve motion planning problems with high dofs. However, this approach is extremely

inefficient because it invokes a collision detection routine very frequently.

As seen, no PRM variant simultaneously offers safety and efficient planning.

12



3. IMPROVING THE EFFICIENCY OF MEDIAL AXIS SAMPLING

In this section, we present and describe our two approaches that efficiently sample

on the medial axis. The first approach, Medial Axis Bridge, uses randomness and

filtering, similar to the Gaussian PRM and Bridge Test PRM. The second approach,

Medial Axis Spherical Step, uses valid hyperspheres to avoid unnecessary collision

detection calls.

3.1 Medial Axis Bridge

In Medial Axis Bridge (Algorithm 4 and Figure 3.1), the algorithm first finds the

witness point w of a start configuration q, updates q, and computes the retraction

direction ~v using the same approach as MAPRM, as shown in Figure 3.1(a). Then,

the algorithm finds a configuration q′ at a random distance away in the direction

of ~v based on a Gaussian distribution, shown in Figure 3.1(b). Then, the witness

w′ of q′ is found. If w and w′ are not the same, qq′ crosses the medial axis. Thus,

the algorithm performs a binary search between q and q′ with a resolution δ until

a configuration m with 2 witness points is found, as shown in Figure 3.1(c). If the

witness point w′ does not change, q′ is discarded and a new q′ is attempted, as shown

in Figure 3.1(d). After all random samples are retracted onto the medial axis, the

algorithm starts to connect nearby samples as in MAPRM.

Recall that MAPRM steps in ~v direction (Algorithm 3) until a configuration

which has two witness points is found. Because at each step of the retraction, a

costly collision checking routine is invoked, MAPRM is inefficient in the retraction

process. Instead, Medial Axis Bridge bypasses collision detection by jumping instead

of stepping to the medial axis. In the cases that we could not find the configuration q′

whose witness point w′ is different from w, the algorithm invokes only two collision

13



Algorithm 4 Sample MA with Bridge

Output: Configuration m on the medial axis
1: (q, w,~v)←initialize()
2: for i← ∅ to numTries do

3: q′ ← randomJump(µ,~v, q)
4: w′ ←witness(q′)
5: if w 6= w′ then

6: binarysearch(q, q′, δ) for a configuration m which has two nearest witness
points

7: return m

8: return null or failure

detection calls, which is a comparatively inexpensive test, and it starts the next

iteration immediately.

Depending on the Gaussian distribution that we choose, the performance of Me-

dial Axis Bridge varies. Since this distribution is environment dependent, environ-

ments may each have a unique Gaussian distribution by which Medial Axis Bridge

performs most efficiently. For example, in an environment with sparse obstacles and

a relatively small-sized robot, a Gaussian distribution with a large mean parameter µ

would provide better performance than a Gaussian distribution with a small µ value

because the environment has a greater distance between obstacles.

3.2 Medial Axis Spherical Step

In Medial Axis Spherical Step (Algorithm 5 and Figure 3.2), the algorithm first

finds the witness point w of the start configuration q and initializes the direction ~v,

as shown in Figure 3.2(a). It iteratively exploits the valid hypersphere centered at q

with radius of the clearance of q to update q′ as the furthest point in the hypersphere

in direction ~v. A collision detection test is performed on each q′ to find its witness

point w′ until w and w′ are different (Figure 3.2(b) and Figure 3.2(c)). Then, we

perform a binary search between resulting q and q′ until a configuration m with two

14



(a) Initialize (b) Jump (c) Binary search (d) Unsuccessful
sample

Figure 3.1: Process of Medial Axis Bridge samples on the medial axis: (a) initializing
the sample and retraction direction, (b) retracting the sample to the medial axis, and
(c) binary search for a configuration that is ǫ-close to the medial axis. (d) Shows an
unsuccessful sampling attempt.

(a) Initialize (b) Stepping 1 (c) Stepping j (d) Binary search

Figure 3.2: Process of Medial Axis Spherical Step sampling on the medial axis: (a)
initializing the sample and retraction direction, (b-c) stepping to find the medial
axis, and (d) binary search for a configuration that is ǫ-close to the medial axis.
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Algorithm 5 Sample MA with Spherical Step

Output: Configuration m on the medial axis
1: (q, w,~v)←initialize()
2: q′ ← q

3: while witness(q′) =witness(q) do
4: q ← q′

5: q′ ← q + ~v· clearance(q)
6: binarysearch(q, q′, δ) for a configuration m which has two nearest witness

points
7: return m

witness points is found, shown in Figure 3.2(d).

