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The current methods of simulating the Cosmic Microwave Background (CMB) involve either
simulating the entire sky using spherical transforms or simulating a flat patch with fast Fourier
transforms (FFTs). For patches that are too large to be considered flat but much less than the
full sky, the former method is inefficient and the latter is inaccurate. One alternative method of
CMB simulation is to simulate the random processes behind the CMB in a 3-dimensional box that
contains the part of the sphere that we want to measure. Then, we can select the points we want
from the box. This method should be more efficient than previous methods because it performs
simulations over a box instead of a sphere, allowing for the use of FFTs in place of much slower
spherical harmonic transforms.

For this method to work, there must be a 3-dimensional power spectrum defined on the box
that has the same correlation function as the angular power spectrum. Since the angular power
spectrum is known, this becomes a linear programming problem, where the constraints for the 3-D
power spectrum are that it matches the angular power spectrum over the observed region and that
it be non-negative. If a power spectrum satisfying these constraints exists, we can use it to create
maps of the CMB with the same statistical properties as the observed CMB. These maps can then
be used to test theories about the early universe.

We have solved this linear programming problem for a variety of realistic scenarios. We have
performed extensive statistical tests comparing the statistics of maps produced via FFT simulation
with maps produced via standard spherical harmonic methods, and found the two methods to be
statistically indistinguishable.

I. INTRODUCTION

Studying the cosmic microwave background re-
quires making many simulations of the CMB, which are
then used to test theories. Making many simulations is
necessary because we believe that our observed CMB is
the result of a random process. Theories about the early
universe will make predictions about the features of the
cosmic microwave background that would have occurred
if the theory is correct. These theories will not predict
precise values of the CMB; rather, they predict the sta-
tistical properties. We therefore do not want to test our
theories against the exact values we measure, but instead
against the statistical properties of the CMB we observe.
For this reason, we want to make large numbers of maps,
each drawn from the predicted distribution.

The focus of this project is on simulating partial sky
cosmic microwave background maps. Because the CMB
is isotropic and homogeneous, we can interpret these par-
tial sky maps as maps covering a spherical cap of the sky.
There are two current methods of simulating a map over
a spherical cap. The first is by using a flat sky approx-
imation. This method ignores the curvature of the sur-
face and treats the spherical cap as a flat plane. The issue
with this method is that it only produces accurate results
for extremely small patches of the sky. These patches are
too small to be of practical use in many cases. The sec-
ond method in use today is to simulate the map over
the entire sphere, then select just the points on the de-
sired spherical cap. This method produces accurate maps
but is very inefficient. It requires using computationally
expensive spherical harmonic transforms over the entire
sphere [1]. With new experiments only taking partial-sky
measurements of the CMB on the horizon, there is a need
for a more efficient method of making these simulations.

The idea behind this project is to simulate the

map first in a three-dimensional box, and then select the
points in the box that correspond to the points on the
spherical cap. We do this so that we can use Fourier
transforms instead of the slower and more computation-
ally expensive spherical harmonic transforms. We do this
by first finding a three-dimensional power spectrum in-
side the box that has the same correlation function as
the observed angular power spectrum over the sphere.
We then use this power spectrum to make maps inside
the box. Finally, we select the points inside that box
that correspond to points on the sphere. The diagram in
figure 1 demonstrates the idea behind this project.

FIG. 1. Diagram of process. We first simulate the map inside
the blue box. We then select the points in the box that lie on
the red sphere. This becomes the spherical cap CMB map.
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II. BACKGROUND INFORMATION

The cosmic microwave background is composed
of photons that were emitted by the universe roughly
380, 000 years after the Big Bang. These photons are the
oldest light in the universe that we can observe. They
form a surface of a sphere centered on the Earth called
the last scattering surface. Because this light comes from
right after the Big Bang, it contains information about
the density and composition of the early universe [2].
This in turn gives us information about structure forma-
tion and the development of the universe.

After the Big Bang, the universe was very hot and
dense [3]. All baryonic matter was ionized, so there was
a high number of free electrons. Photons could not travel
far without hitting these free electrons and scattering. As
the universe cooled down, ions began collecting electrons.
This point is called the epoch of recombination. This
allowed the photons to travel unimpeded until the present
day.

