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Abstract 

Mitogen Activated Protein Kinase (MAPK) pathways are ubiquitous among eukaryotes, and are 

involved in the transduction of various extracellular signals. In mammals, three MAPK 

pathways have been identified, two of these respond to stress, and one can stimulate growth and 

differentiation. MAPKs have also been found in plants, and it has been suggested that a MAPK 

pathway may be involved in the signal transduction of auxin and cytokinin, two plant hormones 

that stimulate growth and differentiation. However, at this time, there is no conclusive evidence 

supporting this hypothesis. By studying the effect ofMAPKK's of both plant and animal origin 

in plant cells, we hope to establish a link between auxin signal transduction and the MAPK 

pathway. 
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Introduction 

Mi to gen Activated Protein Kinase, (MAPK), pathways are a conserved signaling motif found in 

organisms as evolutionarily distant as yeast and humans (reviewed by Seger and Krebs 1995). 

Different MAPK signaling pathways involved in the transduction of various extracellular signals 

in eukaryotic cells. Three critical proteins make up a MAPK pathway: MAPKKK, MAPKK and 

MAPK. Perception of the stimulus activates a MAPKKK, which phosphorylates and activates 

MAPKK, which in turn activates MAPK, which finally results in the phosphorylation of 

transcription factors that influence gene expression. 

In mammals, three groups of MAPKs have been identified, the ERK, JNK and p38 MAP 

Kinases. Progress has been made in determining the factors leading to MAPK activation. For 

example, Phorbol ester and Epidermal Growth Factor, (EGF), activate ERK while only slightly 

activating p38 (Ahn et.al. 1992, Crews et.al. 1992). Conversely, UV radiation, osmotic stress 

and cytokines result in a significant increase in the activation of p38 (Raingeaud et.al. 1995). 

These results suggest that different pathways regulate the activation of different MAP Kinases. 

The ERK pathway is activated by signals associated with cell division and differentiation, while 

the p38 and JNK pathways are stress pathways (reviewed by Marshall 1995). MAPK Kinases 

can also be classified according to differences in structural features (Derijard et.al. 1995). 

Four MAPK Kinases, the upstream activators of MAP Kinases, have also been found and their 

corresponding MAPK substrates identified. MEKl and MEK2 activate ERK, MKK3 activates 

p38, and MKK4 activates both p38 and JNK (Derijard et.al. 1995 ). 
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Constituents of the MAPK pathway have also been identified in plants. Several studies have 

linked MAPK activation with stress response. Mechanical stimulation, wounding, cold and 

drought have all been shown to activate a MAP Kinase in higher plants (Bogre et.al. 1997, Jonak 

et.al. 1996, Seo et.al. 1995, Usami et.al. 1995). lnArabidopsis thaliana, MAPK and MAP.KKK 

transcripts have been shown to be upregulated in response to drought, cold, touch and high salt 

concentrations (Mizoguchi et.al. 1996). Furthermore, elicitors of plant defense reactions activate 

MAP Kinases in tobacco (Adam et.al. 1997, Lebrum-Garcia et.al. 1998). Also similar to 

mammalian MAPKs, there has been some, evidence for MAPK involvement in plant cell 

division (Nakashima et.al. 1998). 

Since auxin and cytokinin are two plant hormones able to stimulate plant cell division and 

differentiation, it has been suggested that MAPKs may play a role in their signal transduction 

(Mizoguchi et.al. 1994). However, as of yet, there is no conclusive evidence supporting this 

hypothesis. By studying the effect ofMAPKK's of both plant and animal origin in plant cells, 

we hope to establish a link between auxin signal transduction and the MAPK pathway. 
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Results 

Homology Between Plant and Animal MAPKKs 

Five MAPKK.s have been found in Arabidopsis thaliana, all sharing sequence homology (Fig 1 ). 

Of these five, AtMEKl and AtMEK2 share the most sequence homology with the two human 

MAPK Kinases, MEKl and MAPKK2, found to be involved in the MAP Kinase pathway for 

cell growth and differentiation (Table 1 ). 

