University of Richmond

UR Scholarship Repository
Honors Theses Student Research

2020

Connectiveity and Structures of Coloring Graphs

Xin Yutong
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/honors-theses

b Part of the Computer Sciences Commons

Recommended Citation
Yutong, Xin, "Connectiveity and Structures of Coloring Graphs" (2020). Honors Theses. 1527.
https://scholarship.richmond.edu/honors-theses/1527

This Thesis is brought to you for free and open access by the Student Research at UR Scholarship Repository. It
has been accepted for inclusion in Honors Theses by an authorized administrator of UR Scholarship Repository. For
more information, please contact scholarshiprepository@richmond.edu.

https://scholarship.richmond.edu/
https://scholarship.richmond.edu/honors-theses
https://scholarship.richmond.edu/student-research
https://scholarship.richmond.edu/honors-theses?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/142?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarship.richmond.edu/honors-theses/1527?utm_source=scholarship.richmond.edu%2Fhonors-theses%2F1527&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarshiprepository@richmond.edu

Connectivity and Structures of Coloring

Graphs

YuronGg XIN
Ho~Nors THESsIS"
DEPARTMENT OF COMPUTER SCIENCE
UNIVERSITY OF RICHMOND
APRIL 27, 2020

*Under direction of Dr. Prateck Bhakta

The signatures below, by the thesis advisor, the departmental reader, and the honors
coordinator for mathematics, certify that this thesis, prepared by Yutong Xin, has been
approved, as to style and content.

Frialah Blhapta

(Dr. Prateek Bhakta, Thesis Advisor)

o D

(Dr. James Davis, Departmental Reader)

/m/u aﬁ ey

(Dr. Jory Denny, Honors Coordinator)

ii

Thesis advisor: Professor Dr. Prateek Bhakta Yutong Xin

Connectivity and Structures of Coloring Graphs

ABSTRACT

Reconfiguration problems have been studied and applied to solve problems in various ar-
eas, including in Math, Computer science, and Chemistry. Due to the close relatedness
between coloring graphs and reconfiguration problem, the connectivity and structure of
coloring graphs give valuable information to a solution set of the corresponding reconfigu-
ration problems. In this paper we will discuss 2—connectedness and cut-vertices of coloring
graphs, and forbidden structures on a coloring graph with cut-vertices.

iii

Contents

1 INTRODUCTION 2
2 PRELIMINARIES 3
2.1 Graphand Graph Coloring 6
2.2 Connectivity and Cut-vertices 6
2.3 Fundamentals of Coloring Graphs 8
2.4 Structure of Coloring Graphs 9
3 TARJAN’S ALGORITHM MODIFIED II
4 INITAL RESULT: A COUNTEREXAMPLE 17
s FORBIDDEN STRUCTURES IN A POLYP 20
6 FUTURE DIRECTIONS 24

REFERENCES 26

Introduction

Proper colorings of graphs are studied in many contexts in mathematics and computer sci-
ence, including in geometry?, linear programming’, constraint satisfaction problem”, and
others. A proper k—coloring of a graph G is an assignment of £ colors to all vertices of G
such that no neighboring vertices of G share the same color. On the other hand, a proper

k—coloring graph C;(G) of the base graph G is a graph of all such proper £—colorings.

Each vertex of C;(G) is a proper k—coloring of G, while each edge between two vertices of
Ci(G) suggests the two coloring differ by the color of exactly one vertex of G

A coloring graph of a base graph can be viewed as a reconfiguration graph of a given
problem. Reconfiguration problems has been studied in various areas, including in com-
puter science, mathematics, and physics?, and such problems include problems of vertex
cover, clique, independent set, matching problem, power supply, etc.® Reconfiguration
problems arise every times there is a step-by-step transition between two solutions in the
solution set to the given problem®. Given finding a proper 4-coloring of G as a reconfigura-
tion problem, we can view the coloring graph C;(G) as the corresponding reconfiguration
graph. Each proper k—coloring, or a vertex of C(G), is a solution, and each edge of C;(G)
is a one-step transition between two solutions. It follows that the connectivity of C;(G)
is suggestive of the flexibility of traversing the solution set. The connectivity of the above
reconfiguration graph has been of interest in the fields of chemistry and knot theory>.