There have been several attempts to measure the
cosmic microwave background. It was first measured by
Arno Penzias and Robert Wilson in the 1960’s. They
could observe that the CMB was present but could not
make a detailed measurement. The first full-sky map was
made by the COBE satellite in the 1990’s. Since then,
more precise measurements have been made by satellites
like WMAP and Planck. A map measured by the Planck
satellite is shown in figure 2.

The cosmic microwave background fits a blackbody
spectrum with a temperature of 2.7255 ± 0.0006 K. At
the epoch of recombination, the temperature of the uni-
verse was 2970 K. The drop in temperature is due to the
expansion of the universe. The blackbody spectrum of
the cosmic microwave background is shown in figure 3.

FIG. 2. Map of CMB from Planck satellite
https://en.wikipedia.org/wiki/
Cosmic microwave background

FIG. 3. Blackbody spectrum of the CMB.
https://wmap.gsfc.nasa.gov/universe/bb tests cmb.html

III. BASIC SETUP AND NOTATION

The data set that we used in this project consists
of measurements of the angular power spectrum of the
cosmic microwave background. The temperature of the
CMB was measured by the Planck satellite. These tem-
peratures are described by a function on the surface of
last scattering

T (θ, φ) =

∞∑
l=0

∞∑
m=0

T̃lmYlm(θ, φ)

Here, Ylm are the spherical harmonics and T̃lm are the
coefficients of each spherical harmonic. In the standard
theory of the CMB, the temperature measured is a real-
ization of a Gaussian random process, so each T̃lm is an
independent normally distributed random number with
mean 0 and variance determined by < |T̃lm|2 >. We can
define the angular power spectrum

Cl =
〈
|T̃lm|2

〉
The standard theory of the Cosmic Microwave

Background also states that the CMB is homogeneous
and isotropic on large scales. In the spherical harmonics,
l is related to the wave number k and m represents the
direction of the wave. If the CMB is homogeneous and
isotropic, we do not need to worry about the direction of
the wave, so we can ignore m.

The data we used did not include the monopole and
dipole, so it started at l = 2. We then set the monopole
and dipole terms (l = 0, 1) to 0.

In this project, we also need to find a power spec-
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trum in a 3-dimensional box. We can write the function
for the temperature of the CMB in the box as

T (~r) =

∞∑
~k

P̃~ke
i~k·~r

We can also define the power spectrum for this box

P~k =
〈
|T̃~k|

2
〉

These two power spectra can be related in the following
way:

Cl =

∫ ∞
0

P (k)j2
l (k)k2dk

Here, the jl are the spherical Bessel functions.

In this way we can make the two power spectra
match over the entire sphere.

IV. CORRELATION FUNCTIONS

The two point correlation function describes how
two different points on the sky are related. If two points
have a high correlation, we expect that if the tempera-
ture measured at one point is higher than average, the
temperature at the second point will also be high. Con-
versely, a low correlation means that the temperature at
one point has little effect on the temperature at the sec-
ond point. For the cosmic microwave background, we
expect that two points very close to each other would
have a high correlation and two points far away from
each other would have a low correlation. We can calcu-
late the correlation function for each of the power spectra
that we use.

For the angular power spectrum Cl, we can find
the correlation function by taking the spherical harmonic
transform of Cl.

ξ(r̂1, r̂2) =

∞∑
l=0

2l + 1

4π
ClPl(r̂1 · r̂2)

Here, r̂1 and r̂2 are the unit vectors corresponding to the
two points. Pl is the lth Legendre polynomial. As men-
tioned in the previous section, we can ignore m because
we are assuming that the CMB is isotropic and homoge-
neous.

We can also find the correlation function corre-
sponding to the 3-dimensional power spectrum Pk by
following a similar procedure. In this case, we can use
Fourier transforms because we are working in Cartesian
coordinates.

ξ(∆~r) =

∫
P (~k)ei

~k·∆~rd3k

We can then express k in spherical coordinates. Integrat-
ing over the angles yields

ξ(∆~r) = 4π

∫ ∞
0

P (k)
sin(k∆r)

k∆r
k2dk

In order to create identical maps with the 3-
dimensional power spectrum, we want to have the two
correlation functions equal each other over the range of
the sphere that we are trying to simulate. The specific
setup of this problem is discussed in the next section.

