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Abstract 

The effects of epidermal growth factor (EGF) on proteins that have been implicated in the 

migration of the Grade IV brain tumor, glioblastoma multiforme, were investigated in this study. 

Differential expression levels of TIMP-2, MMP-2, and MTl-MMP in response to EGF treatment 

were compared by immunoprecipitation, and immunoblotting. This study involved two different 

cultured glioma cell lines, U87, which expresses wild-type p53, and T98, which has a mutation 

in the p53 gene, in order to determine if the status of the p53 tumor suppression gene is a factor 

in the regulation of proteins involved in this migration pathway. It was determined that the only 

response of mutant cells to EGF treatment was the putative upregulation of the level of TIMP-2 

protein. Treatment of the U87 cells resulted in increased phosphorylation of MTl-MMP. It was 

believed that phosphorylation of MTl-MMP correlated with activity and ability to cleave the 

proenzyme of MMP-2, however, the level of MMP-2 activity actually decreased. These data 

highlight the complex interaction of p53 status and protein expression and activation that 

corresponds to the ability of tumor cells to migrate. 
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Introduction 
Glioblastoma multiforme (GBM) is a Grade IV invasive astrocytoma that is among the 

most aggressive brain tumors. It originates from astrocytes, a type of glial cell normally 

responsible for support and environmental regulation of neuronal cells. When these cells enter 

the cancer pathway, large tumors can amass within matter of months and typically kill patients 

within a year. Between 20,000 and 25,000 cases of glioblastoma, nearly 65% of all malignant 

adult brain tumors, are diagnosed yearly (Goldman et al., 1993; Furata et al., 2004). 

Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) can show the 

location and relative size of tumors but cannot precisely determine the definitive boundary 

between tumor and healthy tissue (Black and Ciacci, 1993). Consequently the indistinct 

boundary makes complete surgical resection of the tumor with limited damage of healthy tissue 

very difficult. Indeed, nearly 80% of tumor surgeries that initially indicate no post-operative 

gliomas eventually recur within 2 cm of the resection boundary (Black and Ciacci, 1993). Due 

to the high rate of tumor recurrence, patients with GBM often undergo multimodal treatment 

regimens including chemotheraphy and radiotherapy (Nagane et al., 1998). Even combined, 

however, current methods of treatment remain ineffectual at improving the prognosis of GBM 

patients. 

Although the precise cause of transformation of healthy glial cells into gliomas remains 

under investigation, the p53 tumor suppressor gene has been implicated as an important player in 

tumor progression (Ueba et al., 1994). The p53 gene codes for a nuclear phosphoprotein 

composed of a (3-sandwich, which provides structural support for two large loops and a loop-

sheet-helix motif (Cho et al., 1994). These structures form the DNA binding domain that is 

critical to normal p53 function because DNA binding is the means by which p53 regulates the 

expression of other genes that induce cell cycle arrest or apoptosis (Frebourg and Friend, 1992; 
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Cho et al., 1994). In order to insure proper function in these important pathways, p53 binds to 

DNA in a tetrameric conformation that bends the DNA to enforce promoter sequence specificity 

and proper transcription of genes involved in downstream pathways (Nagaich et al., 1999). 

Approximately 1,000 mutations in the p53 gene sequence have been identified, that 

typically but do not exclusively affect the DNA binding domain of p53 (Nagaich et al., 1999). 

While mutation is neither necessary nor sufficient to induce tumorigenesis, mutations in the p53 

tumor suppressor gene have been identified in upwards of 30% of malignant gliomas (Ueba et 

al., 1994; Van Meir, 1994). Furthermore, experimental evidence suggests that silencing of p53 

by proteins like MDM2 or loss of functional downstream effectors in wild-type p53 tumors may 

simulate the loss of p53 function without the need for sequence variation. Indeed, mice that do 

not express any p53 are highly prone to de nova tumorigenesis and transfection of these mice 

with mutant variants of p53 further enhances tumor potential (Levine et al., 1991; Cho et al, 

1994). In vitro and in vivo studies indicating that the transformed phenotype in mutant p53 cells 

can be recovered by suppression of mutant p53 expression also suggest that mutations in p53 

confer tumorigenic potential (Levine, 1991; Li et al., 1999). Recent trials of p53 gene therapy 

are taking advantage of the ability of wild-type p53 to suppress tumors and revert cells from the 

transformed phenotype (Lang et al., 2003). This approach of treating GBM patients appears 

promising. 

