University of Richmond

UR Scholarship Repository
Honors Theses Student Research

2020

Almost Difference Sets in 2-Groups

Xin Yutong
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

b Part of the Mathematics Commons

Recommended Citation
Yutong, Xin, "Almost Difference Sets in 2-Groups" (2020). Honors Theses. 1526.
https://scholarship.richmond.edu/honors-theses/1526

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/174?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/1526?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1526&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Almost Difference Sets in 2-Groups

A HONOR THESIS" PRESENTED
BY
YuTtong XIN
TO
THE DEPARTMENT OF MATHEMATICS

UNIVERSITY OF RICHMOND
RicamMonND, VIRGINIA
APRIL 30, 2020

“Under the direction of Dr. James A. Davis

The signatures below, by the thesis advisor, the departmental reader, and the honors
coordinator for mathematics, certify that this thesis, prepared by Yutong Xin, has been
approved, as to style and content.

\
\

(Dn James A. Davis, Thesis A 1sor)

Dol g Dumbangls

(Dr. Della Dumbaugh, Departmental Reader)

A

(Dr. Van Nall, Honors Coordinator)

ii

Thesis advisor: Professor Dr. James A. Davis Yutong Xin

Almost Difference Sets in 2-Groups

ABSTRACT

Difference sets have been studied for decades due to their applications in digital communi-
cation, cryptography, algebra, and number theory. More recently, mathematicians have ex-
panded their focus to the field of almost difference sets. Almost difference sets have similar
functionalities with difference sets, yet with more potential of finding new constructions. In
this paper I will introduce the definitions, properties, and applications of difference sets and
almost difference sets, and discuss our effort and results in the exploration of almost difference
sets in cyclic and non-cyclic groups.

iii

Contents

1 INTRODUCTION
1.1 DifferenceSets.
1.2 Theoretical and Real-world Significance of Difference Sets
1.3 Almost DifferenceSet

2. EXPLORING STRUCTURES OF ADS

3 SOFTWARE TOOL

3.1 Stage T
3.2 Stage2 e
3.3 SEAGE 3 e

4 Future WoRk
REFERENCES

APPENDIX A APPENDIX

aNh oW

20
21

23
24

27

30

31

Introduction

Difference sets and almost difference sets, with their special structural properties, are con-
sidered quite useful and powerful for both theory and application. In this paper we will dis-
cuss where difference sets and almost difference sets can be applied, the existence and non-
existence of almost difference sets for certain groups we studied, analysis of algorithms used for

our searches of almost difference sets, as well as some immediate results of applying our algo-

rithms. All groups in this paper will be written multiplicatively. Our ultimate objective is to
provide construction methods for new almost difference sets.

We start with the definition of difference set.

1.1 DIFFERENCE SETS

Definition 1.1.1. A (0, k, 1) difference set (DS) is a k—element subset D of a finite group G of

{(dl,d2> € D2 ’ g = dldz_l}‘ =).

order v, such that for all non-identity elements g in G,
The parameters v, £, A satisty the following relationship:

Proposition 1.1.2. I[f Disa (v, k, 1) difference set in G, then

bk —1) = (v —1)

Proof. Let G be a group, and D be a (v, £, 1) difference set of G. Recall thatallg € G can be
expressed A times as dy, d, € D such thatg = did, ™, ford,,d, € D.

Since |D| = &, there are & choices for dy, and because d, # d,, there are £ — 1 remaining
choices for d,. Hence, the total number of differences equals £(k — 1).

On the other hand, since |G| = v, there are v — 1 non-identity elements of G, and since each
of these elements is covered A times by the result of taking all the differences, we have that the

number of differences is (v — 1).

Therefore, k(k —1) = A(v — 1). [

Given a group G, a difference set D of G,and 2 € G, we callaD = {ad | d € D} atranslate

of D, where 4 is an element in G. If we let the elements of G be the points and we let the trans-

lates of G be the blocks, then the points and the blocks form a symmetric design. (See Beth et

al. for details on designs.)

Example 1.1.3. Thesubset D = {x,x% x*} isa (7,3, 1) difference set of the group C; =<
x| x” =1 >. Each element in C; can be expressed in exactly 1 = 1 way by taking the difference
of two elementsin D = {x,x*,x*},and 3 - (3 — 1) =1 - (7 — 1) satisfies proposition 1.1.2.

Additionally, the above difference set {x, x*, x*} and all its corresponding translates of C;,
{Lx, 2}, {3, 0}, {2, 6%, 20}, {x*, 25, 1}, {&°, x°, x}, {&°, 1, 4%}, can be visualized as

the lines on the Fano plane (see Figure 1), with each line containing the three elements in the

1.2 THEORETICAL AND REAL-WORLD SIGNIFICANCE OF DIFFERENCE SETS

translates of D.

Figure 1.1: Fano plane

Difference sets are useful in the realms of both theory and application.
Theoretically, difference sets are closely intertwined with algebra and number theory. Facts

borrowed from these fields can be combined to produce beautiful difference sets > #. For one

example, Davis and Jedwab discussed the theory of building blocks in regards to the character
of a group®. Another example is the Mann Test which can be dated back to Mann (1964) ™
and later strengthened by Jungnickel and Pott (1988)** and Arasu, Davis, Jungnickel, and
Pott (1990) ", where ring and group theory are applied to generate an important non-existence
criterion for difference sets. Jungnickel and Pott (1999)** derived several corollaries from the
Mann Test concerning existence conditions for planar difference sets, using the tools of ele-
mentary number theory, particularly the law of quadratic reciprocity.

The real-world significance of difference set can be found in applications such as sequences,
coding theory, and design theory. Difference sets can be employed to construct signal se-
quences applicable in digital communication '*; they have also been used to construct error-
correcting codes with good performance?, and even were taken one step further to generate
quantum stabilizer codes that help with communication of quantum information '*. Dif-
ference sets can also assist in constructing symmetric and quasi-symmetric designs with the
symmetric difference properties '°. In fact, a difference set can be viewed equivalently to a sym-
metric design, with regular automorphism group*.

Driven by these motivations, the study of difference set constructions dates back to the early
1900s. There are a number of different families of difference sets: Paley(1933),
Lehmer(1953), and Hall(1956) contributed to several constructions of cyclotomic difference
sets; Whiteman discovered the twin-prime difference sets and their construction in 1962; Mc-
Farland constructed a new difference set family in 1972, which was later modified by Dillon
in 1985 and Spence in 1977. Menon found a new family, Menon difference sets, in 1960 and
1962, and Dillon, again, proposed a new construction of Menon difference sets in 1974 and

1975. In 1997 Davis and Jedwab came up with a recursive construction that unified Hadamard,

McFarland and Spence difference sets. This construction yielded a new Davis-Jedwab family,
which dealt with all abelian groups where such difference sets are known to exist”. This re-
sult were later extended by Chen’. For a long time, the Paley-Hadamard difference sets, con-
structed by Paley in 1933 utilizing nonzero quadratic residues of finite field, were thought to
be the only example of skew Hadamard difference sets. But, Ding and Yuan found a new ex-
ample in 2006 using permutation polynomials, and Ding, Pott, and Wang discovered another
new example using Dickson polynomial in 2013. Another noteworthy family are Singer differ-
ent sets discovered by Singer in 1938. They are the family with the most distinct approaches
of constructions. For this Singer difference sets, we are able to find the HKM (Helleseth,
Kumar, Martinsen) construction(2001), the Lin(1998) construction, the Maschietti con-
struction(1998), the Dillon-Dobbertin construction(2004), the Gordon-Mills-Welch con-
struction(1962), and the No construction(2004). Additionally, Arasu and Player(2003), and
Cao(2007) also contributed new constructions of Singer difference sets®.