V. LINEAR PROGRAMMING

The goal of this project is to simulate the CMB
in a spherical cap of some angle θmax. To convert this
spherical cap to Cartesian space, we need to create a 3-
dimensional box. The size of the box is dependent on
the size of the spherical cap. We have found that the size
of the box must be at least twice as big as the spherical
cap in the x and y directions. The height of the box
can be smaller than the x and y directions, so the box
need not be a cube. The height must be large enough to
encompass the entire spherical cap.

Once we have the size of the box, we can calculate
the values of the correlation function at each point inside
the box. We do this with the correlation function corre-
sponding to the angular power spectrum Cl. These values
will form the right hand side of the linear programming
problem we will solve.

The linear programming problem we are trying to
solve can be expressed as:

Ax ≥ b

Gx ≥ 0

Here, x is the 3-dimensional power spectrum we want
to find. As mentioned above, b is the list of correlation
function values that correspond to the points in the box
that we want to simulate. A is the Fourier transform
operator. This is because we want to match the corre-
lation functions, and the Fourier transform of the power
spectrum P (k) is the correlation function ξ(∆r).

G is the identity matrix. The purpose of this is to
ensure that the power spectrum is non-negative at every
point.

When we solve this linear programming problem,
we want to minimize the difference between Ax and b.
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This ensures that the two correlation functions match as
closely as possible, subject to the constraint that x ≥ 0.

The code for this project was done in Python and
the linear programming problem was solved using the
CVXOPT solver [4].

The CVXOPT solver returns the values of P (k) for
integer values of k. This is a one-dimensional function of
a scalar number. Because the CMB is homogeneous and

isotropic, we can assume that the value of P (~k) is the

same for each direction of ~k. This means that instead of
being a function of the vector ~k, the power spectrum is

a function of the magnitude of ~k. We can express this as

P (|~k|).

FIG. 4. Top: ξ(θ), correlation function for observed angu-
lar power spectrum. Bottom: ξ(∆r) correlation function for
generated three-dimensional power spectrum. The two corre-
lation functions match over the region of the sky that we are
trying to simulate, so the linear programming solver did find
a valid solution.

Now that we have a one-dimensional power spec-

trum P (|~k|), we can find the three-dimensional power
spectrum by creating a box in k space and filling it with

values from P (|~k|). For each point in the box, we calcu-

late the magnitude of the vector ~k corresponding to its
position. We can then use interpolation to find the value

of P (|~k|) at every point in the box. We can then use this

three-dimensional power spectrum to make spherical cap
maps of the CMB.

Before we can use this three-dimensional power
spectrum, we must make a correction. Even though one
of the constraints in the linear programming solver is that
P (k) must be greater than or equal to 0, some values of
P (k) come out to be slightly negative due to numeri-
cal inaccuracies. This would cause issues later on when
we create the maps. To fix this issue, after creating the

three-dimensional box with P (|~k|) values, we set all neg-
ative values to 0. Any negative values are on the order
of 10−6 or smaller, so setting them to 0 would not have
a noticeable effect on our results. It does, however, avoid
issues later on in the process.

FIG. 5. Top: C(l), observed angular power spectrum. Bot-
tom: P (k), generated three-dimensional power spectrum.

When we solve the linear programming problem,
the generated three-dimensional power spectrum often
does not match the angular power spectrum. This is
expected because of the method we used to find the three-
dimensional power spectra. The constraints on the linear
programming problem concerned the matching of the two
correlation functions, not the power spectra. This is not
an issue because the goal of this project is to make maps
of the CMB. We can use any three-dimensional power
spectrum to do so as long as it has the correct correlation
function.
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VI. USING THE POWER SPECTRUM

The method outlined in the previous section al-
lows us to find a 3-dimensional power spectrum that
matches the observed angular power spectrum over a
designated spherical cap. We now can use this power
spectrum to generate CMB maps. To do this, we need
to convert our three-dimensional box in Fourier space to
a three-dimensional box of map values in real space. We
start by taking the one-dimensional Fourier transform of
the three-dimensional power spectrum in the z direction.
This converts the three-dimensional box in Fourier space
to a three-dimensional box in (kx, ky, z) space. This is
done because we do not need to simulate the entire box
in the z direction; we only need to simulate enough to en-
compass the spherical cap. We needed padding to ensure
that the linear programming solver could find a valid so-
lution. Once we have the solution, we no longer need the
padding. This reduces the size of the problem, helping
with the speed of the process.