In addition to induction of apoptosis and repression of angiogenesis, p53 may also play a 

role in the progression of glioblastoma via a pathway that involves enzymes that excavate the 

extracellular matrix (ECM) to facilitate cell migration. Matrix metalloproteinases (MMPs) are 

one such family of twenty-eight zinc-dependent enzymes that degrade the ECM in numerous 

developmental and physiological pathways and may be exploited for tumorigenesis (Somerville 
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et al., 2003). MMPs are secreted as inactive zymogens subject to highly regulated cleavage 

reactions in order to control their activity and may be either soluble or membrane bound. 

(Somerville et al., 2003) One of the MMPs studied here, Membrane Type-l(MTl-MMP), is an 

integral protein that is activated by furin and is necessary for activation of MMP-2/pro

gelatinaseA (Somerville et al., 2003). The MTl-MMP-dependent activation of MMP-2 is 

mediated by tissue inhibitor of metalloproteinase-2 (TIMP-2) (Bernardo and Fridman, 2003). 

TIMP-2 mediates the interaction between MTl-MMP and MMP-2 by forming non-covalent 

bonds with each MMP at two different binding sites. The N-terminus domain of TIMP-2 

complexes with the extracellular N-terminus of MTl-MMP simultaneously as the C-terminus of 

TIMP-2 associates with a haemopexin-like domain of pro-MMP-2 (Bernardo and Fridman, 

2003). A second MTl-MMP protein unbound to TIMP-2 is then recruited to the complex to 

cleave and activate the bound MMP-2. Additionally, the N-terminal inhibitory region may bind 

to the active sites of either MTl-MMP or MMP-2 and inhibit their activity (Kurschat et al., 

1999). Clearly, TIMP-2 is a key regulatory molecule in both the activation and inhibition of 

MMP-2; however, the implication of this role in the cancer pathway has not been fully 

determined. 

The regulation of MTl-MMP and subsequent MMP-2 activation in murine lung 

development was found to involve Epidermal Growth Factor Receptor (EGFR). EGFR is a 

transmembrane tyrosine kinase receptor that dimerizes and becomes phosphorylated on a 

tyrosine residue upon ligand binding (Kheradmand et al., 2001; Yen et al., 2002). This 

phosphorylation is necessary to phosphorylate effecter proteins or secondary messengers to 

conduct external signals to the cellular machinery, particularly in pathways involving 

tumorigensis (Connolly et al., 1994. Yen et al., 2002). Its ligands include EGF, a mitogen, 
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VEGF, a factor that induces angiogenesis, transforming growth factor-beta, heparin-binding 

EGF-like growth factor (HB-EGF), amphiregulin, betacellulin, and epiregulin (Goldman et al., 

1993). 

Many experiments have been performed to determine the cellular role of EGFR and show 

the varied and complex function of this protein. In humans, EGFR has been implicated in 

positive regulation of angiogenesis, apoptotic evasion, and drug resistance (Nagane et al., 1998; 

Yen et al., 2002). Experiments using animal models have also demonstrated the role of EGFR 

during development and other physiological processes. For example, the effects of EGFR 

inhibition in rat corneal healing indicates that EGFR plays a crucial role in the promotion of 

wound healing by epithelial cell proliferation (Nakamura et al., 2001). The high cross-species 

conservation and widespread expression of EGFR suggests that EGFR may also positively 

regulate cellular proliferation in several areas of human physiology, such as the highly 

proliferative gliomal cells. Furthermore, EGFR has also been implicated in upstream regulation 

of cellular migration in vivo because inhibition of EGFR or dominant negative mutations of 

EGFR resulted in the loss of migration during embryogenesis (Duchek and Rorth, 2001). This 

study proposes that EGFR may also play a role in the migration of other cells, possibly tumor 

cells. Although the specific downstream components of the migratory pathway have not been 

determined, experimental evidence suggests that EGFR regulates pathways believed to promote 

migration via MMP-2 activation (Kheramand et al., 2002). 
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Figure 1: Proposed signal transduction pathway for MMP-2 activation and ECM degradation mediated by 
EGFR, MTl-MMP, and TIMP-2. 