T bl 1 E a e . xtent o fH omo oe:v Am A bd ong ra i ovsis an dH uman MAPKK s 
AtMEKl AtMAPKK2 AtMAPKK.3 AtMAPKK.4 AtMAPKK.5 

HsMEKl 38(56)% 39(56)% 35(53)% 34(51)% 34(52)% 

HsMAPKK2 37(56)% 37(56)% 35(53)% 34(50)% 32(49)% 

Note - Number outside the bracket represents percent identity of amino acids, number inside the 
bracket represents percent similarity of the two protein sequences. 

Furthermore, AtMEKl is the only known MAPKK in Arabidopsis thaliana to contain two 

complementary serine residues, (S220:S224), to residues S218 and S222 in HsMEKl that are 

phosphorylated upon activation (Fig 2). Therefore, it is likely that AtMEKl is the plant version 

ofHsMEKl, and is therefore the best candidate for growth and differentiation related auxin 

signal transduction pathway. 

Effect of Constitutively Active HsMEKl in Tobacco Cells 

Since mammalian MEKl is known to be involved in the proliferation and differentiation of 

animal cells (reviewed by Marshall 1995), and shares a high sequence homology to some plant 

MAPKK.s, (Table 1 and Fig 2), mammalian MEKl was used to study hormone signaling and the 

MAPK pathway in plants. Two versions of human HsMEKl were obtained from Natalie Ahn's 

lab (Mansour et.al. 1994). The constitutively active form, HsMEKl + (S2 l 8E:S222D), is 85 

times more active than the original protein (Mansour et.al. 1994). The inactive form ofMEKl, 



HsMEKl- (K97M), was mutated at its ATP-binding site. This mutant can still interact with its 

upstream and downstream kinases, but it cannot activate MAPK. As a result, HsMEKl- is a 

dominant negative mutant. 
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In order to test the hypothesis that a MAPK pathway is involved in the regulation of cell 

proliferation and differentiation by plant hormones, HsMEKl + was over-expressed in tobacco 

cells. Two days after HsMEKl was introduced into tobacco cells through Agrobacterium­

mediated transformation, the transformed cells and non-transformed cells were placed in medium 

with or without naphthalene acetic acid (NAA: synthetic auxin) or benzel amino purine (BAP: a 

synthetic cytokinin). Transformed and control cells produced microcalli after one week of 

growth in medium containing both hormones, indicating that cell division was occurring. 

However, in non-hormone medium, transformed cells began to form microcalli after one month, 

whereas control cells were dead by that time. The activated HsMEKl turned on the proper 

hormone- signaling pathway in order to allow for cell growth and division in the absence of 

hormone. These results give evidence to the hypothesis that MAPKs are involved in hormone 

signal transduction. 

Effects of Constitutively Active HsMEKl on Transgenic Tobacco Plants 

To further test our hypothesis, transgenic tobacco plants containing HsMEKl + were made 

through Agrobacterium-mediated transformation. Five different kanamycin-resistant HsMEKl + 

lines were obtained, each with a different level of expression of the mutant protein. The first 

generation plants were fertile, and did not display any unusual overall phenotypes. However, 

two of the lines recovered did display shorter roots than wild-type plants. At high 
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concentrations, auxin inhibits root elongation, and so these plants may have an over-sensitivity to 

auxin hormone. These two lines were used for further study. 

The sensitivity of the transgenic plants to hormones was then tested. Tl and wild-type seeds 

were germinated in media containing various concentrations of auxin and cytokinin. The 

differences between wild-type and transgenic seedlings were most dramatic when the seeds were 

germinated in the dark in the presence of cytokinin. While wild-type seedlings had long roots, 

the HsMEKl + transformants had short roots in 1 uM cytokinin. At higher concentrations of 

cytokinin, (5uM), roots of transgenic seedlings turned into calli, and differentiated into shoots 

after being exposed to light. The formation of calli from the transgenic seedlings in the absence 

of auxin suggests that cells expressing HsMEKl + had a higher sensitivity to auxin, since callus­

formation in wild-type tobacco normally requires both auxin and cytokinin. 

