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INNER VECTORS FOR TOEPLITZ OPERATORS

RAYMOND CHENG, JAVAD MASHREGHI, AND WILLIAM T. ROSS

Dedicated to Thomas Ransford on the occasion of his sixtieth birthday.

Abstract. In this paper we survey and bring together several ap-
proaches to obtaining inner functions for Toeplitz operators. These
approaches include the classical definition, the Wold decomposi-
tion, the operator-valued Poisson Integral, and Clark measures.
We then extend these notions somewhat to inner functions on
model spaces. Along the way we present some novel examples.

1. Introduction

For ϕ ∈ H∞, the bounded analytic functions on the open unit disk D,
let

(1.1) Tϕ : H2 → H2, Tϕf = ϕf,

denote the analytic Toeplitz operator on the classical Hardy space H2.
In this paper we survey, continue, and synthesize some discussions be-
gun in [4, 10, 11] dealing with the notion of an “inner vector” for Tϕ

along with the general notion of an inner vector for a contraction on
a Hilbert space. We connect these results with the operator-valued
Poisson kernel and some work from [2, 3] concerning “factoring an L1

function through a contraction”. Along the way we also produce some
interesting examples and reformulations of these connections.

2. Basic definitions and facts

We begin with the definition of an inner vector for a Toeplitz operator
from [10]. Recall that the inner product on the Hardy space H2 is

(2.1) 〈f, g〉 :=
∫

T

fg dm,
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2 CHENG, MASHREGHI, AND ROSS

where m is normalized Lebesgue measure on the unit circle T. As is
tradition, we equate an f ∈ H2 with its L2 = L2(T, m) radial boundary
function, i.e.,

f(ζ) = lim
r→1−

f(rζ)

for almost every ζ ∈ T. We will also use the term inner function (with-
out any qualifiers like in Definition 2.2 below) to denote anH∞ function
that has unimodular boundary values almost everywhere. Classical
theory [6] says that an inner function I can be factored uniquely as
I = ξBSµ, where ξ is a unimodular constant, B is a Blaschke product,
and Sµ is a singular inner function associated with a positive measure
µ on T that is singular with respect to m. We say the degree of I is
equal to d if I is a finite Blaschke product of order d, and equal to
infinity otherwise. Furthermore, any function f ∈ H2 can be factored,
uniquely up to multiplicative constants, as f = IG, where I is an inner
function and G ∈ H2 is an outer function.

For ϕ ∈ H∞ the analytic Toeplitz operator Tϕ from (1.1) is a bounded
operator on H2 whose norm ‖Tϕ‖ satisfies

‖Tϕ‖ = ‖ϕ‖∞ := ess-sup{ |ϕ(ξ)| : ξ ∈ T}.
Also recall that the adjoint T ∗

ϕ of Tϕ satisfies T ∗
ϕ = Tϕ, where Tϕf =

P (ϕf) and P is the Riesz projection of L2 onto H2. When ϕ is an inner
function, observe from (2.1) that Tϕ is an isometry. See [8, Ch. 4] for
the details of these basic Toeplitz operator facts and [1] for a definitive
treatise.

Definition 2.2. For ϕ ∈ H∞ we say a unit vector f ∈ H2 is Tϕ-inner
if 〈T n

ϕf, f〉 = 0 for all n > 1.

When ϕ(z) = z, one can see from Fourier analysis that the Tz-inner
vectors are precisely the inner functions. Also observe that replacing
ϕ with cϕ, where c > 0, in Definition 2.2 does not change whether or
not a function f is Tϕ-inner. Thus we can always assume, by scaling
ϕ, that

ϕ ∈ b(H∞) := {g ∈ H∞ : ‖g‖∞ 6 1},
the closed unit ball of H∞. This normalization will be important when
we need Tϕ to be a contraction operator since in this case ‖Tϕ‖ =
‖ϕ‖∞ 6 1. Immediate from Definition 2.2 and the inner product for-
mula from (2.1) are the following facts.

Proposition 2.3. Let ϕ ∈ b(H∞).
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(1) If f ∈ H2 is Tϕ-inner and I is any inner function, then If is
Tϕ-inner.

(2) If f ∈ H2 is Tϕ-inner and Θ is any inner divisor of f , i.e.,
f/Θ ∈ H2, then f/Θ is Tϕ-inner.

(3) Any unit vector belonging to ker Tϕ is Tϕ-inner.

If u denotes the inner factor of ϕ, it is known [8, p. 108] that

ker Tϕ = Ku := (uH2)⊥,

the model space corresponding to u. Thus we have the simple corollary.

Corollary 2.4. If I is any inner function and u is the inner factor of
ϕ ∈ b(H∞), then any unit vector from IKu is Tϕ-inner.