Microarray analysis of gene expression in several individual tumors indicates 

amplification of the EGFR gene (Liang et al., 2005). Immunoblotting and RNA hybridizations 

correlate EGFR gene amplification with over-expression of the receptor protein (Wong et al., 

2005). Both gene amplification and receptor overexpression are characteristics of one-third of 

primary glioblastomas (Furata et al., 1994). Tissue analysis of these tumors indicate 50%-70% 

more expression of EGF-receptors on the cell surface in conjunction with an eight-fold increase 

in gene amplification compared to normal cells (Sung et al., 2000; Shir et al., 2006). This 

upregulation in cancer cells, which is absent in normal cells, suggests that EGFR upregulation 

may be involved in the cancer pathway. Cox survival statistics correlate EGFR upregulation 

with a peak on the index indicative of poor prognosis and low patient survival (Liang et al., 

2005). Consequently, the role of differential EGFR expression in cancer is currently under 

investigation. Such studies selectively target gene therapy by targeting cells that overexpress 

EGFR with dsRNA or EGFR specific antibodies to induce apoptosis and reduce tumor growth 

(Shir et al, 2006). 

The objective of this experiment was to determine what effect EGF has on the proteins of 

interest. MTI-MMP, TIMP-2, and MMP-2 were immunoprecipitated from two cultured 
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glioblastoma cell lines and immunoblotted to determine if EGF treatment affected the relative 

amounts of protein, phosphorylation of tyrosine residues in MTl-MMP, or the activation state of 

MMP-2. 

Furthermore, this study took advantage of the availability of p53 mutant and wild-type 

cultured glioblastoma tumor cell lines, T98 and U87 respectively, to examine the role of p53 in 

gliomal proliferation. Experimentation with the U87 and T98 cell lines provides the opportunity 

to study how p53 affects the cellular response of glioblastoma to EGF treatment. Clinical studies 

of glioblastoma indicate that >95% of pediatric astrocytomas and between 35 and 60% of adult 

gliomas involve the inactivation of the p53 tumor suppressor pathway, rather than the 

Rb/CDK4/p16 tumor suppressor pathway (Sung et al., 2000; Kanzawa et al., 2003). Studying 

both of these GBM cell lines is particularly pertinent due to previous research that indicates that 

many glioblastoma tumors are composed of a combination of both wild-type cells and p53 

mutant cells (Kanzawa et al., 2003). 

Materials and Methods 
Cell Treatment: 

T25 flask cultures of U87MG or T98G cells were treated at 90% confluency with 20ng or 

80ng EGF (Oncogene, cat# PFO 11) in 5mL of media. An additional T25 flask was reserved 

without EGF treatment to serve as a control. Sterile Phosphate Buffered Saline (PBS; 137mM 

NaCl, 2.7mM KCI, 1.5mM KH2PO, 48.lmM Na2HP04) and Dulbecco's Modified Eagle 

Medium (DMEM) without FBS (Fetal Bovine Serum) were heated in a 37°C water bath. Cells 

were rinsed with 6mL of PBS three times and the conditioned media was replaced with 5mL of 

fresh DMEM without FBS. The specified EGF treatments were added to the flasks and the cells 



Lint 9 

were incubated at 37 °C for at least 36 hours and up to 48 hours, with exact time being dependent 

on scheduling conflicts. 

Harvesting Cells and Conditioned Media: 

The conditioned media was reserved for further testing before the cells were rinsed with 

sterile PBS three times and drained. Cells were rocked on ir.P. fnr 1 hour in 2mL Proteinase 

Inhibitor Solution (PIS; 50mM n-octyl, lug/mL Aprotinin, lmM PMSF, 0.5mg/mL Pepstatin A, 

lmM CaCh, lmM MgCh, lmg/mL Leupeptin). The bottoms of the flasks were scraped to 

ensure a complete harvest of the cells. The cell lysate solution was transferred to l.5mL 

eppendorf tubes and centrifuged at 14,000 rpm, 4°C for 15 minutes. The supernatant was 

collected for use in immunoprecipitation as cellular lysates. 

Immunoprecipitation: 

Fresh PIS (1.5mL) was added to 150uL of Protein Agarose A (Calbiochem, cat# IP06) 

and centrifuged for one minute to wash the agarose beads. Supernatant was removed and 

replaced with 200uL of fresh PIS. Either 200uL conditioned media or lOOuL of cellular lysate 

was combined with 30uL of washed Protein Agarose A in a microcentrifuge tube and nutated for 

2 hours at 4°C. After nutation, samples were centrifuged at 14,000 RPM at 4 °C for 15 minutes 

and treated with the appropriate antibody. For samples originating from conditioned media 2ug 

of TIMP-2 mouse antibody (Chemicon International, cat# MAB13441) were added to 150uL of 

precleared conditioned media supernatant. The remaining 50uL of precleared conditioned media 

was preserved at-20°C. Samples from cellular lysates were treated with 6ug of MTl-MMP 

rabbit antibody (Chemicon, cat# AB815). All samples were nutated at 4°C overnight. 