However, with more of these constructions being produced, the remaining options are be-
coming limited and hence it is getting increasingly hard to come up with new constructions.

As a result, the concept of an almost difference set arose®.

1.3 ALMOST DIFFERENCE SET

Definition 1.3.1. A (v, k, 1, ¢) almost difference set (ADS) is a subset that contains & elements
of a group G of order v, such that for non-identity elements ¢ € G, there are exactly A difter-
entpairsofdy,d, € D, dy # dy, g = dyd;", and for the remaining v — g — 1 non-identity
elements ¢ € G, there are exactly A — 1 different pairs of), d, € D, d} # dj, g = dyd; .

The parameters v, £, A, ¢ satisfy the following relationship:

Proposition 1.3.2. IfDisa (v, k, A, t) almost difference set, then

bk —1) =2+ (A —1)(v—£—1)

Proof. Let G be agroup, and Dbea (v, k, A, t) almost difference set of G.

Following similar reasoning to the proof in proposition 1.1.2, we can conclude the total
number of differences is equal to k(£ — 1) where £ = |D|.

On the other hand, since |G| = v, there are v — 1 non-identity elements of G, and ¢ of these
elements are covered A times, while the rest of the v — # — 1 elements are covered A — 1 times,
by the result of taking all the differences. Thus, we have that the number of the differences is
A+ A=1(v—2t—1).

Therefore, k(k —1) = Ar+ (1 —1)(v — r — 1). [|

Example 1.3.3. D = {(1,1), (1, %), (x,1), (x,x), (%, 1), (x*, %), (x°, 1), («, 1), (", 1),

(62, x), (xB,1), (x**,x) }is a (32,12, 5, 8) almost difference set of the group

Cig X C, =< (x,9) | ¥ = y* = 1 >. Eight non-identity elements in Ci4 x C, can be expressed
in exactly s ways, and the remaining 32 — 1 — 8 = 23 non-identity elements of the group can
be expressed in exactly 4 ways by taking the difference of two elements in D. Additionally,

12- (12 —1) =5 - 8 + 4(32 — 8 — 1) satisfies the relationship among the parameters.

Similar to difference sets, ADS can also be applied in coding theory and sequences. They
can be used to generate good constant-weight codes®. For some specific cyclic almost differ-
ence sets, their characteristic sequence can produce optimal auto-correlation codes, which is
very useful in radar. Moreover, almost difference sets can be applied to generate functions with

high nonlinearity, which is of importance in cryptography*. Based on what mathematicians

have discovered so far, due to almost different sets’ less strong structure than difference sets, it
is relatively difficult to derive general theory for almost difference sets.

However, mathematicians did successfully discover certain constructions®. In the past
mathematicians have managed to produce constructions of almost difference sets utilizing the
power of cyclotomy, certain types of difference sets, planar functions, and the Gordon-Mills-
Welch construction of difference set?.

Since the study of almost difterence sets is relatively new compared with that of difference
sets, we believe there is more potential in the exploration of new almost difference set con-
structions. We start by building a programming software to automate the process of almost
difference set generation, aimed at detecting new patterns in the differences sets of cyclic and

non-cyclic abelian groups, from which we work towards insights into new constructions.

Exploring Structures of ADS

Example 1.1.3 provided a small example of a difference set. We start this section with small
examples of difference sets and almost difference sets.

We explored constructions of difference sets for Cs x C,, C; X €, x Cy, C; X Cj, and
C,*. These groups were previously known to have difference sets, but finding them manually

still requires time. Hence we built a program to automatically generate difference sets. The

program did find a (16, 6, 2) difference set for each of the groups mentioned above.

The following is a short list of difference set examples for each G:

G=CxC=<xy|s"=y"=1>:
D ={(1,1),(1,9), (1), (*,1), (", 1), (",)}

=<y>Ux<x*>Ux* <x'y>

G=C,x 0 x G =<x,y,z]x4:y2:z2=1>:
D= {(17171)7 (lalaz)’ (I’y’ 1)7 <x7171>7(x27171)> (xSa)’a z)}

:<x2>Uy<yz>Ux<x2yz>

G=Cx Ci=<uxy|x*=y"=1>:
D ={(1,1),(1L,y), (15", (% 1), ("), (", »*)}
:y<x2>U<y2>Ux<x2y2>
s G=C=<xyzw|P=pP=F=w=1>
D={(1,1,1,1),(1,1,1,w), (1,1,2,1), (1,9,1,1), (x,1,1,1), (x, y, 2, w) }.
=x<xy>Uz <zw>U < xyzw >
From above, one important thing to notice is the difference sets in all the non-cyclic abelian
groups consist of cosets of subgroups of order 2. This structure is desirable as we can view
each coset as a hyperplane. Take the group Cg X C; as an example, where the three hyperplanes
are Hy =< y > H, =< ¥t > Hy =< x4y >. Ifwedefine y : Cs x C, — C, such that
e 2F) 7 0 Xpery 2(h) = Oforj # i For example, define y(x) = 1,7(3) = 1.
We thenhave 0,y x(h) = 1+ (x()* = 2, Dopemx(h) =1+ x(y) =1-1=0,

ZheHg X(b) =1 —|—;((x)4;((y) =1-1= 0. Note Z;’:lms ZheH,-?((b) =2+0+0=2(1) =
A(1). We looked for comparable structure in ADSs.

I0

Next we proceeded to the cyclic group Cig. As previously known, there does not exist a
(16, 6, 2) difference set for Cjs. Hence, we want to try to find the almost difference set
(16,5,2,5) for Ci, if it exists. To help with that, more features were added to the program
such that it supports the auto-generation of ADS’s. With the help of the program we found in
total 38 (16,5, 2,5) ADS for Cys. After filtering out the translates we had 17 ADS left.

We then tried to expand the group size even larger: we hoped to explore ADS in C5, and
Css. For Cs, we were looking for (32,12, 5, 8) ADS, and for Cy4 we were trying to find
(64,27,12,9) ADS. Yet the order of Cy4 plus the query size for ADS were so large that the
program eventually ran out of time. Hence we decided to start with smaller £, and gradually
try to expand. By varying the size of k, the program generated results listed in the next page.
Note for each G, where |G| = v, we do not need to make queries for ADS with & > §.If
an ADS with order £, denoted as D, exists for G with order v, taking the complement of D,

G \ (D U {1}) yields another ADS with order v — 1 — k. In other words, an ADS with order
v — 1 — kifand only if an ADS with order £ exists. Hence, there is no need to look for ADS

with order £ > 3.

II

C16 .

ADS whether exists example ADS if exists
(16,5,2,5) yes {1,x,2%, %, 5}
(16,6, 2, 15) no
(16,7, 3, 12) yes {1, 2,67, 22,6, &%, 22}
(16,8, 4, 11) yes {1, x,8%, 2%, 5%, &7 &7 %1}

Cs;

ADS whether exists example ADS if exists
(32,7,2,11) yes {l,x,xz,x4,x8,acl3,x18}
(32, 8,2,25) yes {1,x,x27x4,x7,x13,x17,x25}
(32,9, 3, 10) yes {1, 2,27, 22,20, 28, M 418 22}
(32, 10, 3,28) no
(32, 11, 4, 17) yes {l,x,xz,x3,x4,x7,x9,xl3,xl7,x22,x25}
(32, 12,5, 8) yes {l,x,xz,x3,x4,x7,x9,x14,x15,x19,x23,x26}
(32,13,6,1) no
(32,14,6,27) no
(32, 15,7,24) yes {l,x,xz,x3,x4,x5,x7,xs,xlz,xls,3017,x21,x23,x26,x27}
(32, 16, 8,23) no

I2

664 :