The capacity for cell division in the transgenic plants was monitored in order to further 

determine auxin sensitivity. Protoplasts were isolated from the leaves of Tl and wild-type 

tobacco plants. Within five days of protoplast isolation, both wild-type and transgenic 

protoplasts began to divide in the presence of both auxin and cytokinin. In the absence of both 

hormones, wild-type cells quickly died while HsMEKl + cells still appeared healthy after one 

week. In the presence of cytokinin alone, HsMEKl + transgenic cells were able to divide while 

wild-type cells were not. These results give additional evidence to the theory that the HsMEKl + 

mutation leads to an increased sensitivity to auxin. 
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Effects ofHsMEKl- on Transgenic Tobacco Plants 

Using Agrobacterium-mediated transformation, transgenic tobacco plants over-expressing 

HsMEKl- were made. High levels of this protein were thought to block components of the 

MAPK pathway. Several overt phenotypes were observed in the transgenic plants, including the 

inability to form roots but form multiple apical meristems, asymmetrical flower petals, reduced 

number of petals, underdeveloped anthers, filaments fused to petals, and anther to petal 

transformation. Similar phenotypes have been previously reported in plants with increased 

cytokinin production, or in the presence oflarge quantities of exogenous cytokinin (Estruch et.al. 

1993). In plants, auxin and cytokinin act as antagonistic hormones whose balance relative to the 

other is crucial for the proper effects of each. Since the HsMEKl- transgenic plants have a 

dominant-negative form of a MAPK, any pathway with MEKl as one of its constituents will at 

least be partially blocked. Therefore, these HsMEKl- transgenic plants appear to have a 

decreased sensitivity to auxin due to a block in auxin signaling pathway by the mutant kinase. 

This would bias the perception of the two hormones in favor of cytokinin, resulting in the 

cytokinin-oversensitive phenotype observed. 

Activation of Auxin-Inducible Promoter in Transgenic Protoplasts Expressing HsMEKl + 

Protoplasts were isolated from HsMEKl + and wild-type tobacco plants and then transfected with 

a GH3-GFP construct (Kavtlm et.al. 1988). GH3 is an auxin-inducible promoter (Hagen et.al. 

1991), while GFP is Green Fluorescence Protein. At a concentration of 0.1 uM NAA, HsMEKl + 

cells exhibited strong expression of GFP, while cells without the HsMEKl + did not (Fig 3). 

These results indicate that HsMEKl + increased the sensitivity of cells to auxin by activating the 



auxin signal transduction pathway, thereby activating the auxin-inducible promoter driving GFP 

express10n. 

Effect of AtMEKl + on Transgenic Tobacco and Arabidopsis thaliana Plants 

As with HsMEKl, two mutants of AtMEKl were created, one constitutively active, AtMEKl + 

(S220E:S224D), and the other dominant-negative inactive, AtMEKl- (S220A:S224A). Using 

Agrobacterium-mediated transformation, AtMEKl + transgenic tobacco and Arabidopsis 

thaliana plants were made. These plants have not yet matured, and so determining phenotypic 

abnormalities is not yet possible. We expect to see similar results to the experiments done using 

HsMEKl +, which includes transgenic plants with shorter roots, and the formation of calli in the 

absence of auxin from seedlings germinated in the dark at high cytokinin concentrations. We 

will test the sensitivity of these AtMEKl + transformed cells to auxin using the GH3-GFP 

construct. 

Effect of AtMEKl- on Transgenic Tobacco and Arabidopsis thaliana Plants 

Using Agrobacterium-mediated transformation, AtMEKl- transgenic tobacco and Arabidopsis 

thaliana plants were made. These plants have also not yet matured, and so identifying aberrant 

phenotypes is still not possible. Again, we expect to find similar results to the experiments done 

using HsMEKl-, which includes transgenic plants with various phenotypic abnormalities 

characteristic of high cytokinin conditions. 