Fresh PIS was prepared to wash fresh Protein Agarose A. Microcentrifuge tubes used in 

immunoprecipitation of TIMP-2 and MTl-MMP were treated with 30uL of washed Agarose and 
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nutated at room temperature for 2 hours. Samples were centrifuged at 14,000 RPM at 4 °C for 15 

minutes. Supernatant was replaced with lmL of IP Wash Solution (20mL stock solution [0.5M 

NaCl, 50mM Tris-HCI, pH 7.4] and lOOuL of Tween-20). Tubes were centrifuged at 10,000 

RPM at 4 °C for 5 minutes and supernatant was removed with a vacuum aspirator. IP wash 

solution was added to the pellet and centrifuged for a total of six washes. 

Bradford Assay: 

The Bradford Assay was performed on precleared lysate in order to estimate the total 

protein concentration in the samples for adequate and equal loading into the SDS gel. In 

cuvettes, 3mL of the Coomassie Protein Assay Reagent (Pierce, cat# 1856209) was combined 

with 75uL of precleared lysate and 25uL superwater and incubated at room temperature for 10 

minutes. A spectrophotometer was used to measure the absorbance of each sample at 595nm. 

Absorbance values were correlated to protein concentration by a standard curve determined for 

known concentrations of BSA. (Figure 2) 

Bradford Assay Standard Curve 
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Figure 2: Bradford Assay Standard Curve. The mathematical relationship between the absorbance value of a 
sample at 595nm and the total protein content has been determined for several different known concentrations of 
BSA protein (Pierce). When plotted on an axes, the curve provides means of estimating the protein concentration of 
unknown samples. 
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SDS-PAGE: 

Each washed IP pellet was treated with 40uL of 2X NuPage LDS Sample Buffer 

(Invitrogen, cat# NP0007) and incubated at 90°C for 5 minutes then centrifuged for 2 minutes. 

The appropriate volume of the supernatant from the IP pellet or samples of precleared lysates 

with 2mg of protein was combined with 1.3uL of NuPage Reducing Agent (lnvitrogen NP0004 ), 

3uL of 2X NuPage LDS Sample Buffer, and superwater to a total volume of 20ul. A molecular 

standard was prepared with lOuL of SeeBiue Plus2 (lnvitrogen, cat#LC5925), 9ul superwater, 

3uL of 4X NuPage LDS Sample Buffer, and 1.3uL of NuPage Reducing Agent. All samples and 

standards were incubated at 70°C for 10 minutes and loaded into NuPage polyacrylamide gel 

(lnvitrogen, cat# NP0321BOX). The running buffer used in the outer chamber was lX NuPage 

MES SDS Running Buffer (lnvitrogen, cat# NP0002) and the running buffer in the inner 

chamber included 5mL NuPage sample antioxidant (lnvitrogen, cat# NP0005) combined with 

200mL lX running buffer (lnvitrogen, cat# NP0002). Gel was run at 200volts for 35 minutes or 

until bands were adequately separated. Proteins were then transferred to nitrocellulose 

membrane (Bio-Rad, cat# 162-0115) in transfer buffer (IL IX NuPage Transfer Buffer 

[lnvitrogen, cat# NP0006-1], lmL NuPage sample antioxidant [lnvitrogen, NP0005], and lOOmL 

10% methanol per gel) for 1 hour at 30 volts. 

Western and ECL: 

Nitrocellulose membranes were rolled in lOmL blocking solution (0.3g powdered milk in 

lOmL lX Tris Buffered Saline [TBS: 1.54M NaCl and O.lOM Tris-HCI, pH 7.4]) for 1 hour then 

lOmL lX TBS for 10 minutes. An additional 0.2g powdered milk was added to the phospho

tyrosine blots to reduce background on the blots. Blots were then rolled in lX TBST (99.8mL 

lx TBS, 0.2g milk powder (0.2% ), and 200µ.l Tween-20) and the appropriate dilution of primary 
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rabbit antibodies for one hour (TIMP-2, MTI-MMP, pro-MMP-2 [Chemicon, cat# AB809], and 

MMP-2 [Chemicon, cat# AB808], I:5000; phospho-tyrosine [Chemicon, cat# ABI599I] :8000). 