ADS whether exists example ADS if exists

(643 95 2, 9) yes {l,x,XZ,XS,JCI4,JCIG7X34,X42,XS9}
(64, 10,2, 27) yes {1, 2,67, &7, 2 47 2 2 4%}
(64, 11,2,27) yes {1, 2, 0%, & &7 M, 202 x40 %4}

(64, 12,3,6) no

5 13,3, 30 €S X X X X
(64 3 3 3) y {17 7.x27.9637 57x107x157x21736357x397 4’37 527}6‘58}
(64, 14, 3, 56) no
(64, 15, 4,21) yes {l,x,xz,xj,x4,x8,ﬁcl7,x28,x33,x36,x43,x45,x48,x54,x58}
(64, 16, 4, 51) no
64, 17,5, 20 es 1,x, %, 20, a0, o0, a4 a5 a2, a23, a3, 438, &t 4% %0 a0
(4 7 S y) Y))))))) Y)) Y Y))
(64, 18,5, 54) unknown
(64, 19, 6,27) yes {l,x,xz,x3,x4,x5,x8,xlz,x14,x17,x23,x27,x34,x40,x41,x46,x48,x51,x56}
(64,20,7,2) unknown
(64, 21,7, 42) yes {1, 2,27, 2, &% 28 o7, oM & %2 x%
220, 2% 3w a0 8 T k62

C, x Cy:
ADS | whether exists example ADS if exists

(16,52, 5) yes {(1,1), (1), (1,%), (1), («*, 1)}

(16,6,2,15) yes {(11), (1,y), (1,5%), (0 1), (1), (") }

(16,7, 3, 12) yes {L1), (1), (1,%), (% 1), (x,9), (7,), (+*,)}

(16,8, 4, 11) no

13

Cg X Cy:

ADS whether exists example ADS if exists
(16,5,2,5) yes {(1,1), (L), (x,1), (+*,1), (+*, 1)}
(16,6,2,15) yes {(1,1), (1,p), (%, 1), (&7, 1), (&, 1), (°,) }
(16) 7> 3)12‘) no
(16,8, 4, 11) yes {(1,1), (L,y), (x,1), (x,9), (&%, 1), (1), (&*,), (+°,)}

Cy x Cy x Cy:
ADS whether exists example ADS if exists
(16,5,2,5) yes {(1,1,1),(1,1,2), (1,5,1), (x,1,1), (*, 1, 1)}
(16,6,2,15) | yes (L1, (1L 1,2), (12, 1), (1,1), (2,1,1), (&, 3,2)}
(16,7, 3, 12) no
(16,8, 4, 11) yes {(1LL1),(1,1,2), (1,,1), (x,1,1), (%, 1,2), (%, 7, 1), (=, 1,1), (. 3,2) }

CzXCZXCZXCZ:

ADS whether exists example ADS if exists
(16,5,2,5) yes {(1,1,1,1),(1,1,1,w), (1,1,2,1), (1,9,1,1), (x,1,1,1)}
(16,6,2,15) yes {(1,1,1,1),(1,1,1,w), (1,1,2,1), (1, y,1,1), (x,1,1,1), (x, 9,2, w) }
(16,7, 3, 12) no
(16,8,4,11) no

14

CIG X Cz:

ADS whether exists example ADS if exists
(32,7,2,11) yes {(1,1), @, y), (x,1), (1), (+,), (. 9), (=", 1) }
(32,8, 2,25) yes {(1,1), (L), (x,1), (>, 1), (+,), (", 9), (. 9), ("2, 9)}
(32,9, 3, 10) yes {(1,1), (L,y), (x,1), (1), (7,), (7, 9), (x, 1), (2,), (+%, 1)}
(32, 10, 3, 28) no
(32,11, 4,17) yes {(1,1), (1), (1), (x,9), (%, 1), (&, 1), (%, 1), (7, 1), (o,), (2,), (2, 1)}
(32,12, 55, 8) yes {(1,1), (L,), (x,2), (x,9), (2, 1), (, 9), (+,1), (+, 1), (7, 1), (2,), (+%, 1), ("%,) }
(32,13,6,1) no
(32,14, 6,27) yes {(1L1), (1,9), (x,1), (x,9), (*,1), (1), (x*,1),

(%, 9), (%, 1), (1%, 3), (6, 1), (22,), (22, 1), (%, 9) }

(32, 15,7, 24) no
(32, 16, 8, 23) yes

{11, (1,y), (5,1), (x,2), (1), (o, 9), (1), (+*, 1),
(o, 1), (6, 9), (5%, 9), (2, 1), (',), (22, 1), (2, 9), (2%,) }

IS5

Cs x Cy:

ADS whether exists example ADS if exists
(32,7,2,11) yes {(1L1), (L), (1,%), (1), (4%, 1), (o, 9), (a*, 1)}
(32,8,2,25) yes {(1,1),1,), (1,9%), (1), (), (+*,1), (%,), (+,) }
(32,9, 3, 10) yes {1L1), (Ly), (1,0%), (x,1), (2, 9), (), (+,%), (", 1), (+*,5°)}
(32, 10, 3, 28) no
(32,11, 4,17) yes {(1L1), (1,9), 1,%), (1,5%), (%, 1), (%, 1), (1), (+*,1), (+°,5°), (+°,5%), (+,)}
(32,12,5,8) yes {(1,1), (1), (1,5%), (x.1), (x,9), (+*,1), (2, 9), (%, %), (+*,1), (o7, 1), (+, %), (&, °) }
(32,13,6,1) no
(32,14, 6,27) no
(32, 15,7,24) yes {(1L1), (1L,y), 1,0%), (1,57), (1), (,9), (¢, 1), (2,),
(o, 1), (*,5%), (,9), (%, %), (+°,1), (o,), (+,) }
(32,16,8,23) yes {(11), (1), 1,0), (1,y%), (1), (), (1), (2, y),
(o2, 0%), (2, 1), («*,97), (6%, %), (1), (°, 9%), (. 1), (+7,)}
Cy X Cy X Cy:
ADS whether exists example ADS if exists
(32,7,2,11) yes {(1LL1),(1,1,2), (1,9,1), (1,57, 1), (%, 1,1), (%, 7,2), (%, 1, 1)}
(32,8,2,25) yes {(1,1,1),(1,1,2), (1,2,2), (v, 1,1), (%,3,1), (x,5%,2), (%, 5%, 2), (", 3, 2) }
(32,9,3, 10) no
(32, 10, 3, 28) no
(32,11,4,17) yes {(LL1), (1,1,2), (1,2,1), (1,9,2), (1,57, 1), (%, 1,1), (%3, 1), (%, 9%, 2), (&2, 1, 1), (2,57, 1), (. p°, 2) }
(32,12,5,8) no
(32,13,6,1) no
(32,14,6,27) no
(32,15,7,24) no
(32,16,8,23) yes {(1LL1), (1,1,2), (1,2,1), (1,5,2), (1,%,1), (1,57, 2), (%, 1,1), (%, 1,2),

(%,1), (%, 5%,1), (5%, 1,1), (%, 9, 1), (2, %, 1), (o2, 97, 2), (. 1, 2), (+, 0, 2) }

16

Cg X C2 X Cz:

ADS whether exists example ADS if exists
(32,7,2,11) yes {(1,1,1),(1,1,2), (1,9,1), (x,1,1), (+*,1,1), (*, 1, 2), (x*,9,1) }
(32,8, 2,25) no
(32,9,3, 10) no
(32, 10, 3, 28) no
(32,11, 4, 17) yes {(1L,1,1),(1,1,2), (1,5, 1), (1,3,2), (% 1,1),
(o, 1,1), (2, 1, 1), (2%, 1, 2), («°, 9, 1), (2%, 9, 2), (", 1,2) }
(32, 12,5, 8) no
(32,13,6,1) no
(32, 14,6,27) yes {(1,1,1),(1,1,2),(1,9,1), (x,1,1), (%, 1,2), (x, 9, 1), (*,1, 1),
(2, 2,2), (¢, 1,1), (%, 1,2), (", 3,2), (+°, 9, 2), (+, 1, 1), (+, 9, 1) }
(32, 15,7, 24) no
(32,16,8,23) yes {(1L,L,1),(1,1,2), (1,5, 1), (1,,2), (v, 1,1), (x,1,2), (x,,1), (+*, 1,1),