Cereceda, Heuvel, and Johnson explored the relationship between the chromatic num-
ber of a base graph and the connectivity of its corresponding coloring graph®, and later
Bhakta et al. went further to study the bi-connectivity of the coloring graph*. As a differ-
ent perspective for understanding coloring graphs better, Beier et al. made a classification
of graphs that are possible to become coloring graphs, and forbidden induced subgraphs
of coloring graphs’*, and as an expansion of that, Alvarado et al., constructed structures of
forbidden minimal induced subgraphs for coloring graphs’.

Although the coloring graph is useful, there are many challenges we face in studying this
object. First of all, the number of proper k-colorings for a given graph G can be very large

compared to the number of vertices of G. The direct result of the large number of colorings

is a coloring graph with an exponentially large number of vertices and edges. Being able

to get a completed coloring graph is desirable, as we would have the ability of studying the
connectivity of the coloring graph both locally and globally. However, it can be realistically
impossible to draw a completed coloring graph for a even moderately sized base graph. As
such a task is realistically almost impossible to achieve, the need of borrowing the power of
programming tools arose. Yet even with programming, the challenges still stay. The large
number of vertices and edges could put pressure on the computer, and it wasn’t very hard
to run out of memory or time during graph generation or exploration in our tests. Hence,
the data structures and algorithm implementations used need to be considered with great
care.

We will start to discuss more details about our work in the next few chapters. We’ll intro-
duce the relevant definitions, algorithm and lemma in the preliminaries chapter, and then
proceed to introduce the first conjecture we had, as well as the program we built to assist
our work. In chapter 3 we’ll give a detailed explanation of the Tarjan’s algorithm, a core
algorithm we used in our program. In the following chapter 4 we will present the coun-
terexample we found against our initial conjecture, after which we slightly switched the
direction to study the forbidden structures in a coloring graph with cut-vertices. In chapter
s we will give two proofs about the nonexistence of small odd cycles containing a cut-vertex
in a polyp. Lastly, we will talk about what the directions we can take from the results we

have at current stage.

Preliminaries

We begin by formalizing some of the concepts we will be discussing for the remaining of

the paper.

2.1 GRrRAPH AND GRAPH COLORING

Definition 2.1.1. A graph Gis a pair G = (V, E), where Vis a set of vertices, and E is a set

of edges. Foreachedgee € E, ¢ = (u,v),u,v € V.

Definition 2.1.2. A proper k-coloring of a graph G is an assignment of colors to all ver-

tices of G, such that no neighboring vertices in G are assigned the same color.

Definition 2.1.3. A chromatic number of a graph G, y(G), is the minimum number of

colors necessary to have a proper coloring of G.

Figure 2.1: a simple graph G

The above Figure 2.1 is a simple graph G with 2 vertices and 1 edge. We can assign color
¢o to A, ¢; to B, which is a proper 2—coloring of G. Also, since there is no way to color G
with only one color, the chromatic number of G is 2. One famous result of the 4—color

map theorem states all planar graph are 4—colorable.*

2.2 CONNECTIVITY AND CUT-VERTICES

Another important focus of our study is the connectivity of coloring graphs as mentioned
in the first section. In order to take a closer look, let’s understand connectivity in a more

formal manner.

Definition 2.2.1. A graph G is connected, or 1-connected if there exists at least one path

between any two vertices in G.

Definition 2.2.2. A Graph G is 2-connected, or bi-connected if after removing any one
vertex and its incident edges from G, the remaining graph is still connected. Alternatively,

G is bi-connected if there exist at least two paths between any two vertices in G.

Definition 2.2.3. A connected component in a graph G is a subgraph H of G, such that all
vertices in / are connected with each other through at least one path, and no vertices in A

is connected to vertex in G \ H.

Now with the definition of connectivity in mind, we can introduce the concept of cut-

set and cut-vertex.

Definition 2.2.4. A vertex cut-set in a graph G is a set of vertices of G, the removal of

which increases the number of connected components of G.

Definition 2.2.5. A vertex v in a graph G is a cut-vertex, if removing v creates more con-

nected components in G. In other words, v is a cut vertex if it is a cut-set of size 1.

In the figure below, (a) is a 2-connected, or bi-connected graph, as the graph stays con-
nected after removing any vertex. On the other hand, (&) is a connected but not 2-connected

graph, as removing vertex C disconnects the graph. C'is a cut-vertex in this graph.