All blots were washed 3 times with lOuL of TBST for IO minutes then rolled in TBST with a 

I:5000 concentration of secondary goat-anti-rabbit antibodies for one hour (Santa Cruz, cat# SC-

2004). Unbound secondary antibodies were rinsed from the blot with four five-minute wash 

cycles in IOuL of TBST. Blots were immediately treated with 3.5 mL of both ECL 

Immunoblotting Detection Reagents (Amersham Biosciences, cat#RPN2209) for one minute. 

Blots were then exposed to Kodak X-OMAT AR Film (Kodak, cat#I65-I496) and automatically 

developed in order to observed relative amounts of protein. Densitometry was performed on the 

resulting bands with Adobe Photoshop in order to quantify the relative levels of protein. 

Zymography: 

Samples were prepared to observed MMP-2 activity by combining I2 uL of conditioned 

media with I2 uL of 2X Tris-Glycine Sample Buffer (lnvitrogen, cat# LC2676). A zymography 

Standard was prepared with IuL of stock standard (O.I mg/mL, Chemicon, cat# CC073) and 

99uL 2X Tris-Glycine Sample Buffer. Samples and standard were incubated at room temperature 

for IO minutes loaded into Tris-Gly Zymography Gel (Invitrogen, cat# EC6I75BOX). Gel was 

run for 90 minutes at I20 volts in IX Novex TrisGlys SDS Running Buffer (lnvitrogen, cat# 

LC2675-5). The gel was removed from the plastic casing and treated with IX Novex 

Zymogram Renaturing Buffer (lnvitrogen, cat# LC2670) and IX Novex Zymogram Developing 

Buffer(lnvitrogen, cat# LC267I), each for 30 minutes with agitation. Gel was incubated at 37°C 

overnight, stained with 0.5% Coomassie blue for an hour with agitation. It was destained (10% 

isopropanol, 10% HO Ac, 80% superwater) for 3 hours with agitation then transferred to 

superwater. 
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Results 

The effects of EGF treatment on the relative amount of TIMP-2 protein in U87 and T98 

glioma cell lines 

Previous research in this lab suggested a positive correlation between the amount of 

TIMP-2 protein and the concentration of EGF treatment in the U87 cell line. However, this data 

was refuted by more recent data with U87 that suggested the amount of TIMP-2 protein was 

unaffected by either 20ng or 80ng of EGF (Figure 3). Comparison of the intensity of the 24kDa 

bands between the control and the treatments of 20ng and 80ng yields no significant difference 

in the amount ofTIMP-2 across the different treatment regimens. 

U87 T98 

EGF treatment - +20ng +80ng - +20ng +80ng 

50kDa 

TIMP-2 (24kDa) 

Figure 3: Immunoblot of the relative amount of TIMP-2 protein in the conditioned media of U87 
and T98 cells following EGF treatments. U87 or T98 cells were treated with either 20ng or 80ng of EGF for 36 to 
48 hours. Conditioned media was harvested for immunoprecipitation and SDS-PAGE of TIMP-2 proteins. 
Immunoblotting and ECL indicated no response in the relative amount of TIMP-2 to EGF treatment in U87 cells 
treated with EGF; however, T98 cells treated with 20ng EGF suggests a positive response. An unidentified band 
that migrated at SOkDa co-immunoprecipitated with TIMP-2 reflects this trend. 

Experimentation with the T98 cell line suggests that a mutation in the p53 gene may be 

involved in the response of the levels of TIMP-2 protein expression (Figure 3). Treatment of 

T98 cells with 20ng of EGF resulted in a visible increase in the intensity of the bands at 24kDa 

representative of TIMP-2 when compared to the untreated sample. The positive response to 

EGF, however, was only observed in the +20ng samples, with the +80ng EGF eliciting no 
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response to EGF treatment. Another replication of this experiment did not indicate a difference 

in TIMP-2 levels across the treatments. 

Presently, there is not an adequate means of normalizing the protein in the conditioned 

media so it must be assumed that the total protein content of each sample was the same for the 

purpose of cross comparison. 

Additionally, there was an unidentifiable band migrating at -50kDa in both the U87 and 

T98 cell lines and may be an artifact of the heavy chain of the TIMP-2 antibody. 