(x27 17 z)7 (x37y7 1)7 (x47 17 1)7 (x47_)/7 1)7 (xSJ 17 z)? (x67 17 1)7 (‘xG?)l? z)? (x77 17 1)}

17

C4><C'2XC2XCZZ

ADS whether exists example ADS if exists

(32,7,2, 11) yes {(1,1,1,1), (1,1, 1, w), (1,1,9,1),
(l,y, 1, 1), (x, 1,1, 1), (x,y,z, w), (xz, 1,1, 1)}

(32,8, 2,25) no

(32,9, 3, 10) no

(32, 10, 3, 28) no

(32, 11,4, 17) no

(32, 12,5, 8) no

(32, 13,6, 1) no

(32, 14, 6,27) no

(32, 15,7, 24) no

(32,16, 8, 23) yes {(1,1,1,1),(1,1,1,w), (1,1,2,1), (1,1, 2, w),

(17_)}7 17 1)7<17y7 17 w)?(XJ 17 17 1)7<x7]‘7 17 w)?
(x7 17z7 1)7(‘x7y71?1)7<x27 17171)7<x27 17z7 1)7
(x27y7 17 1)7(x27_y7z7 w)?(')cj?l? 1’ w)’(x37y7z7 1)}

Observing our results, there are several things that worth noticing.

First of all, we tried to group the elements in the ADS to look for potential structural pat-
terns. It would be very ideal if structures similar to the grouping of hyperplanes in difference
sets could exist, in which case there would be a systematic way to construct a set of ADS’s.
However, we did not succeed in our attempt to detect such patterns, but such exploration is

certainly worthwhile to be continued in the future.

18

For groups with same order v, and same query range for the ADS order &, as the group is
broken into more components, more nonexistence results showed up. Take v = 32 asan
example. Both Ci¢ x C, and Cy x C; had 3 ADS queries returned empty. For C;, x C; x C,
and C3 x C, x C,, the number of empty query results increased to 6. While when we had 4
components for group C; X C; X C, X €y, only 2 out of 10 queries yields valid ADS’s. Such
a result was intuitively reasonable, as the choice of elements for ADS became less flexible when
the number of components increased, but we should try to find mathematical reasoning to
justify this trend.

Another interesting observation is, based on the results we have so far, an ADS with smallest
size seemed to have exist for all groups we have explored in. (By “smallest,” I meant if the size
of ADS is strictly smaller than the ”smallest” ADS, there would be elements in the group that
could never be covered.) We need to do more searches to see whether this result still remains
true, and look for an explanation if this is the case.

I'd also like to point to the result for C;, x C, x C, x C,. The ADS’s only existed for k& = 7
and £ = 16, but no ADS was found for any of the value of & between [8,15]. We could try to
find out whether this uncommon pattern was a coincidence, or whether we could explain it by

using our algrbra tools.

19

Software tool

In order to explore patterns in ADS, I developed a software tool, which automates our ADS
generating process and saves a significant amount of time in searching and checking the valid-
ity of ADS.

The software takes user input about ADS parameters, and returns the ADS in query, if one

exists. Initially the software can find all possible ADS, filter out the translates, and return the

20

remaining ADS, but we suppressed that feature for our current purpose of the study, since we
are primarily interested in the existence question.

There have been 3 stages for the development of our software tool. In the first stage the ba-
sic features were built up; in the second stage, some currently unnecessary procedures were
cut off to increase efficiency; in the third stage the code was made more consistent, and the
data structure used was modified such that the time required for a successful search was signifi-
cantly reduced. In short, the stage 1 software is more complete, yet the stage 2 and 3 software is

more efficient.

3.1 STAGE1I

The software is composed of 2 main classes, one for searching in multi-dimensional, non-
cyclic abelian group (ex. C4 x C; = {(x,y) |x* = 1,9* = 1}), while the other one for
searching in cyclic group (ex. Cig). The latter is a subclass of the former.

For data representation, in the non-cyclic ADS generator, each element of the group is rep-
resented as an integer array, and hence an ADS is stored as a set of integer arrays; in the one-
dimensional ADS generator, each element can simply be stored in an integer, so as a result, an
ADS is stored as a set of integers.

With the basic skeleton and data structure used in mind, we now proceed to describe the
algorithm:

The program receives input containing the parameters (v, &, 1, #) and whether the group
cyclic. After checking whether the parameters satisfy Proposition 1.1.2, the program starts
generating and initializing a counter for all elements of the group G, and then begins searching

for difterence sets. It first generates all possible subsets S of G with size &, then for all 4;, d; in

21

each subset S, it computes d,-dfl, meanwhile it keeps track of how many times each element of
G is covered by taking dlrdj-_l in each S. After all such differences are computed from elements
in S, if exactly # elements in G are covered exactly A times, the program knows S is a valid ADS
and adds it into the result list, otherwise it removes S. After all such subsets are processed, the
program filter out all translates and multiples, after which it returns the resulting list contain-
ing all valid ADS.

Based on the algorithm, we were able to analyze the time and space complexity of running
the software. Assume a search for (v, £, 4, #) ADS, and the dimension of G is d. The time com-
plexity is O(£*(})): there are in total v elements in G, and elements for each subset gener-
ated, hence (Z) subsets generated. For each of the sets, O(k*) computations need to be done.
Therefore, it takes O(k* (Z)) time for the entire algorithm, and since v > %, we can express the
approximate time complexity as O(n*). The space complexity is O(dk(})), since each element
takes d space, each ADS candidate has £ elements, and there are (Z) ADS candidates generated.
Similarly, we can express it as O(dn").

Atits current stage, the software has guaranteed completeness: it is able to generate all the
ADS for a given group G. It also has the feature of a filter. As a result, all ADS returned are not
translates and multiples of each other, and the union of the translates and multiples of each
ADS cover all the possible (v, k£, 1, £) ADS for G.

Nevertheless, there are also certain restrictions. In order to achieve as much completeness
as possible, the algorithm is too time and space intensive, quickly running out of time or space

when the size of the given group G gets slightly larger.

22

3.2 STAGE 2

For stage 2, we focused on the cyclic groups, so our improvement was done entirely on the part
of the software corresponding to the cyclic groups. The classes and data structures used are the
same as the software in Stage 1.

The program starts with reading input, validity checking, and generating and initializing a
counter for the elements of G. It then looks for valid ADS based on the following procedure:
start with an empty set S, and fix the element x; = 1to be in S. Next, try expanding the size
of Sby adding x, x5, - - - € G oneatatime. In each expansion, when adding x;, compute
the difference between each element x; and each element d; that is already in S, and update
the counter for each newly generated element by taking the difference. If the newly generated
element is already covered more than A times, the program throws x; out, and tries to include
the next element of G, x4, repeating the same procedure described above.

When the size of S reaches £, and no elements in G have yet been covered more than A times,
it means S'is a valid ADS, so S will be added to the result list. The program immediately stops
and return the ADS generated after one such instance is found.