Medial Axis Spherical Step combines the idea of using valid hyperspheres and

MAPRM to make the retraction step of MAPRM more efficient by eliminating

unnecessary collision checks. MAPRM requires collision checking on each configu-

ration along the retraction. On the other hand, Medial Axis Spherical Step reasons

about the computed clearance and witness point intelligently by exploiting valid hy-

perspheres to eliminate collision checks within the coverage of the hypersphere. By

efficiently stepping towards the medial axis, Medial Axis Spherical Step decreases

the total number of collision checks and can accelerate the sampling process.
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4. EXPERIMENTS

In this chapter, we present our experiment results and analysis. We describe

our experimental setup, and relay our comparison of our methods to PRM and

MAPRM in different environments.

4.1 Experimental Setup

PRM, MAPRM, Medial Axis Bridge, and Medial Axis Spherical Step are all

implemented in a C++ motion planning library. The Proximity Query Package

(PQP) is used for collision detection computations [15].

In our experiments, the stopping condition is to generate a roadmap with 100 sam-

ples. Connections are attempted between a configuration and its k-nearest neighbors

where k = 10 according to Euclidean distance in Cspace. We used a straight line local

planner with bisection evaluation.

We conducted our experiments in 2-dimensional zigzag (Figure 4.1(a)), 2-dimensional

maze (Figure 4.1(b)), 3-dimensional S tunnel (Figure 4.1(c)), and 3-dimensional maze

tunnel (Figure 4.1(d)) since they all are challenging problems with narrow passages.

We ran trials with different µ value for Gaussian distribution and found a relatively

good value for µ in each environment. We set µ to be 1.0, 1.45, 0.75, 1.0 for 2-

dimensional Zigzag, 3-dimensional Maze, 3-dimensional S-Tunnel, and 3-dimensional

Maze Tunnel respectively.

4.2 Experiment Discussion

We compare sampling time, connection time, and planning time. As shown in

Figure 4.2(a), Medial Axis Bridge and Medial Axis Spherical Step reduce the sam-

pling time of MAPRM by around 50%.
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(a) 2D Zigzag (b) 2D Maze (c) 3D S-Tunnel (d) 3D Maze
Tunnel

Figure 4.1: Environments used in experimental analysis.

We combine medial axis methods with hyperspheres, which are labeled with “with

ball” in Figure 4.2 [3][25]. From Figure 4.2(b), we see the improvement in time by

using hyperspheres during the connection phase across all medial axis methods. In all

environments, the connection time decreased by approximately 50%. On the other

hand, there is little-to-no decrease of connection time in PRM when hyperspheres

are used because it does not have clearance already computed — PRM needs to

compute the clearance information to exploit hyperspheres.

In Figure 4.2(c), we see the total planning time of all Medial Axis approaches

with hyperspheres is less than that of PRM with hyperspheres. Meanwhile, Medial

Axis Bridge and Medial Axis Spherical Step are more efficient than MAPRM.

Medial Axis Spherical Step is possibly a better approach than Medial Axis Bridge,

because it makes the most use of the clearance information and requires no addi-

tional parameters. It guarantees the sample with a step size that is furthest from

the current position of a sample but within the safe range, whereas Medial Axis

Bridge might require many failed attempts before successfully generating a sam-

ple. Nevertheless, both Medial Axis Bridge and Medial Axis Spherical Step improve

MAPRM’s efficiency while keeping its safety property as they sample on the medial

axis.
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(a) Sampling time

(b) Connection time

(c) Total planning time

Figure 4.2: Experiment results: (a) sampling time, (b) connection time, and (c) total
planning time.
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5. CONCLUSION

In this work, we presented and analyzed two medial axis sampling approaches

that improve the efficiency of MAPRM while retaining its appealing properties,

i.e., high clearance. We also improve the efficiency of connection in MAPRM by

utilizing previously computed clearance information. We provide empirical evidence

that demonstrates these improvements.

We have begun experimenting on solving queries with our approaches and cur-

rently find the same conclusions. However, some anomalies appeared and require

further investigation that we leave to future work. Additionally, in the future, we

will investigate the impact of high dimensionality on our approaches and their com-

bination with approximate methods [20]. Further, we want to apply our approaches

to kinematic systems.
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