\/ \C/

D D

(a) a 2-connected graph (b) a connected but not 2-connected graph

Figure 2.2

Definition 2.2.6. A local cut vertex, or a second-degree cut vertex is a member of a cut set

of size 2 but not a member of cut set of size 1.

Definition 2.2.7. A k™ degree cut vertex, is a member of a cut set of size £ but not a mem-

ber of cut set of size £ — 1.

One focus of our work was on the connectivity of coloring graphs. To be able to com-
pute the 2—connectedness of coloring graphs, we built up a program that implemented a
modified version of Tarjan’s algorithm, which can find cut vertices of a graph efficiently.
Tarjan’s algorithm is based on depth first search, with time and space complexity being

O(|V] + |E|). It takes an undirected graph G as input, and outputs the cut-vertices of G.

2.3 FUNDAMENTALS OF COLORING GRAPHS

We have introduced all necessary concepts for this paper related to coloring and connectiv-

ity, and let us shift our focus to the definition of coloring graph.

Definition 2.3.1. Given a base graph G, the £ coloring graph C;(G) of G is a graph with
vertex set V(C,(G)) and edge set £(Cy(G)) where

* the vertex set V(Cy(G)) is composed of all proper £—colorings of G

* theedgeset £(C(G)) = {e = (2,8) | 3n € VVv € Vg, a(u) # B(v) <= u =
v}. In other words, there is an edge between two colorings «, £ if « and 8 only differ

at one vertex.

With the definition of coloring graph in mind, we can relate to the previous discussed

concepts of cut-vertex and connectivity, and understand them in regards to coloring graphs.
Definition 2.3.2. A k-cut-coloring of the graph G is a cut vertex of C;(G).
Definition 2.3.3. A base graph G is k-mixing if its coloring graph C;(G) is connected.

Definition 2.3.4. A block-cut tree, or a metagraph of a graph G is a tree generated by
decomposing G into a tree. Each node of the tree is either a 2—connected component of G,

Or a cut-vertex.

2.4 STRUCTURE OF COLORING GRAPHS

Since in a lot of cases, the coloring graph have large vertex and edge sets, and in turn also
many connected components. More than often, for a connected coloring graph, the meta-
graph of the connected components is symmetric. The metagraph has a central compo-
nent, from where many symmetric offshoots branch out. We define the central component
as the mothership, and the offshoots as the polyps.

Let C be the set of 2—connected components in a coloring graph C,(G), where G is the

base graph with 7 vertices.

Definition 2.4.1. A small mothership A/ € C is the maximum 2—connected component

in C such that for all color permutations & € S, and for all colorings € V), o(c) € V.

Definition 2.4.2. A large mothership L € C is a 2—connected component in C such that

there exists a color permutation o € S, such that for all colorings € V7, o(c) € V.
Definition 2.4.3. A polyp P € C is a 2—connected component that is not the mothership.

Another differentiation important to make is between a vertex that cannot change color
in the base graph and a coloring vertex in the coloring graph where the coloring assignment
to all base graph vertices is fixed. We introduce the concepts of a locked vertex and a frozen

coloring.

Definition 2.4.4. A vertex v in a base graph G is locked if, for all colorings «, £ € C, where

Cis a bi-connected component of the coloring graph C;(G), a(v) = B(v).

Definition 2.4.5. Given a base graph G, a k—coloring of G « is a frozen coloring if none
of the vertices in G can change color from the assignment of 2(G). In the coloring graph

Ci(G),a € Ve, (c) has no incident edge.

Another focus of our work was on exploring the structure of coloring graphs. Specif-
ically, we were working towards finding and classifying forbidden structures of coloring
graphs. In chapter 5 we will show 2 proofs about the non-existence of small odd-cycles con-
taining a cut-vertex in the coloring graph. The proofs used a previous result by Bhakta, et.

al*.

Lemma 2.4.6. Let a be a k—cut coloring of a graph G. There exists a unique color ¢ such that

every neighbor of a in Cy(G) is obtained from a by recoloring some vertex to color c.

I0

Tarjan’s algorithm modified

We formed a conjecture whose details will be discussed in the next chapter. In the process
of trying to disprove the conjecture, we developed a program to aid in our search, due to
the large number of proper colorings of a base graph.