Suppose we are searching for a (v, £, 1,) ADS, and the dimension of G is d. In the worst
scenario, the time upper bound for the algorithm is still O(*) in theory. However, since the
algorithm stops in the middle, it avoids a lot of meaningless searches, and thus it overall runs
about 3 times faster in practice than in Stage 1. In regards to space, the program needs to store
all elements in G, and the current expanding 4 DS candidates. Elements in G take O(vd) space,
and the expanding 4 DS candidates have max size k£ and hence take O(kd) space, where k < v.

Hence the space complexity is O(vd).

23

In the current stage, since the program immediately returns the ADS if one exists, we are
able to know whether there exists an ADS for the input group much more efficiently, as we do
not need to wait until the program runs a complete search through all possible subsets of size
k.

The following is a timing comparison between Stage 1 and Stage 2 in finding ADS from
cyclic groups. The timing results are expressed in nanoseconds.

For group Cig, (16,5, 2,5) ADS:

Stage 2: 69509 ns

Stage 1: 234269 ns

Speed-up: 3.370

For group Ci4 x G5, (32,12,5,8) ADS:
Stage 2: 24075868 ns

Stage 1: java.lang.OutOfMemoryError: Java heap space

Despite the relatively significant improvement of efficiency, the speed is still not ideal. If
there does not exist an 4 DS for a given group G, the programs still needs to do a checking for
all the ADS candidates, before it terminates and concludes the nonexistence of an ADS. This

process still takes a lot of time.

3.3 STAGE 3

The main improvement in this stage is focused on non-cyclic groups, which we accomplished
by modifying how the data is stored. I combined the two classes and ended up with only one

class supporting the search in both single and multiple dimensional groups. Previously, the

24

non-cyclic group was not supported in stage 2, because in order to generate the ADS more
efficiently, the software needs to keep track how many times each of the element of G is al-
ready covered, which requires the use of a HashMap. In the HashMap, each element would be
used as a different key, while the number of times each element is covered would be the cor-
responding value. For example, when ¢ € G is generared for the first time by did, ' = g,
the corresponding key-value pair associated with ¢ in the HashMap would be (g, 1); when ¢

is generated by did,' = ¢ the second time, the key-value pair is updated to (g, 2). In previ-
ous stages each element of G was stored as an Integer Array, if G is non-cyclic. For instance, an
element (x, y,2),x,7,z € Z was stored as [x|y|z]. However, Integer Array would not yield de-
sirable results if used directly as keys of the HashMap. That was why the algorithm in Stage 2
could not be applied to non-cyclic groups. In the current stage, each component of an element
is represented as a Character. Elements of the group G are represented as a String, which is a
concatenation of Characters. Since Strings function normally as keys in HashMap, the previ-
ous problem was solved and hence the speed-up version of the algorithm in Stage 2 could now
be applied to non-cyclic groups.

The algorithm stays unchanged compared to Stage 2, and hence the time and space com-
plexity is same as in Stage 2 (but the software in Stage 2 had not yet supported non-cyclic
groups).

Compared to Stage 1, due to the change of data structure and the algorithm, there is a sig-

nificant speed up. The following is the timing result for two specific non-cyclic groups:

For group Cs x (5, (16,5,2,5) ADS:

Stage 3: 101142 ns

25

Stage 1: 338540 ns

Speed-up: 3.347

For group Ci4 % G5, (32,12,5,8) ADS:
Stage 3: 124211003 ns

Stage 1: java.lang.OutOfMemoryError: Java heap space

However, as shown above, regardless of our large boost in speed, when the group size in-
creases from 16 to 32 by a factor of 2, the time used increases by a factor of 1228.085, which
is still huge. If there exists an approach where the time complexity actually changes, this defi-
ciency could potentially be improved.

Additionally, similar to Stage 2, only 1.4DS is returned instead of all, which indeed suffices

for out current focus.

26

Future Work

We’ve built up the automatic tools for generating the existence results for cyclic and non-cyclic
groups of reasonable size. We have also applied the tools to get some existence results of varied

size of almost difference sets for both cyclic and non-cyclic groups. There are some immediate

next steps we could take to further extend this current research.

For one thing, we could look for patterns in the current existence results. For the current

27

groups with reasonable size, it’s still possible for us to analyze the structure, compared to the
harder situation when the group size gets much larger. If we successfully find a pattern in the
smaller group, we could try to apply it to larger groups, and potentially work towards new
constructions of almost difference sets. Groups with order 2”,z € Z are a fertile ground for
exploration. We are currently able to determine existence results of groups of order 16, 32, 64
and we would love to know more about groups of order 128, 256, 512, and so on.

Another direction is to further upgrade the software tool. The software of the current ver-
sion supports generating existence results for relatively large groups, yet it would be even more
ideal if it could support listing all possible almost difference sets given an input group in query.
This could give us more examples to explore, and potentially provide us with more insights
into the ADS structures.

We would also expand our focus to non-abelian groups. For now all the groups in which we
have tried searching for ADS (Cs, Cys, Cs X Cy, Ci6 X Cyetc.) are abelian. If we start some
new searches to non-abelian groups, such as a semidirect product groups for instance, there

could be results yielding new insights for us.

2.8

References

Arasu K., Davis J., Jungnickel D., Pott A. (1990). A note on intersection numbers of
difterence sets. European Journal of Combinatorics, 11(2), 95 — 98.

Arasu K., Ding C., Helleseth T., Kumar P. V., Martinsen H. M. (2001). Almost dif-
ference sets and their sequences with optimal autocorrelation. JEEE Transactions on

Information Theory, 47(7), 2934—2943.

Assmus E. F., Key . D. (1992). Designs and their Codes. Cambridge Tracts in Mathe-
matics. Cambridge University Press.

Beth T., Jungnickel D., Lenz H. (1999). Design Theory. Cambridge University Press.

Chen, Y. Q. (1999). On a family of covering extended building sets. Designs, Codes and
Cryptography, 17, 69—-72.

Davis J. (1992). Almost difference sets and reversible divisible difference sets. Archiv
Der Mathematik, 59(2), 595—602.

Davis J., Jedwab J. (1997). A unifying construction for difference sets. Journal of Com-
binatorial Theory, Series A, 80(1), 13 — 78.

Davis J., Jedwab J. (1999). A unified approach to difference sets with ged(v, n) > 1.
Ding, C. (2014). Codes from Difference Sets. WORLD SCIENTIFIC.

Ding C., Munemasa A., Tonchev V. (2019). Bent vectorial functions, codes and de-
signs. IEEE Transactions on Information Theory, PP, 1-1.

[11] Jungnickel D., Pott A. (1988). Two results on difterence sets. Coll. Math. Soc., (pp.

[12]

325-330).

Ma, S. (2012). Difference sets and sequences. Bulletin of the Malaysian Mathematical
Sciences Society. Second Series, 35.

29

[13] Mann, H. B. (1964). Balanced incomplete block designs and abelian difference sets.
Lllinois J. Math., 8(2), 252—261.

[14] Nguyen, M. D. (2018). New constructions of quantum stabilizer codes based on differ-
ence sets. Symmetry, 10, 655.

[15s] Pott A., Kumaran V., Helleseth T., Jungnickel D. (1999). Difference Sets, Sequences and
their Correlation Properties, volume 542 of Nato Science Series C. Springer Netherlands.