8 
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Determination of the MAPK activated by AtMEKl 

In order to characterize further the action of AtMEKl, we are in the process of attempting to 

determine which MAPK is activated by AtMEKl. In Arabidopsis thaliana, there are at least 

nine genes that encode MAPKs (Mizoguchi et.al. 1993, Mizoguchi et.al. 1997). Six of these, 

MAPK2- 7, were placed under the control of a constitutive promoter, and tagged with 

hemagglutanin. Tobacco protoplasts were isolated and transfected with AtMEKl + as well as 

one of the MAPKs obtained from Arabidopsis thaliana. Transfected protoplasts were allowed to 

sit for 12 hours, at which time protein extracts were obtained. Western immunoblotting was then 

performed using an antibody raised against the HA tag, to check for the expression of the 

proteins, and anti-activated-MAPK-Ab, to determine the activation state of the MAPKs. We 

have determined that the MAPK's can be expressed in the protoplasts, and we are still trying to 

determine the extent of AtMEKl + expression. If one of the MAPKs used in the experiments is a 

substrate for AtMEKl, we expect to see a significant increase in its activation-state in the 

presence of AtMEKl +. The determination of this MAPK is important because, if the prior 

experiments are succesful, it is likely to be involved in the gene-activation terminating the auxin­

signaling pathway. 

Future Experiments 

There are many other experiments that need to be performed in order to determine the 

connection between AtMEKl and hormone signal transduction more clearly. Since auxin and 

cytokinin exhibit a characteristic dependence on each other, and seem to work antagonistically, it 

is likely that the signaling pathways of the two hormones share a great deal of interaction. It was 

shown that HsMEKl + transgenic tobacco cells could still grow in the absence of hormones. 
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Both auxin and cytokinin are necessary for growth. Therefore, HsMEKl + cells were able to 

compensate for the lack of auxin and cytokinin, which suggests that this MAPKK is involved in 

both auxin and cytokinin signal transduction. Therefore, it is important to try classify the role of 

AtMEKl in cytokinin signal transduction. 

In addition, different transgenic lines of tobacco and Arabidopsis thaliana express different 

amount of mutant protein. Depending on the amount of protein being expressed, different 

transgenic plants may have different phenotypes. Therefore, it is important to classify the 

phenotypes with the amount of protein being expressed. 



Methods 

Mutants of AtMEKl 

AtMEKl has been previously cloned and the sequence deposited into GenBank (Morris et.al. 

1997, Acession # - AAB97145). The primers used to clone AtMEKl were as follows: 

5'-CCA Gee ATG gAC AGA GGA AGC TTA TG-3' 

5'-Gag gee tGT TAG CAA GTG GGG GAA TC-3' 

11 

Lower case letters indicate regions where mutations were introduced in order to establish 

restriction sites to facilitate later genetic manipulation. An Ncol site (CCATGG) was introduced 

in the beginning of the gene, and a Stul site (AGGCCT) was established at the end of the gene. 

Using PCR-mediated site directed mutagenesis, AtMEKl + (S220E:S224D) and AtMEKl-

(S220A:S224A) were made. The overlapping primers used to incorporate the proper mutations 

were as follows: 

S220E-S224D primers: 

5' -ATG TGC CCA CGA AAt cAT TAG CAA Get cAC TTG TGC TTG 

5' -GAC AAG CAC AAG Tga gCT TGC TAA Tga TTT CGT GGG CAC 

S220A-S224A primers: 

5' -ATG TGC CCA CGA AAg cAT TAG CAA GAg eAC TTG TGC TTG 

5 '-GAC AAG CAC AAG Tgc TCT TGC TAA Tgc TTT CGT GGG CAC 

(Lower case letters indicate regions where mutations were introduced) 

Results were sent to a sequencing facility for verification of proper mutations. 