U87 T98 

EGF Treatment - +20ng +80ng - +20ng +SOng 

MT1-MMP 

P-Tyr 

Figure 4: Immunoblot of the relative amount ofMTl-MMP protein and phosphorylated tyrosine residues of 
MTl-MMP in the cellular lysates of U87 and T98 cells following EGF treatments. U87 or T98 cells were 
treated with either 20ng or 80ng of EGF for 36 to 48 hours. Cellular lysates were harvested for immunoprecipitation 
and SDS-PAGE ofMTl-MMP protein. Immunoblotting and ECL indicated no response in the relative amount of 
MTl-MMP to EGF treatment in U87 cells. However, immunoblotting for phospho-tyrosine on MTl-MMP proteins 
in U87 cells treated with 80ng of EGF indicates a positive response. 

The effects of EGF treatment on the relative amount of TIMP-2 related proteins 

In addition to TIMP-2, the levels of proteins that interact with TIMP-2 and may play a 

role in the pathway were also analyzed. Immunoblotting was used to determine the relative 

amounts of MTl-MMP protein and phosphorylated tyrosine residues on MTl-MMP as well pro-

MMP-2 and active MMP-2 in response to EGF treatment. While analysis of the protein amounts 

of pro-MMP-2, active MMP-2, MTl-MMP protein and phosphorylated tyrosine residues on 

MTl-MMP in the T98 cells showed no significant response to either 20ng or 80ng of EGF 

treatment, EGF did elicit some response in the U87 cell line (Figures 4 and 5). A Bradford 

Assay performed to determine total protein in each sample of lysate blotted for MTl-MMP and 
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phospho-tyrosine indicated that samples contained very little overall protein. While normal 

amounts of protein are expected to have total protein concentrations of 0.054 ug/ul, the control, 

+20ng, and +80ng samples were estimated to contain 6.10x102 ug/ul, 3.21x102 ug/ul, and 

4.0lxl02 ug/ul, respectively (Table 1). Despite the significantly lower than average levels of total 

protein, the experiments are routinely performed with similar low protein concentrations with no 

apparent complications. 

Treatment 
Volume Absorbance Average Absorbance Protein Concentration 
Ass~d Values (595 nm) Values{595 nm) (~ul) 

OEGF 75ul 0.013 
0.015 0.0107 ug/ul 

75ul 0.016 
+20EGF 75ul 0.001 

0.003 0.0021 ug/ul 
75ul 0.005 

+SOEGF 75ul 0.006 
0.008 0.0057 ug/ul 

75ul 0.009 

Table 1: Total Protein concentration of cellular lysates as determined by Bradford Assay. The absorbance of 
samples at 595nm was measured after 75ul of preclear cell lysate and 3mL Coomassie Protein Assay Reagent were 
combined and incubated at room temperature for ten minutes. A standard curve was prepared using BSA and used 
to correlate observed absorbance values to protein concentration. Bradford data was used to normalize proteins in 
the gel blotted for MTl-MMP and phospho-tyrosine (Figure 3) to the maximum loadable amount for these samples, 
0.042ug. The Bradford assay could not be applied to the TIMP-2 or MMP-2 data (Figures 2 and 4) that was 
obtained from conditioned media, so lOuL of each sample was loaded into the gel. 

In the U87 cell line, the intensity of the 62 kDa bands immunoblotted for MTl-MMP 

showed no significant difference between either 20ng or 80ng EGF and the control treatment. 

However, samples blotted for phospho-tyrosine residues (P-Tyr) in U87 cells showed a marked 

increase in the amount of phosphorylated tyrosine residues on the MTl-MMP tail (62kDa) in the 

80ng EGF treatment when normalized to the total amount of MTl-MMP protein. The intensity 

of bands corresponding to phospho-tyrosine was unaltered by treatment with 20ng of EGF. 
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T98 

- +20ng +80ng 

Figure 5: Immunoblots of the relative amount ofpro-MMP-2 and active MMP-2 protein in the conditioned 
media of U87 and T98 cells following EGF treatments. U87 or T98 cells were treated with either 20ng or 80ng of 
EGF for 36 to 48 hours. Conditioned media was harvested for SDS-PAGE of pro-MMP-2 and active MMP-2 
proteins. Immunoblotting and ECL indicates no response in the relative amount of pro-MMP-2 to EGF treatment in 
the T98 cells treated with either 20ng or 80ng EGF. The T98 cells treated with EGF suggests a negative response of 
active MMP-2 relative to the proenzyme. 

Analysis of immunoblotting for active MMP-2 (72kDa) and pro-MMP-2 (66kDa) in 

U87s in response to the EGF treatments suggests that amount of active MMP-2 relative to pro-

MMP-2 decreased with both 20ng and 80ng treatments of EGF (Figure 5). However, 

zymography of conditioned media suggested that the activity of MMP-2 in the conditioned 

media did not change across treatments and MMP-2 was constitutively in the active form (data 

not shown). 