There were 2 main tasks this program needed to achieve. The first step was to gener-

ate the coloring graph G;(G) given a base graph G and number of colors £. We apply the

II

backtrack approach to complete the first task. We generate all possible colorings given a
base graph using backtracking search, and form the coloring graph C,(G) as each new
proper coloring is discovered. The second step was to output the connectivity of the col-
oring graph. We implemented Tarjan’s algorithm to achieve this task. After the color-

ing graph C;(G) is generated, we feed C;(G) to Tarjan’s algorithm. If Tarjan’s terminates
before all the vertices are visited, C;.(G) is then disconnected. On the other hand, if the
graph is connected, and Tarjan’s finds a set of cut-vertices, C;(G) is then connected but not
2—connected. In this case, our algorithm outputs the size of the cut-vertices; if Tarjan’s
finds no cut-vertex, C;(G) is then 2—connected. Now we will give a more detailed descrip-

tion of Tarjan’s algorithm.

Algorithm 1 tarjanHelper

Input: Graph G
Output: List cutVertices

1: Declare cut Vertices < (),

2: for all Vertex v : G.vertexList do
rootNumOfChildren < 0
currlime < 0
if —v.isVisited then

v.isRoot = truce

currlime = 0

tarjan(G, v, cutVertices)

if 700t NumOfChildren > 2 then
10: cutVertices.add(v)
11: return cutVertices

I2

Algorithm 2 tarjan

Input: Graph G, Vertex v, List cut Vertices
1: v.visitedTime = currTime, v.lowTime = currlime
2. currlime + +
3: v.visited = true
4: for all Vertex # : v.neighbors do
s: if u # v.parent then

6: if —#.visited then

7 if v.isRoot then

8: rootNumOfChildren + +

9: u.parent = v
10: tarjan(G, u, cutVertices)
I1: else
12: if v.visitedTime < z.lowTime N —w.isRoot then
13: cutVertices.add(v)

14: v.lowTime = Math.min(x.lowTime,v.visitedTime)

The algorithm takes an undirected graph G as input. Each vertex v in the graph has the
following extra fields: visited Time, lowTime, parent, visited. The algorithm also has

global variables: currTime, and rootNumOfChildren.
* global variables:

— currTime: gets updated every time a vertex is visited

— rootNumOfChildren: keeps track of how many children get explored from

root as parent
* instance variables of Vertex:

— visitedTime: equals the currTime when v gets visited.

— lowTime: keeps track of the visited Time of vertex vy, where vy has mininum

visited Time among all the vertices reacheable from v during the search.

13

— parent: records the vertex through which v is visited.

— visited: records whether v is visited.

In this algorithm, we have 2 criteria for checking whether a vertex is a cut-vertex: v is a cut

vertex if
* visaroot, and rootNumOfChildren > 2

* visnotaroot,and v.visitedTime < #.lowTime, where # is a non-parent neigh-

bor of v

Assume v is a root vertex. Assume v is in or adjacent to #z 2—connected components C;,
and VC;, visadjacenttoasetof U; = {u; € C| (u;,v) € Eg} vertices. Then according
to the algorithm, for each U, there only exists one %y € U, such that #y.parent is v, and
all other#’ € Uj are not visited immediately from . Since rootNumOfChildren gets
incremented every time a neighbor # is visited within the call on the root vertex v, we have
rootNum0fChildren = #. Thus, if r00tNumOfChildren > 2, v connects more than 1
2—connected components, and thus is a cut-vertex.

Note what line 14 in tarjan does is to update the lowTime of each vertex v, such that
v.1owTime always keeps track of the minimum visitedTime of the vertices in C, where C
is a currently being explored 2—connected component containing v. Now assume v is not
aroot vertex. If v.visitedTime < #.lowTime (v.visitedTime is smaller than the min-
imum visitedTime associated with the 2—connected component containing #), # and v
are not in the same 2—connected component. Thus, vis a cut-vertex; if v.visitedTime =
u.lowTime, v, # are in the same 2—connected component C, and v is visited before all

other vertices in C are visited. However, since v is not the root vertex, there must exists a

14

vertex w, a neighbor of v, visited before v. Thus w.visitedTime < v.visitedTime,and
hence w & C. Therefore, v is a cut-vertex.