Transgenic Plants 

TC-3' 

AT-3' 

TC-3' 

AT-3' 

A Construct including 35SC4PPDK promoter (Sheen 1993, EMBO-12), HA-tagged mutant 

MEKl, and nos terminator was inserted into the pART27 binary vector (Gleave 1992). The 



resulting plasmid was introduced into Agrobacterium tumefaciens EHAl 05 through 

electroporation. In tobacco, Nicotiana tabacum SRl leaves were transformed (Chiu 1996), and 

kanamycin-resistant plants were selected. Agrobacterium-mediated transformation of 

Arabidopdis thaliana was performed using the floral dip method (Clough and Bent 1998). 

Protoplast Transient Expression 

12 

Healthy and expanded tobacco SRl leaves were cut to about 2cm2 and digested in an enzyme 

solution consisting of 1.2% Cellulase RlO and 0.4% Macerozyme RlO in K3 medium, (Nagy 

1976), with 0.4M sucrose. Cells were left overnight in the dark at 23°C. Floating protoplasts 

were selected. Plasmid DNA was added (1 0ug) to 0.25ml of freshly isolated tobacco protoplast 

cells (106 mr 1
) in 0.4M mannitol, 20mM CaCh, 5mM MES, pH 5.7. An equal volume of 40% 

PEG in 0.4M mannitol and lO0uM Ca(NO3) 2 (brought to pH 10 using KOH before autoclaving) 

was added immediately, mexed well and incubated for 10 minutes at room temperature. The mix 

was diluted with 4ml ofK3 medium containing 0.3M sucrose. The transfected protoplasts were 

incubated in the dark for 20-24 hours before being photographed. 
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Alignment 

AtMEKl 
AtMAPKK2 
AtMAPKK3 
AtMAPKK4 
AtMAPKK5 

AtMEKl 
AtMAPKK2 
AtMAPKK3 
AtMAPKK4 
AtMAPKK5 

AtMEKl 
AtMAPKK2 
AtMAPKK3 
AtMAPKK4 
AtMAPKK5 

AtMEKl 
AtMAPKK2 
AtMAPKK3 
AtMAPKK4 
AtMAPKK5 

AtMEKl 
AtMAPKK2 
AtMAPKK3 
AtMAPKK4 
AtMAPKK5 

f,~"'41 

l
nrgslcpnpiclppleqsiskfltqsgtfkdgdlrvnkdgiqtvslsepgapppiepld 
kkggfsnnlklaipvageqsitkfltqsgtfkdgdlrvnkdgvriisqlepevlspikp 
aaleelkkklsplfdaekgfsssssldpndsyllsdggtvnllsrsygvynfnelglqk 
rpiqsppgvsvpvksrprrrpdltlplpqrdvslavplplpptsggsggssgsapssgg 
kpiqspsgvaspmknrlrkrpdlslplphrdvalavplplpppsssssapasssaistn 

nql---------------SLADLEVIK II SGINLV I KLTQQF. LNTEE 
addql-------------SLSDLDMVK SSG LV KWTGQF LNIDE 
ctsshvde essettyqcASHEMRVFG S SSV QRAI IPNHRIL NIFERE 
sasstntn l sieak----NYSDLVRGN S GGT YKVI RPSSRL YGNHEE 
isaak-------------SLSELERVN S GGT YKVI TPTSRP YGNHED 

STCRAISQELRINLSSQCPYI . SIC I Y-- . LVSI AIRKAIAQELKINQSSQCPNL TS QS Y-- ISL 
KRQQLLTEIRTLCEAPCHEGL D G Ysp ISI 
TVRRQICREIEILRDVNHPN C D-- EIQV 
TVRRQICREIEILRSVDHPNV KC D D--H EIQV 

LI::: t<-'1 I , 1._:; ~--, L 
LF.Y'•,~=I 1~; .. ·1. 