Discussion 

The effect of EGF on TIMP-2 expression 

The overexpression of EGF-receptors in tumor cells but not the surrounding healthy 

tissue reported in primary literature suggests that the addition of EGF to the media might play a 

role in initiating or exacerbating cancer pathways (Kanzawa et al., 2003). This experiment 

investigated the response of proteins implicated in glioblastoma tumor growth and invasion, 

specifically TIMP-2, to treatment with EGF. It was determined that although EGF treatment did 

not generate a difference between band intensity blotted for TIMP-2 in the U87 cell line, a slight 

increase in the T98 cell line with treatment of 20ng of EGF was observed. However, lack of 
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adequate means of normalizing the total protein content of conditioned media casts doubt upon 

the validity of this data. While samples collected from the cellular lysates can be normalized 

according to total protein determined by the Bradford Assay, the abundance of protein in the 

conditioned media makes it difficult to obtain accurate measurement of total protein. 

Compounding the problem of uniform loading of samples is the current lack of a protein 

that can be immunoblotted for as a control. While studies of proteins from the lysates can take 

advantage of the ubiquitous intracellular expression of actin to verify that loaded samples 

contained similar total protein, an analogous ubiquitous protein in the conditioned media remains 

to be identified. Furthermore, stripping of antibodies has yet to be successfully performed on the 

nitrocellulose blots to allow for accurate actin quantifications of lysate-derived samples. 

Consequently, the increased intensity of the TIMP-2 band with 20ng EGF may be due 

solely to the loading of a more concentrated sample and is not necessarily reflective of actual 

changes in TIMP-2 protein expression. Furthermore, due to suspected mutations in the U87 cells 

affecting growth patterns and causing clumping in culture, experiments with this particular cell 

line was halted until the cause of the altered cultures could be determined. As a result, the data 

that supports conclusions based on the U87 cell line are derived from a single experiment and 

remains to be replicated and verified. 

Presuming that the putative TIMP-2 band results from a genuine increase in the amount 

of TIMP-2 protein in response to 20ng of EGF, the data suggests that mutation in the p53 gene 

may influence the response of cells to low doses of EGF. At this time, the dose-dependent 

mechanism that prevents the positive response in TIMP-2 protein levels in the 80ng of EGF that 

was observed with 20ng of EGF in T98s has not been investigated. 
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Moreover, a study of bladder cancer cell lines used immunoblotting to determine that 

EGFR stimulation correlated with downregulation of TIMP-2, rather than upregulation seen in 

the T98 glioma cells (Nutt et al., 2004). This downregulation could possibly play a role in 

prevention of TIMP-2 inhibition of MMP-2 activation. While this study was performed on 

bladder cells, the inconsistency with the unverified findings of this study raises the question of 

whether or not EGF affects TIMP-2 protein expression and how EGF might influence TIMP-2 

levels in gliomas to remain unanswered. 

The effect of EGF on proteins associated with TIMP-2 

The initial hypothesis of this experiment supposed that the binding of EGF to the EGF

receptor would influence MMP-2 activation by signaling for the phosphorylation of the tyrosine 

residues of MTl-MMP. The primary literature states that EGF induces auto-phosphorylation of 

the cytoplasmic tyrosine kinase domain of EGFR, which may then phosphorylate a number of 

secondary species (Yamakazi et al., 1988; Honegger et al., 1990). MTl-MMP has not only been 

identified as a major downstream target of EGFR in lung development by zymography and 

mRNA analysis in EGFR double negative mice, but also has been implicated in mediation of the 

EGFR regulated activation· of MMP-2 (Kheradmand et al., 2002). The studies of U87 presented 

here, however, show that the increase of phosphorylated tyrosine was observed only after 

treatment with 80ng EGF, whereas the MMP-2 activation state was affected with only a 20ng 

EGF treatment. This data suggests that phosphorylation of MTl-MMP was unrelated to the 

activation state of MMP-2 and may not be involved in the pathway. 

Further investigation involving site-directed mutagenesis of specific tyrosine residues of 

MTl-MMP and the affected interaction with MMP-2 activation could help confirm that 

phosphorylation ofMTl-MMP is not an active part of the pathway. Additionally, the expression 
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and phosphorylation of the EGFR receptor should be investigated with immunoprecipitation and 

immunoblotting and compared to the primary literature. 