Once we have reduced the size of the box in the z di-
rection, we can begin the process of calculating the map
values. The standard theory of the cosmic microwave
background states that the numbers that we measure
are normally distributed random numbers with mean
µ = 0 and variance given by the power spectrum. To
make maps, we need to generate random numbers with
mean µ = 0 and variance given by our generated three-
dimensional power spectrum.

We do this with a layer-by-layer procedure. Each
of the random numbers in our map should be uncorre-
lated in Fourier space. In real space, they should be
correlated with each other. Because we are generating
them in (kx, ky, z) space, the random numbers we gener-
ate should be correlated in the z direction only. We can
accomplish this by generating a covariance matrix Γ for
each (kx, ky) pair in our three-dimensional box. These co-
variance matrices depend on z and are different for each
(kx, ky) pair. We generate these covariance matrices in
the following way using the definition of a covariance ma-
trix:

Γkx,ky
z1,z2 =

〈
T̃1(kx, ky, z1)T̃2

∗
(kx, ky, z2)

〉

Γkx,ky
z1,z2 =

〈(∑
kz

T̃1(kx, ky, kz)eikzz1

)
∑

k′z

(T̃2(kx, ky, z2)eikzz2)∗

〉

Γkx,ky
z1,z2 =

∑
kz,k′z

〈
T̃ (kx, ky, kz)T̃ ∗(kx, ky, kz)ei(kzz1−k′zz2)

〉

We can rewrite
〈
T̃ (kx, ky, kz)T̃ ∗(kx, ky, kz)f

〉
as

P (kx, ky, kz), which is the calculated three-dimensional
power spectrum. So,

Γkx,ky
z1,z2 =

∑
kz

P (kx, ky, ky)eikz(z1−z2)

This is the Fourier transform of P (k) in the z direction.
This means that the covariance matrix Γ is a Toeplitz
matrix of the form

Γ(kx,ky) =


f(0) f(1) f(2) . . .
f(1) f(0) f(1) . . .
f(2) f(1) f(0) . . .

...
...

...
. . .


where f is the one-dimensional Fourier transform in the
z direction of the three-dimensional power spectrum. Fi-
nally, we must add small multiples of the identity matrix
to each covariance matrix to ensure that each matrix is
positive definite. Due to numerical inaccuracies in the
calculations, some of the eigenvalues of the Γ matrices
are 0 or slightly negative. Covariance matrices must be
positive definite, so we get around this issue by adding
the small multiples of the identity. These multiples are
on the order of 10−10, so they do not have an effect on
the covariances of the random numbers.

Once we have a Γ for each (kx, ky) pair, we can use
them to generate the map values. We start by generat-
ing a vector ~z of n normally distributed random numbers
with mean 0 and variance 1, where n is the number of
points in the z direction that we have in the box. We then
need to apply the correct covariances to these numbers.
We do this by first taking the Cholesky decomposition of
each Γ matrix, decomposing it into LLT . Then, we cal-
culate x = Lz to get a vector ~x of n random normally dis-
tributed random numbers with mean 0 and covariances
given by Γ.

We now can take a two-dimensional Fourier trans-
form in x and y of these random numbers to convert from
(kx, ky, z) space to real space. This gives a box of ran-
dom numbers in real space that we can use as the values
in the map.

The next step in this process is to get the coordi-
nates of each pixel that we want to include in the spher-
ical cap map. The number and locations of these pixels
depends on the size of the spherical cap and the resolu-
tion of the map. We can use HealPy to find the vector
coordinates of each pixel on the sphere that we need to
simulate. We can then use interpolation to find the value
of the map at each of those locations.

The final step in this process is to remove the
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monopole and dipole from the maps. This is done for
simplicity. When comparing maps to data, we will need
to remove the monopole and dipole terms from the map.
We chose to remove them when making the maps as well.

We display the maps we create using the orthview
option in HealPy. The center of the map represents the
north pole of the sphere. Some examples of the maps we
generated with a spherical cap of 0.3 rad are shown in
figure 6.

FIG. 6. Maps of spherical cap of CMB generated from calcu-
lated three-dimensional power spectrum.

Once we have found this power spectrum, we can
use it to produce simulations of the CMB and compare
those maps to those generated from the angular power
spectrum. We generated the maps from the angular
power spectrum by using the synfast method in the
HealPy package. After simulating the entire map, we
selected the spherical cap. Some examples of these maps
are shown in figure 7.