• LF'.i'!"·I:i ,:~;.:;! 
1,r,:!7;,1;, ~:~::;;, 
I,LFMi •e c::'.L 

adllkkvgkvpe 
adflksvkaipd 
adilkvtkkipe 
egahvwkeqqla 
egahiwqeqela 

nmlsaickrvl l cl iHI II L• HRGE sylsaifrqvl i lH D II L S HRGE 
pvlsslfhkll s lH L I LKGEP 
dlsrqilsglay-----L S I I S SAKN 
dlsrqilsglay-----L I I S SAKN 

• ILTSTSSLAN 
TVMTNTAGLAN 

GLENSMAMCA 
RILAQTMDPCN 

ILAQTMDPCN 

~ •• S-----GSLYS-----NK .S 
T YN -----GNKYG-----NKS 
T T R-----NDSYS-----YP 
SS I tdlnqGKYDG-----YA 
SS I -----TDLNHgrydgYA 

LVL, CAT. PP.Ehkkg LVVL CAT PPNqeet 
LAL CGT E IANEgpvn 

SIL FYL PVSRqgdw 
SIL FYL vsrqgdw 

60 
60 
60 
60 
60 

105 
107 
120 
116 
107 

163 
165 
180 
174 
165 

223 
225 
240 
229 
220 

273 
275 
290 
284 
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AtMAPKK3 
AtMAPKK4 
AtMAPKK5 
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AtMAPKK2 
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AtMAPKK4 
AtMAPKK5 

AtMEKl 
AtMAPKK2 
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ntgsteifsalsdirntltgdlpseklvhvveklhckpcgsggviiravgsfivgnqfli 

cgdgvqaeglpsfkdlgfdvasrrvgrfqeqfvvesgdligkyflakqelyitnld 

333 
335 
344 
339 
330 

354 
363 
404 
366 
348 

354 
363 
464 
366 
348 

354 
363 
520 
366 
348 



atmek-vs.-hsmek's 

Alignment fr~tlfC. 3. 

AtMEKl t rgslc t piclp l leqsiskfltqsgtfkdgdlrvnkdgiqtvslsepg t ppiepld 60 

HsMEKl kkkpt iqlnpa dgsavngtssaetnlealqkkleeleldeqqrkrle fltqkqkv 60 

AtMEKl n~sli~ KVI~ SnQu LTQQF~~*TEESTCR~S~RINLS 120 

HsMEKl ge kd SEL G F S PSGLV L EIKPAIRN I QVLHE 120 

AtMEKl 
SQCI LI S*SS1I I ~~ oarz1 sAICK1 L~i I 

180 

HsMEKl 180 CNS I G G S EI C H OQ RI I GKVSI I TL 

AtMEKl HHER_. ... IT-J tstnlll•ri s 240 

HsMEKl REKH I S I LC g i-- S L T 238 

AtMEKl ~S~1~~S~i:1~;;~;~~;~;;~~~~~~~~~;~~~; 
275 

HsMEKl 298 

AtMEKl ----------SVsn ENas~• Ci S~,ii sfot1 325 

HsMEKl sygmdsrppmAI NE L G L Q N LI E DL 358 

AtMEKl U FEDSDTNLSAYFTDAG*~ lan-- - --- 354 
HsMEKl SDAEEVDFAGWLCSTI stpthaagv 393 



Figure 1. Homology Among Arabidopsis MAPKKs. 
Protein sequences similarity of the five known Arabidopsis thaliana 
MAPKKs was determined using the program MACAW obtained from the 
NIH homepage (ftp://ncbi.nlm.nih.gov/pub/macaw/). Blue asterisks were 
placed above the two serines that are phosphorylated on AtMEKl. 

Figure 2. Homology of AtMEKl with HsMEKl. 
Protein sequence similarity of Arabidopsis thaliana MEKI and Human 
MEKI was determined using the program MACAW obtained from the NIH 
homepage (ftp://ncbi.nlm.nih.gov/pub/macaw/). Blue asterisks were placed 
above the two serines that are phosphorylated on the two proteins. 



Figure 3. Activation of the Auxin-Inducible Promoter GH3 in 
HsMEKl + Cells 

Fig 3. Txpression ofGH3/GFP in protoplasts from a Hs MEKI+ transgenic plant (A) or 
a wild-type plant (B). Pictures were taken 12 hours after induction by O.lu.M NAA. 
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