In the process of building up our program as planned, we came across several problems.

The first problem arose when trying to generate the coloring graph C;(G) of the base
graph G. Since each vertex of C;(G) (CVertex) is a coloring of G, we stored each colored
base graph as a field in each CVertex. Additionally, a base graph G can have a lot of proper
colorings, forcing us to store a lot of colored graph objects. Hence, when trying to store too
many CVertices, we faced OutOfMemoryError.

The second and third problems occurred during Tarjan’s algorithm. Tarjan’s came nat-
urally as a recursive algorithm. Again due to the large number of CVertices, we hit recur-
sive depth limit during the depth-first search. Another problem was each CVertex object
stored a list of CVertex neighbors. Due to the large number of CVertices and the number
of neighboring CVertices, the space needed was still huge. Hence another OutOfMemory-
Error occurred.

We modified the original code to solve the problems one by one.

For the first OutOfMemoryError, since storing a colored graph object in each CVertex
took excessive memory, we figured out a new way to represent each coloring. We each col-
ored graph object with an long type encoding. We treated the encoding as a number in base
k. Each vertex in the base graph corresponds with a digit, and the range of value in each
digitis {0,1,- - - , # — 1}. This replacement significantly cut of the memory usage, so the
first problem was solved.

For the recursive depth limit problem, we needed to change recursion to iteration. We

achieved this change by using a Stack.

IS5

The last OutOfMemoryError persistently occurred even after we changed the represen-
tation of the coloring in each CVertex. Indeed, even though the memory of the coloring
representation field was reduced, the neighbors list field still took a large space. Deciding it
wasn’t really possible for us to reduce any other data fields in CVertex, we needed to cut off
the neighbor list. However, each CVertex still needed to have knowledge about its neigh-
bors. Our solution was to generate neighbors of each CVertex in real-time. In real-time we,
based on the encoding of the CVertex itself, generated the encoding of its neighbors. Since
we needed to know when all neighbors of a CVertex were explored, we included a neighbor-
Track field to each CVertex. Each time the encoding of a potential neighbor was generated,
we increment the neighborTrack. We stopped when neighborTrack reaches the maximum
number of potential neighbors one CVertex could have((k — 1)!7¢l). By the above modifi-

cation, our last problem was solved.

16

Inital result: a counterexample

Our initial conjecture 4.1 was inspired by a previous known result about the connectiv-

ity of coloring graph, which relates to the degeneracy number of a graph. The degeneracy
number of a graph G is the smallest number £, such that for each subgraph H of G, all ver-
tices of A have at most degree k. The previous results states: for a base graph G with degen-

eracy number d, the corresponding coloring graph C;(G) is connected when # > d + 2,

17

and 2—connected when k£ > d + 3#. Inspired by this result, we came up with the following

conjecture:

Conjecture 4.1. Given a base graph G and a number of colors , if V& > 7, the coloring

graph Cy(G) is connected, then Vk > 7 + 1, C4(G) is 2-connected.

Our plan was to first look for counterexamples against our conjecture, and, if we failed
to find any, then continue to prove the conjecture. With our program, we are able to in-
put any given base graph with reasonable size and number of colors to the program, and
compute whether the coloring graph is 2—connected. To make this searching process more
efficiently, we decided to generate random graphs as input to our program, and output the
graphs whose coloring graph had cut-vertices with £ = 4.

Given a fixed number of vertices, one approach to generate random graphs was to ran-
domly generate edges between all pairs of vertices with a probability p. However, consid-
ering the strict structural nature of graphs with cut-colorings, such an approach had a low
chance of finding a desirable base graph. Therefore, we choose another approach. Given a

fixed number of vertices 7,
* initialize an empty graph G with 7z vertices

* generate all possible (%) edges, and shuffle the edges to get a randomly ordered edge

set.S,
* foreache € S:

— addeto G

— compute connectivity of C4(G), and record G if C4(G) has cut-vertices

18

After one time of such searchesonn = 7,--- 11, we found in total 31 base graphs
whose coloring graph had cut-vertices with £ = 4. However, none of the graphs had con-
nected coloring graph with £ = 3. However, we were able to get more insights about the
structure of these base graphs whose coloring graph had cut-vertices. With the help of such
insights, we created a base graph with our programming tool by hand, shown in Figure

4.1, whose coloring graph was connected with £ = 3 colors.