FIG. 7. Maps of spherical cap of CMB generated from ob-
served angular power spectrum.

The two sets of maps seem to be similar. Each is
random, and there do not seem to be any patterns in one
set compared to the other. However, to prove that our
method produces the correct maps, we must analyze and
compare the statistical properties of each set of maps.

VII. STATISTICAL TESTS

Once we have created the maps, we need to test
their statistical properties to ensure that they are iden-
tical to the maps produced by the standard HealPy
method. There are four tests that we perform on our

maps. If we pass each test, we are confident that the
statistical properties of the two maps are the same. We
performed each statistical test on both sets of maps, those
created by the standard HealPy method and those cre-
ated by our method. We compared the results both to
each other and to the expected results.

Before we begin the statistical tests, we first remove
the correlations in the maps. We did this by first calcu-
lating the eigenvalues of the covariance matrix. We then
take the dot product of the map with the eigenvalues.
This removes the correlations between the map values.

The four statistical tests that we performed are
variance, covariance, χ2, and Kolmogorov-Smirnov.

Each example shown below is for a spherical cap of
0.3 radians.

A. Variance

Because we have removed the expected correlations
from the maps before conducting these tests, we expect

FIG. 8. Plot of the variances for 3000 maps. The top
panel shows the variances for maps made with the angular
power spectrum and the bottom panel shows the variances
for maps made with the calculated 3-dimensional power spec-
trum. Both plots have a mean of 1.
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the variance to be 1. This is the case for both sets of
maps. As can be seen in the figure 8, the average variance
of each map is 1. The variations are due to the limited
number of maps. We expect the standard deviation of
the variances σ = 1√

N
, where N is the number of maps.

In this case, N = 3000, so we expect σ = 0.018. This
matches the results of these variance tests. This means
that we can say that the variances of the two sets of maps
are both the same and match the expected results.

B. Covariance

The next test we performed involved the covari-
ances of the maps. The maps have covariances described
by the covariance matrices Γ that we calculated. How-
ever, as we removed this covariances before doing this
test, we expect the covariances of each set of maps to be
0. To test this, we calculated the covariances for each
set of maps and plotted a histogram of the covariance
values. The histograms for each set of maps are shown

FIG. 9. Histogram of the covariances for 1000 maps. The left
panel shows the covariances for maps made with the angu-
lar power spectrum and the right panel shows the covariances
for maps made with the calculated 3-dimensional power spec-
trum. In both cases, the distribution of covariances is centered
at 0.

in figure 9. Each is centered at 0 and falls off quickly.
We expect that the standard deviations should be 0.032
because we have 1000 maps of each type. This matches
the histograms, so we can say that the two sets of maps
have the covariances we expect.

C. χ2 Test

The next statistical test we performed on the maps
was the χ2 test. The definition of the normal distribution
is that if we have a list of random numbers ~xj ∼ N(0,Γ),
then the likelihood of measuring ~xj given Γ is

P ( ~xj |Γ) =
1

(2π)
N
2 detΓ

1
2

e−
1
2 ~xj

T Γ−1 ~xj

FIG. 10. χ2 distributions for maps made with methods de-
scribed in Section . The left panel shows the χ2 distribution
for maps made with the angular power spectrum and the right
panel shows the χ2 distribution for maps made with the cal-
culated 3-dimensional power spectrum. The black curves in
each are the theoretical distributions for these maps. These
two distributions are very similar to each other, providing
evidence that the two methods produce maps with identical
statistical properties.
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The ~xj values are the values in the maps. From this, we
can get an expression for the χ2 value of the maps

χ2 = ~xj
T Γ−1 ~xj

If our map values were drawn from the correct distribu-
tion, then we expect the χ2 values to be drawn from a χ2

distribution with N degrees of freedom. N is the num-
ber of random numbers, which in this case is the number
of pixels in the map. Figure 10 shows the χ2 distribu-
tions for both sets of maps. The black curves represent
the χ2 distribution for 4320 degrees of freedom. Both
histograms match the expected χ2 distribution, which
suggests that the map values are drawn from the correct
distributions in both cases.