30

Appendix

The first part consists of the code in Stage 1, where queries in both cyclic and non-cyclic groups
are supported, but the speed is relatively slow.
In a query for ADS, the program does the following:

readInput (line 19) called by constructor to read inputs from user, initialize all fields
and do validity check. We want to ensure the input parameters yield valid difference
sets.

getAllGroupElements (line 204) gets called to generates all group elements ¢ € G, from
which we will select all possible £—subsets as ADS candidates.

getADSCandidates (line 72) gets called to generate all ADS candidates, by trying to get
all possible combinations to form a subset of size &, with the assistance of the recursive
method getNext() (line 85). WE applied backtracking search in this step.

getADS (line 103) gets called to select from the candidates the valid ADS, by calling
isADS (line 156) to do a checking for each candidate. The set of all valid ADS’s are re-
turned at the end of this method.

printADS (line 22.5) gets called to print out all valid ADS’s

31

1 import java.util.¥*;
2 public class ADSGenerator {
3 // fields

4 protected int dimension; // dimension of the space in concern

S protected int[] array; // array holding info for R_i in index 1

6 protected int groupOrder; // num elements in entire group

7 protected int numElemLambda; // number of elements to be covered for timeCovered times
8 protected int lambda; // cover numElemCovered elements timesCovered times
9 protected int ADSOrder; // ADS order

10

11 /* constructor

12 */

13 public ADSGenerator() {

14 this.readInput();

15 }

16

17 /* readInput from user, error checking before initializing all fields
18 */

19 public void readInput() throws IllegalArgumentException {
20 Scanner in new Scanner(System.in);
21 System.out.println(”input the dimension you want to search for”);
22 dimension in.nextInt();
23 if (dimension < 1) {
24 throw new IllegalArgumentException(”dimension should be positive”);
25 }
26
27 array = new int[dimension];

28 groupOrder = 1;

29 for (int 1 = 0; 1 < array.length; i++) {

30 // read in n in Z_n, and store n in each index

31 System.out.println(”input next n for Z_n");

32 array[i] = in.nextInt();

33 if (array[i] < 1) {

34 throw new IllegalArgumentException(”n should be positive”);

35 }

36 groupOrder *= array[i];

37 }

38

39 System.out.println(”input lambda”);
40 lambda = in.nextInt();
41
42 System.out.println(”input number of elements to cover lambda times”);
43 numElemLambda in.nextInt();
44
45 System.out.println(”input ADS size in query”);

46

ADSOrder

in.nextInt();

47
48
49
50
51
52
53
5S4
S5
56
57
58
59
60
61
62
63
64
6s
66
67
68
69
70

72
73
74
75
76
77
78
79
8o
81
82

this.validADSPreCheck()

public void validADSPreCheck() throws IllegalArgumentException {
if (lambda < 1)
throw new IllegalArgumentException(”lambda should be positive”);

if (numElemLambda < 0) {
throw new IllegalArgumentException(”input numElem should be non-negative”);

if (ADSOrder < 0) {
throw new IllegalArgumentException(”ADS size should be non-negative”);

if (ADSOrder * (ADSOrder - 1)
numElemLambda * lambda + (groupOrder - 1 - numElemLambda) * (lambda - 1)) {
throw new IllegalArgumentException(”invalid input”);

/* generate all possible sets of order ADSOrder

public Set<List<int[]>> getADSCandidates(int[][] allGroupElem) {
List<int[]> currSet
int firstElemInd = 0;
currSet.add(allGroupElem[firstElemInd]);
firstElemInd++;

new ArraylList<>();

Set<List<int[]>> allSets
getNext(firstElemInd, ADSOrder - 1, allGroupElem, currSet, allSets);
return allSets;

new LinkedHashSet<>();

/* recursive method to help generate next ADS candidate
*/
private void getNext(int currInd, int numLeft, int[][] allGroupElem,
List<int[]> currSet, Set<List<int[]>> allSets) {
if (numLeft == 0) {
List<int[]> newSet = new ArraylList<>(currSet);
allSets.add(newSet);
} else if (allGroupElem.length - currInd >= numLeft) {
// attach current elem to currSet
for (int i = currlInd; i < allGroupElem.length; i++) {

33

93 currSet.add(allGroupElem[i]);
94 getNext(i + 1, numLeft - 1, allGroupElem, currSet, allSets);
95 currSet.remove(allGroupElem[i])

97 ¥

99
100 /* go through the candidates, and return a set of candidates that are
101 * actually ADS

102 */

103 public Set<List<int[]>> getADS(Set<List<int[]>> candidates,
104 int[][] allGroupElements) {

105§ Set<List<int[]>> adsSet = new LinkedHashSet<>()
106 for (List<int[]> candidate : candidates) {

107 if (this.isADS(candidate, allGroupElements)) {
108 adsSet.add(candidate);

109 }

110 }

111

112 return adsSet;

113 }

114

115§ /* convert int[] to String

116 */

117 protected String encode(int[] entry) {

118 String encoding = "";

119 for (int i : entry) {

120 encoding = 1 + encoding;

121 }

122 return encoding;

123 }

124

125§ /* check whether the input is ADS

126 */

127 public void isInputADS() {

128 Scanner in = new Scanner(System.in);

129 System.out.println(”want to check ads? y/n");

130 String ans = in.next();

131 while (ans.equals("y”)) {

132 System.out.println(”input the ADS candidate, each entry a line” +
133 ", numbers in each entry separated by space”);
134 List<int[]> candidate = new ArrayList<>();

135 for (int order = 0; order < ADSOrder; order++) {
136 int[] entry = new int[dimension];

137 for (int dim = 0; dim < dimension; dim++) {
138 entry[dim] = in.nextInt();

34

139
140
141
142
143
144
145
146
147
148
149
150
151
152
I53
I54
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184

}
candidate.add(entry);

boolean res = this.isADS(candidate, getAllGroupElements());

if (res) {

System.out.println(”input is ADS");

} else {
System.out.println(”input is

¥

not ADS");

System.out.println(”continue? y/n");

ans = in.next();

/* check whether a candidate is really an ADS

*/

private boolean isADS(List<int[]> candidate, int[][] allGroupElements) {

int lambdaCoverCounter = 0;
Map<String, Integer> coverCounter

= new HashMap<>();

// initialize the time of coverage to 0 for all elements

for (int[] elem : allGroupElement
// convert each element into St
coverCounter.put(encode(elem),

s) {
ring
0);

// go through the candidate set, do corresponding subtractions, and

// keep updating how many times each elem is covered, and increment lambda

// counter if an elements gets covered for lambda times

for (int[] first : candidate) {
for (int[] second : candidate)
// first - second
if (first != second) {

{

int[] diffArr = new int[dimension];
for (int digit = 0; digit < dimension; digit++) {
diffArr[digit] = (first[digit] + array[digit] - second[digit]) % array[digit];

// if already reach lambda
String encodingOfDiffArr =

times
encode(diffArr);

int currCount = coverCounter.get(encodingOfDiffArr);

if (currCount == lambda) {

//System.out.println(encodingOfDiffArr + "

return false;

i
else {

35

covered ”

+ (lambda + 1) + ”

times”);

185 if (currCount == lambda - 1) {

186 lambdaCoverCounter++;

187 }

188 coverCounter.put(encoding0fDiffArr, currCount + 1);
189 }

190 if (lambdaCoverCounter > numElemLambda) {
191 //System.out.println(”more than numElemLambda covered lambda times”);
192 return false;

193 b

194 }

195 }

196 }

197 return true;

198 }

199

200 /* returns all group elements

201 * [r]: each element

202 * [c]: the number at each dimension of each element
203 */

204 public int[][] getAllGroupElements() {

205§ int[] divides = new int[dimension];

206 divides[dimension - 1] = 1;

207 for (int i = dimension - 2; i >= 0; i--) {

208 divides[i] = divides[i + 1] * array[i + 1];

209 }

210

211 // / last digit, mod curr digit

212 int[][] allElem = new int[groupOrder][dimension];
213 for (int 1 = 0; 1 < groupOrder; i++) {

214 for (int dim = 0; dim < dimension; dim++) {

215§ allElem[i][dim] = (i / divides[dim]) % array[dim];
216 }

217 }

218

219 return allElem;