Not only was the phosphorylation ofMTl-MMP found to be extraneous to the MMP-2 

activation state, the level of TIMP-2 protein was also not determined to affect MMP-2 activation. 

While both the intensity of bands immunoblotted for TIMP-2 and active MMP-2 indicated a 

response to 20ng ofEGF, TIMP-2 levels were unresponsive to any treatment in the U87 cells, 

which were the only cell line to demonstrate a change in MMP-2 activation. Especially 

interesting is the trend of decreasing MMP-2 activation in a dose dependent response to EGF, 

rather than an increased activation seen in other studies of MMP-2 (Kheradmand et al., 2001; 

Morgunova et al., 2002). 

Active MMPs are necessary to degrade the ECM in order to clear a path for migrating 

tumor cells and EGFR has been found to play a crucial role in cellular migration (Duchek and 

Rorth, 2001; Somerville et al., 2003; Shir et al., 2006). Thus, it was predicted that the 

overexpression of EGFR in cancer cells might serve the purpose of increasing the activation of 

MMPs. Indeed whole tissue zymography studies of the differential MMP-2 activation state of 

EGFR deficient mice support the hypothesis that EGFR stimulation of the glioma cells would 

result in increased activation of MMP-2 (Kheramand et al., 2002). Furthermore RNA anti-sense 

assays which show co-expression ofTIMP-2 and MTl-MMP with MMP-2 suggest that TIMP-2 

and MTl-MMP may play a role in EGFR regulated MMP-2 activation (Kheramand et al., 2002). 

Moreover, zymography of cells transfected with a TIMP-2 expressing vector also showed dose 

dependent increase in MMP-2 activation (Bernardo et al., 2003). Taken together, these 

experiments indicate that the levels of MMP-2 activity should be positively affected by EGF 

treatment, however the data suggests rather a downregulation of MMP-2 in response to EGF. In 
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light of data inconsistent with the literature, it is difficult to determine why EGF treatment of 

these glioma cells resulted in an apparent inactivation of MMP-2 since it is counterproductive to 

the proposed pathway of tumor migration. 

The results of this experiment are inconsistent with the initial hypothesis and call for an 

alternate model. In line with the current understanding of molecular mechanisms involved in 

this study, several explanations of the data are possible. Firstly, the dual role of TIMP-2 as both 

an inhibitor of the active site of MTl-MMP and MMP-2 and as an intermediary between MTl-

MMP-dependent MMP-2 activation may be responsible for these results (Bernardo and Fridman, 

2003). The U87 cell line may cause the TIMP-2 molecules to behave preferentially as inhibitors 

of MMP-2 activation to elicit the observed decrease in active MMP-2, even though the amount 

of TIMP-2 protein remained constant. Furthermore, several pathways remaining to be described 

may be responsible for the slight increase of TIMP-2 in the T98 cell line that was not correlated 

to any change in the state of MMP-2. It is important to also note that treatment of T98 cells with 

EGF may actually be ineffectual because the over-expression of EGFR is sometimes found only 

in cells with wild-type p53 (Nagane et al., 1998). 

The role ofp53 in the regulation of the MTJ-MMPII'IMP-2/MMP-2 pathway 

The preliminary findings of this study .suggest that p53 status may influence the response 
I , 

of the MTl-MMP!flMP-2/MMP-2 pathway to treatment with epidermal growth factor. While 

EGF treatment of T98 cells affected only TIMP-2 protein with no correlation to dosage, both the 

EGF treatment regimens in the U87 cells altered the levels of phosphorylated MTl-MMP and the 

activation of MMP-2 to variable degrees. Previously, the wild-type p53 gene product was 

demonstrated to activate reporter constructs of the MMP-2 promoter (Bian and Sun, 1997). This 
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is inconsistent with the decrease in MMP-2 activation seen the U87 cell line and suggests rather 

inhibition of MMP-2 activation by p53 either transcriptionally or postranslationally. However, 

the current data is insufficient to conclusively determine this without a direct quantitative 

comparison between cells with wild-type and mutant p53 status. 

While the results of this experiment have yet to be sufficiently replicated, the inability of 

EGF to significantly affect the activity of the MTI-MMP and MMP-2 proteins in the T98 cell 

line studied suggests that the mutation in the p53 may prevent proper relay of the EGFR signals 

to MMP-2 activation, possibly due to lack of EGFR overexpression in these cells. While, many 

aspects of this cancer pathway have yet to be determined, future pursuits should certainly 

consider the role of p53 status and sensitivity to the effects of EGF. 
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