D. Kolmogorov-Smirnov Test

Our final statistical test of the maps is the
Kolmogorov-Smirnov test. This test examines the cu-

FIG. 11. Cumulative distribution functions for maps. The
left panel shows the cumulative distribution function for maps
made with the angular power spectrum and the right panel
shows the cumulative distribution for maps made with the cal-
culated 3-dimensional power spectrum. These two functions
are very similar to each other, providing evidence that the two
methods produce maps with identical statistical properties.

mulative distribution functions of each set of map val-
ues. Because we removed any correlations between the
map values before doing this test, we expect that the cu-
mulative distribution functions should match that of a
set of random numbers ~x ∼ N(0, 1). The Kolmogorov-
Smirnov test finds the maximum discrepancy between the
two cumulative distribution functions [5]. From this, it
determines a p value for the null hypothesis that the two
sets of random numbers were drawn from the same dis-
tribution. A higher p value signifies that the two sets of
random numbers were drawn from the same distribution.

Plots of the cumulative distribution functions are
shown in figure 11. The green curves in each plot repre-
sent the cumulative distribution of a set of random num-
bers ~x ∼ N(0, 1). The cumulative distribution functions
match for each set of maps, and the p values suggest that
both maps were drawn from the correct distribution. In-
stead of comparing one distribution against the normal,
we can compare the two sets of maps against each other
as well. The results of this test further show that the two
sets of maps are drawn from the same distribution.

VIII. RUNTIME

We have now shown that our method produces
maps of the cosmic microwave background that have the
same statistical properties as those generated from the
standard HealPy method. We now need to show that
our method is faster than the Healpy method. We can
do that by analyzing the number of operations that each
method must perform to make a map.

The HealPy runtime is known. It is proportional to
the resolution of the map. The precise runtime is:

T = O
(
N

3
2
pix

)
where Npix is the number of pixels in the map. We can
also express this as

T = O
((

12N2
side

) 3
2

)
because Npix = 12N2

side. Nside is the resolution of the
map.

We can then compare this runtime to the runtime
of our method. The two parts of our method that con-
tribute most to the total runtime are the generation of
random numbers and the two-dimensional Fourier trans-
forms. The generation of Nz random numbers takes
O(N2

z ) time, and we have to do it N2
xy times for a to-

tal time of O(Nxy2N2
z ). We then must do the two-

dimensional fast Fourier transform of these random num-
bers in the x and y directions. Fast Fourier transforms
take O(nlog(n)) time in one dimension. We do the two-
dimensional FFT Nz times, so the total runtime for that
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part of the process is O(Nz(N2
xylog(Nxy))). This gives a

total runtime of our method of

T = O(N2
xyN

2
z +Nz(N2

xylog(Nxy)))

We do not need to include the generation of the
three-dimensional power spectrum or the creation of the
N2

xy covariance matrices in the runtime calculation be-
cause these steps can be done once and stored. The same
power spectrum and set of covariance matrices can be
used to produce as many maps as needed for some given
set of parameters.

FIG. 12. Plot of runtimes of Healpy method (red) and our
method (blue) for a given resolution. Our method is faster
for small enough angles but becomes less efficient at larger
spherical caps.

A plot of the runtimes of the two methods is shown
above in figure 12 for a given resolution. For a constant
map resolution, the runtime of the HealPy method is
constant because it depends only on the resolution. On
the other hand, for our method, an increase in the size of

the spherical cap causes an increase in runtime because
the size of the box and the number of points that must
be simulated increases.

IX. CONCLUSIONS

In conclusion, we were able to successfully find a

three-dimensional power spectrum P (~k) whose corre-
lation function matched that of the observed angular
power spectrum C(l) over the spherical cap we wanted
to simulate. We were then able to use this generated
power spectrum to create maps of a spherical cap of
the cosmic microwave background. These maps had the
same statistical properties as the maps produced by the
standard method of creating CMB maps. Our method
was also faster than the existing method for reasonable
sizes of the spherical cap.

X. FUTURE WORK

We have shown that our method works for creating
temperature maps of the cosmic microwave background.
We can extend this process to maps of the cosmic mi-
crowave background polarization. The difference here is
that polarization is two-dimensional vector whereas tem-
perature is a scalar quantity. The current method of
simulating these polarization maps involves using spin-
weighted spherical harmonics. However, we expect that
we can apply our method of using Fourier transforms to
this problem as well.
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