. . size of cut vertices: 0
. tarjan finished
This coloring graph is 2-
connected

‘ tarjan starting

. . tarjan finished

(a) Counterexample - cut-coloring of a base graph, k = 4

(b) Results from Tarjan’s Algorithm when k = 3, 4

Figure 4.1

After inputting the graph in 4.1a, we got the results listed in 4.1b. Our result showed
whenk = 3, C,(G) = C5(G) is connected. Since the degeneracy numberd of Gisd =
2, from the precious result®, we could conclude V& > 4, C(G) is connected. Combing
the above results, V& > 3, C;(G) is connected. If our conjecture was true, Cy11(G) =
C4(G) must be 2—connected. However, as shown in the result 4.1b, C4(G) contains 48

cut-vertices, and hence is not 2—connected. Therefore, our conjecture was proven false.

I9

Forbidden structures in a polyp

Among coloring graphs we found that are not bi-connected, it seems the polyps of the col-
oring graphs are always bipartite. If that is true, there cannot exist any odd cycles in a polyp.

In fact, we did prove the non-existence of 3 and 5—cycles that contains a cut-vertex.

20

Proposition s.x. [n a connected but not bi-connected graph, a 3—cycle containing a cut-

vertex cannot exist.

Proof. Let a be a k—cut coloring of a graph G. Suppose a cycle containing « exists in the
polyp. Let 8, 7,8 # y be the other two colorings in the 3—cycle, and there are edges be-
tween (2, 8), (8,7),and (7,).

Letv € Vg be the vertex that changes color from 2(G) to f(G),and w € Vg be the
vertex that changes color from 2(G) to y(G). Since £ # y, v # w.

Notea(s) # f(0), a(w) = f(w), and a(o) = 7o), a(w) # y{w). Therefore f(v)

y(v),B(w) # y(w), and thus 8 and y cannot be neighbors, where we reach a contradiction.

O

Proposition s.2. In a connected but not bi-connected graph, a S—cycle containing a cut-

vertex cannot exist.

Proof. Suppose a s-cycle exists in the polyp.

Let C;(G) be the coloring graph of G with # colors. Let 2 be a cut vertex in C(G), and
the s-cycle is formed by « — f — 0 — ¢ — ¥ — «, as shown in Figure s.1.

Letu,v,u # v, be the two vertices in G such that the recoloring of %, v forms the edge
(2,8), («,y), respectively, in C;(G). Since « is a cut-vertex, the color # and v changes to is
the same by Lemma 2.4.6. Denote that color as cx.

Denote the color of # as ¢, the color of v as ¢, in . We then have 8(«) = ¢, (v) = ¢,,
while y(#) = ¢,,,y(v) = c*. Since 8 and y are 3 edges away, and they have 2 vertices, #, v,
in G colored differently. Hence, 2 out of the 3 edges must correspond with the color change

of u, v. Therefore, it is impossible for a vertex other than #, v to change color along the path

21

B — 0 — & — y,since it would have to change back to its original color, which would take 2
edges and result in at least 4 > 3 edges between y and 8.

Thus, it must be one of # or v that changes to another color different from c* and its
original color in 2. Without loss of generality, say « is the vertex that changes color twice,
and denote the second color it changes to as¢,, # c*, ¢,,. There can be two cases for this

second color change to occur:

Figure 5.1

* Case 1: # changes color from 8 to 0. In this case, d(#) = ¢,,d(v) = ¢,.2and
dshould then be adjacent, as they are different only by the color of #. This implies
recoloring # from ¢,, to ¢,, would obtain d from 2. However, since 2 is a cut vertex,

and cx # c,,, this violates Lemma 2. Hence case 1 is not possible.

22

= (4, Y(0) = %

y(n) = ox,y(0)

Blu) = o5, 8(0) =

= Cups y(0) = o

Figure 5.2

* Case 2: # does not change color from 3 to d, but does change color from dto e.

Hence, ¢(#) = ¢,,, £(v) = cx.

Note 4 and ¢ have 2 vertices in G, #, v colored differently. Since 4 and ¢ are 2 edges
away, each edge must correspond the color change of #, v. By our case assumption, #
does not change color from 4 to 9, so d(#) = ¢*, d(v) = c*. Since # and v have the

same color here, they cannot be adjacent.