220 }

221

222

223 /* print out all the ADS

224 */

225§ public void printADS(Set<List<int[]>> ads) {

226 for (List<int[]> set : ads) {

227 System.out.print(”(");

228 for (int[] entry : set) {

229 System.out.print(Arrays.toString(entry) + " ");
230 }

36

231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276

System.out.println(”)”);

/* filter out the multiples by removing them from the hashSet
*
*/
public Set<List<int[]>> filterMultiples(Set<List<int[]>> ads) {
System.out.println(”in filter”);
HashMap<String, List<int[]>> hm = new LinkedHashMap<>();
// put each ads into the hm, the key is the string concatenation of
// all its bits
for (List<int[]> eachADS : ads) {
String encoding = "";
for (int[] entry : eachADS) {
encoding += encode(entry);
}
hm.put(encoding, eachADS);
}

System.out.println(”hm created w/ size " + hm.size());

int increment = 1;;

int multiple = 2;

if (groupOrder % 2 == 0) {
increment++;
multiple++;

List<String> encodingsToBeRemoved = new ArraylList<>();
System.out.println(”generating encodings to be removed”);
for (String encoding : hm.keySet()) {
if (!encodingsToBeRemoved.contains(encoding)) {
for (int i = multiple; i < groupOrder; i += increment) {
String multEncoding = encodeMultiple(i, hm.get(encoding));
encodingsToBeRemoved.add(multEncoding);

System.out.println(”generated encodings to be removed w/ size " +
encodingsToBeRemoved.size() + ", now removing”);
for (String multEncoding : encodingsToBeRemoved) {
hm.remove(multEncoding);

return (new LinkedHashSet<List<int[]>>(hm.values()));

37

277}

278

279 /* get multiple encoding

280 */

281 public String encodeMultiple(int multiply, List<int[]> currentSet) {
282 String encoding = "";

283 List<int[]> multipleSet = new ArraylList<>();

284

285 for (int[] currEntry : currentSet) {

286 int[] newEntry = new int[dimension];

287 for (int digit = 0; digit < dimension; digit++) {

288 newEntry[digit] = currEntry[digit] * multiply % array[digit];
289 }

290 multipleSet.add(newEntry);

291 }

292 for (int i = dimension - 1; i >= 0; i--) {

293 final int index = 1i;

294 Collections.sort(multipleSet, (a, b) -> a[index] - b[index]);
295 ¥

296 for (int[] newEntry : multipleSet) {

297 encoding += encode(newEntry);

298 }

299

300 return encoding;

301 }

302 }

Listing A.1: Stage 1 - non-cyclic

The second part consists of the code in Stage 2, where only query in cyclic is supported, but
the group order v supported increased due to the speed up in the algorithm.
In a query for ADS, the program does the following:

* OneDimADSGenerator (line 12) gets called to initialize all fields, by calling the constructor
of its super class.

* getAllGroupElements (defined and implemented in the super class) gets called to gen-
erates all group elements ¢ € G, from which the elements of ADS candidates will be
selected from

* getADSCandidates (line 49) gets called to find a potential ADS candidate, by recursively
calling getNext () (line 64) which uses the backtrack approach. After the inclusion of
each candidate element, the program throws the element out if either 3¢ € G, such
that g is covered more than 1 times, or there are already # + 1 elements that are covered

38

A times. Otherwise, the program keeps adding elements until the size of ADS candidate
set reaches £. When such a valid ADS D is found, the method returns D.

* getADS (line 132) gets called to return the single valid ADS D just found. This method
is not functionally necessary, but is implemented here for the sake of the inheritance
relationship between the parent and child class.

* printADS (line 35) gets called to print the ADS found.

I import java.util.*;

2

3 public class OneDimADSGenerator extends ADSGenerator {
4 // additional field

S int[] coverTimesCntr;

6

7 // keep track of all elements that are generated lambda times by curr ads
8 Map<String, int[]> lambdaElemTracker;

9

10 /* constructor

11 */

12 public OneDimADSGenerator() {

13 super();

14 coverTimesCntr = new int[this.groupOrder];

15 lambdaElemTracker = new HashMap<>()

16 }

17

18

19 /* another constructor

20 */

21 public OneDimADSGenerator(int groupOrder, int ADSOrder, int lambda, int numElemLambda) {
22 this.dimension = 1;

23 array = new int[dimension];

2.4 this.groupOrder = groupOrder;

25 array[0] = this.groupOrder;

26 this.lambda = lambda;

27 this.numElemLambda = numElemLambda;
2.8 this.ADSOrder = ADSOrder;

29 this.validADSPreCheck();

30

31 coverTimesCntr = new int[this.groupOrder];
32 lambdaElemTracker = new HashMap<>()
33 }

34

35 public void printADS(Set<List<int[]>> ads) {

39

36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
5T
52
53
5S4
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
8o
81

for (List<int[]> set : ads) {
System.out.print("[");
String encoding = "";
for (int[] entry : set) {
System.out.print(entry[0] + " ");
encoding += encode(entry);
}
System.out.println(”] - " + Arrays.toString(lambdaElemTracker.get(encoding)));

/* generate all possible sets of order ADSOrder

*/

public Set<List<int[]>> getADSCandidates(int[][] allGroupElem) {
//System.out.println(”in one-dim getADSCandidates”);
List<int[]> currSet = new ArrayList<>();
int firstElemInd = 0;
currSet.add(allGroupElem[firstElemInd]);
firstElemInd++;

Set<List<int[]>> allSets = new LinkedHashSet<>();

getNext(firstElemInd, ADSOrder - 1, allGroupElem, currSet, allSets, 0);
//System.out.println(allSets.size());

return allSets;

/* recursive method to help generate next ADS candidate
*/
private void getNext(int currInd, int numLeft, int[][] allGroupElem,
List<int[]> currSet, Set<List<int[]>> allSets,
int numLambdaCovered) {
if (numLeft == 0) {
List<int[]> newSet = new ArraylList<>(currSet);
allSets.add(newSet);

// add all the elements that are covered lambda times to the hashmap
// tracker
int i = 0;
int[] elem = new int[this.numElemLambda];
//System.out.println(”set just added, and numLmbdaCover ” + numLambdaCovered);
for (int j = 0; j < coverTimesCntr.length; j++) {

if (coverTimesCntr[j] == lambda) {

elem[i++] = j;

}

String encoding = "";

40

82
83
84
8s
86
87
88
89
90
91
92
93
94
95
96
97
98
29
100
101
102
103
104
105§
106
107
108
109
110
ITI
112
113
114
115§
116
117
118
119
120
121
122
123
124
125§
126
127

for (int[] entry : newSet) {
encoding += encode(entry);
}
lambdaElemTracker.put(encoding, elem);
return;

} else if (allGroupElem.length - currInd >= numLeft) {

List<Integer> differences = new ArraylList<>();

// attach current elem to currSet

int i = currlnd;

// add new to set, update ctnr

boolean stop = false;

for (int[] num : currSet) {
int diff1 (num[0] - allGroupElem[i][0] + groupOrder) % groupOrder;
int diff2 = (allGroupElem[i][0] - num[0] + groupOrder) % groupOrder;
differences.add(diff1);
differences.add(diff2);
coverTimesCntr[diff1]++;

coverTimesCntr[diff2]++;

if (coverTimesCntr[diff1] == lambda) {
numLambdaCovered++;

}

if (coverTimesCntr[diff2] == lambda && diff2 != diff1) {
numLambdaCovered++;

if (coverTimesCntr[diff1] > lambda ||
coverTimesCntr[diff2] > lambda ||
numLambdaCovered > this.numElemLambda) {
// stop with this num since rules are broken
stop = true;
break;

}
if (!stop) {
currSet.add(allGroupElem[i]);
for (int k = i + 1; k < groupOrder; k++) {
getNext(k, numLeft - 1, allGroupElem, currSet, allSets, numLambdaCovered);
if (allSets.size() > 0)
return;
}

currSet.remove(allGroupElem[i])

for (int diff : differences) {
coverTimesCntr[diff]--;

41

128 }

129 }

130 }

131

132 public Set<List<int[]>> getADS(Set<List<int[]>> candidates,
133 int[][] allGroupElements) {

134 return candidates;

135 ¥

136 }

Listing A.2: Stage 2 - cyclic

The last part consists of the code in Stage 3, where queries in both cyclic and non-cyclic
groups, and large group order v are supported, due to a modification in data structures used.