Note « and ¢ have both #, v colored difterently. Because #, v are not neighbors, noth-
ing forbids us from first recoloring # from ¢, to ¢,,, and then recoloring v from ¢;, to
¢* to obtain ¢ from a. However, since ¢,, # cx, this is a violation to Lemma 2.4.6, so

case 2 is not possible as well.

Since neither cases can happen, the initial assumption must be false. Hence we’ve proved

by contradiction that S—cycle that includes a cut-vertex cannot exist in the polyp.]

23

Future directions

Based on our results, we want to point to some future directions worth exploring.
Although our conjecture 4.1 was proven false, we have two related conjectures to ex-
plore, one is a modified version of 4.1, while the other one relates to the structure of base

graphs.

Our conjecture was disproven because the coloring graph, connected for £ number of

24

colors, failed to be 2—connected when we increased the number of colors by 1 to use &£ + 1
colors. But the conjecture might still apply for &£ + 7 colors, 7 > 2. In order words, the

following modified version of our original conjecture still awaits to be proven or disproven:

Conjecture 6.1. Given a base graph G, if C;(G) is connected, C;1,(G) is 2—connected for

allz > 2.

On the other hand, it is also worthwhile to consider the structure of the base graph. Our
conjecture did fail in the counterexample we found, but there are base graphs where the
conjecture hold. We are curious to see if we can identify sufficient criteria on the base graph
for which our conjecture does hold, and also criteria for which it doesn’t hold.

The nonexistence 3 and S-cycle proofs also gave us new potential directions to explore
on. One direction is to try to generate the results on the non-existence of all odd cycles con-
taining a cut vertex in a polyp. If that is achieved, we may even further generalize to try to
prove whether a polyp cannot have any odd cycles, regardless of whether the cycles con-
tain a cut-vertex. Since our 3— and 5—cycle proofs are motivated by the hypothesis that all

polyps are bipartite, we can also continue on this hypothesis and try to prove or disprove it.

25

[1]

[2]

References

Alvarado, F., Butts, A., Farquhar, L., & Russell, H. M. (2018). Forbidden subgraphs
of coloring graphs. Involve, 11(2), 311-324.

Appel, K. & Haken, W. (1977). Every planar map is four colorable. part i: Discharg-
ing. Illinois . Math., 21(3), 429—490.

Beier, J., Fierson, J., Haas, R., Russell, H. M., & Shavo, K. (2016). Classifying color-
ing graphs. Discrete Math., 339(8), 2100-2112.

Bhakta, P., Buckner, B. B., Farquhar, L., Kamat, V., Krehbiel, S., & Russell, H. M.
(2019). Cut-colorings in coloring graphs. Graph. Comb., 35(1), 239-248.

Borodin, O., Ivanova, A., Montassier, M., & Raspaud, A. (2011). (k,j)-coloring of
sparse graphs. Discrete Applied Mathematics, 159(17), 1947 — 1953.

Cereceda, L., Van Den Heuvel, J., & Johnson, M. (2008). Connectedness of the
graph of vertex-colourings. Discrete Math., 308(5—6), 913-919.

Gualandi, S. & Malucelli, F. (2012). Exact solution of graph coloring problems via
constraint programming and column generation. INFORMS Journal on Comput-
ing, 24(1), 81-100.

Ito, T., Demaine, E. D., Harvey, N. J., Papadimitriou, C. H., Sideri, M., Uehara, R.,
& Uno, Y. (2011). On the complexity of reconfiguration problems. 7Theoretical
Computer Science, 412(12), 1054 — 1065.

[9] Wakabayashi, Y. (2019). Spin networks, ehrhart quasipolynomials, and combina-

torics of dormant indigenous bundles. Kyoto J. Math., 59(3), 649-684.

26

	Connectiveity and Structures of Coloring Graphs
	Recommended Citation

	Introduction
	Preliminaries
	Graph and Graph Coloring
	Connectivity and Cut-vertices
	Fundamentals of Coloring Graphs
	Structure of Coloring Graphs

	Tarjan's algorithm modified
	Inital result: a counterexample
	Forbidden structures in a polyp
	Future directions
	References