In a query for ADS, the program does the following:

* ADSGen (line 19) constructor gets called, and it calls readInput (line 60) to read input
from user, do parameters validity check, and initialize all fields.

* getADS (line 127) gets called to find potential ADS candidate, by calling getNext () (line
146) which uses the backtrack approach, similar to in Stage 2. When a valid ADS D is
found, the method returns D.

* printADS (line 111) gets called to print the ADS found

I import java.util.*;
2 public class ADSGen {
3 // fields

4 protected int dimension; // dimension of the space in concern

S protected int[] dim; // array holding info for R_i in index 1

6 protected int v; // v - |G|

7 protected int t; // number of elements to be covered for lambda times
8 protected int lambda; // t elements covered LAMBDA times

9 protected int k; // ADS order

11 private final int A = (int)'A’;

13 // keep track of times each elem is covered
14 protected Map<String, Integer> counter;
15 protected List<String> tElements;

16
17 /*constructor
18 */

19 public ADSGen() {

42

20 this.readInput();

21
22 this.initCntr();

23 for (String s: counter.keySet()) {

24 System.out.println(s + ", " + counter.get(s))

25 }

26

27 // elements that are covered lambda times

2.8 tElements = new ArraylList<>();

29 }

30

31 private void initCntr() {

32 counter = new LinkedHashMap<>();

33

34 Queue<String> q1 = new LinkedList<>();

35 Queue<String> g2 = new LinkedlList<>();

36 gl.add("");

37

38 for (int d = 0; d < dimension; d++) {

39 while (!q1.isEmpty()) {

40 String s = q1.poll();

41

42 // for each str, attach next dim

43 for (int i = 0; i < dim[d]; i++) {

44 g2.add(new String(s + (char)((int)'A’ + 1)));
45 b

46 }

47 ql = q2;

48 g2 = new LinkedlList<>();

49 }

50

51 while (!q1.isEmpty()) {

52 counter.put(ql.poll(), 0);

53 }

54}

55

s6 /* readInput from user, error checking before initializing all fields
57 * returns an array containing [dimension, dim[0]..[n - 1], v, k, lambda,
58 * t]

59 */

60 private void readInput() throws IllegalArgumentException {
61 Scanner in = new Scanner(System.in);

62 System.out.println(”input format:");

63 System.out.println(”dimension\n” +

64 "n1 n2 n3 ... n_dimension\n” +
65 "k");

43

66

67 dimension = in.nextInt();

68 if (dimension < 1) {

69 throw new IllegalArgumentException(”dimension should be positive”);
70 }

71

72 dim = new int[dimension];

73 v =1,

74 for (int i = 0; i < dim.length; i++) {

75 // read in n in Z_n, and store n in each index

76 dim[i] = in.nextInt();

77 if (dim[i] < 1) {

78 throw new IllegalArgumentException(”n should be positive”);
79 }

8o v *= dim[i];

81 }

82

83 k = in.nextInt();

84 if (k > v) {

85 throw new IllegalArgumentException(”k should be smaller than v”);
86 }

87 lambda = findLambda(v, k);

88 t=k* (k-1) - (lambda - 1) * (v - 1);

89

90 // print out all inputs

91 for (int i = 0; i < dim.length - 1; i++) {

92 System.out.print(”Z_" + dim[i] + " * ");

93 }

94 System.out.println(”Z_" + dim[dim.length - 11);

95

96 System.out.printf(”ads: (%s, %s, %s, %s)\n”, v, k, lambda, t);
97 1}

98

99 /* given v and k, find corresponding lambda
100 */
101 private int findLambda(int v, int k) {

102 int 1 = 0;

103 while ((v - 1) * 1 <k * (k - 1)) {
104 1++;

105§ }

106 return 1;

107 }

108

109 /* print out all ADS

110 */

111 public void printADS(Set<List<String>> ads) {

44

112
113
114
11§
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
Iss
156
157

for (List<String> set : ads) {
System.out.print(”{ ");
for (String str: set) {
System.out.print(”(");
for (char c : str.toCharArray()) {
System.out.print((int)(c - 'A’) + " ");
¥
System.out.print(”) ");
}
System.out.println(”}");

/* find ADS with order k by using backtrack
*/
public Set<List<String>> getADS() {
List<String> elemOfG = new ArraylList<>(this.counter.keySet());
List<String> currSet = new ArraylList<>();
Set<List<String>> allSets = new LinkedHashSet<>();

int firstElemInd = O;

// fix 0 in the set
currSet.add(elemOfG.get(firstElemInd));
firstElemInd++;

getNext(firstElemInd, k - 1, elemOfG, currSet, allSets, 0);

System.out.println(”ADS size: " + allSets.size());
return allSets;

/* recursive method to help generate next ADS candidate

*/

private void getNext(int currInd, int numLeft, List<String> elemOfG,
List<String> currSet, Set<List<String>> allSets,
int numLambdaCovered) {

if (numLeft <= 0) {
allSets.add(new ArraylList<>(currSet));

// put the t elements into record
for (String diff : counter.keySet()) {
if (counter.get(diff) == lambda) {
tElements.add(diff);

45

158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

return;

}
} else if (elemOfG.size() - currInd >= numLeft) {
int i = currlnd;
boolean stop = false;
List<String> differences = new ArraylList<>();
for (String prevElem: currSet) {
String newDiff1 = new String();
String newDiff2 = new String();
for (int d = 0; d < dimension; d++) {
char diff1Char = (char)(((int)(prevElem.charAt(d) - elemOfG.get(i).charAt(d)) +
dim[d]) % dim[d] + A);
char diff2Char = (char)(((int)(elemOfG.get(i).charAt(d) - prevElem.charAt(d)) +
dim[d]) % dim[d] + A);

newDiff1 += diff1Char;
newDiff2 += diff2Char;
b
differences.add(newDiff1);
differences.add(newDiff2);

int count1 = counter.put(newDiff1, counter.get(newDiff1) + 1) + 1;
int count2 = counter.put(newDiff2, counter.get(newDiff2) + 1) + 1;

if (count1 == lambda) {
numLambdaCovered++;

if (!newDiff1.equals(newDiff2) &% count2 == lambda) {
numLambdaCovered++;

if (count1 > lambda || count2 > lambda || numLambdaCovered > this.t) {
stop = true;
break;

}
if (Istop) {
currSet.add(elemOfG.get(i));
for (intm=1+ 1; m <= v - (numLeft - 1); m++) {
getNext(m, numLeft - 1, elemOfG, currSet, allSets, numLambdaCovered);
if (allSets.size() > 0)
return;

46

204
205
206
207
208
209
210
211
212
213

}
currSet.remove(elemOfG.get(i));

for (String diff: differences) {

counter.put(diff, counter.get(diff) - 1);

}
Listing A.3: Stage 3

47

	Almost Difference Sets in 2-Groups
	Recommended Citation

	Introduction
	Difference Sets
	Theoretical and Real-world Significance of Difference Sets
	Almost Difference Set

	Exploring Structures of ADS
	Software tool
	Stage 1
	Stage 2
	Stage 3

	Future Work
	References
	Appendix Appendix