This corollary gives us many specific examples of Tϕ-inner vectors. For
example, if λ ∈ D, the reproducing kernel functions

kλ(z) :=
1− u(λ)u(z)

1− λz

belong to Ku. In fact, finite linear combinations of these functions are
dense in Ku [8, Ch. 5]. Since

‖kλ‖ =
√

kλ(λ) =

√
1− |u(λ)|2
1− |λ|2 ,

then

I

√
1− |λ|2

1− |u(λ)|2
1− u(λ)u(z)

1− λz
, λ ∈ D, I inner,

are Tϕ-inner functions.

When ϕ = u is a finite Blaschke product, then the model space Ku is a
certain finite dimensional space of rational functions that are analytic
in a neighborhood of D [8, p. 117]. Furthermore, as we will see in a mo-
ment in Theorem 3.12, every Tu-inner function is bounded. However,
when u is not a finite Blaschke product then Ku is infinite dimensional
[8, p. 117] and, since multiplication by an inner function I is an isom-
etry on H2 (see (2.1)), IKu is a closed infinite dimensional subspace
of L2. By a theorem of Grothendieck, it will contain an unbounded
function. Putting this all together, we obtain the following.

Corollary 2.5. If the inner factor of ϕ ∈ b(H∞) is not a finite
Blaschke product, then there are unbounded Tϕ-inner functions.
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A specific version of this was pointed out in [10, p. 103].

Of course one needs to discuss the case when ϕ is an outer function.
Since ϕH2 is dense in H2 [8, p. 86], we see that ker Tϕ = {0}. In this
case, it is not clear that there are any Tϕ-inner functions. Indeed, we do
not see any obvious ones like I ker Tϕ since, in this case, ker Tϕ = {0}.

Example 2.6. Suppose that ϕ is the outer function ϕ(z) = 1 + z and
that f ∈ H2 is Tϕ-inner, i.e.,

〈T n
ϕf, f〉 = 0, ∀n > 1.

In other words,

(2.7)

∫

T

(1 + ξ)n|f(ξ)|2 dm(ξ) = 0, ∀n > 1.

Then the L1 function |f |2 annihilates (1+ z)n for all n > 1, along with
all their linear combinations. In particular, |f |2 annihilates

(1 + z)2 − (1 + z) = 1 + 2z + z2 − 1− z = z(1 + z).

The above observation will be the first step in a proof by induction.
Next, suppose that |f |2 annihilates zk(1 + z) for all 1 6 k 6 n. Then

zn+1(1 + z) = (1 + z)n+2 −
[
(1 + z)n+1 − zn+1

]
(1 + z).

By the Tϕ-inner property of f notice that |f |2 annihilates the first
term on the right. It also annihilates the subtracted expression, by the
induction hypothesis (the expression in square brackets is a polynomial
of degree n). Thus we have shown by induction that |f |2 annihilates
{zn(1 + z)}n>0 (the n = 0 case follows from (2.7)). This means that

(2.8)

∫

T

ξn(1 + ξ)|f(ξ)|2dm(ξ) = 0, n > 0,

and by complex conjugation,
∫

T

ξ
n
(1 + ξ)|f(ξ)|2dm(ξ) = 0, n > 0.

A little algebra yields

(2.9)

∫

T

ξ
n+1

(1 + ξ)|f(ξ)|2dm(ξ), n > 0.

Equations (2.8) and (2.9) say that all of the Fourier coefficients of
(1 + ξ)|f(ξ)|2 vanish and so (1 + ξ)|f(ξ)|2 is zero. Conclusion: there
are no Tϕ-inner functions when ϕ(z) = 1 + z.



INNER VECTORS FOR TOEPLITZ OPERATORS 5

3. Inner vectors via the Wold decomposition

Using some ideas from [10], we can use the Wold decomposition [9] to
explore the inner vectors for certain Toeplitz operators. Observe that
when u is an inner function the Toeplitz operator Tu is an isometry on
H2. Thus the Wold decomposition of H2 with respect to Tu becomes

H2 = X0 ⊕X1 ⊕ TuX1 ⊕ T 2
uX1 ⊕ · · · ,

where

X0 :=
∞⋂

n=1

T n
uH

2 = {0}, X1 := H2 ⊖ TuH
2 = Ku.

Thus
H2 = Ku ⊕ uKu ⊕ u2

Ku ⊕ · · · .
The above decomposition says that every f ∈ H2 has a unique expan-
sion as

(3.1) f = F0 + uF1 + u2F2 + · · · , Fj ∈ Ku.

Furthermore, for each integer N > 1,

〈uNf, f〉 =
〈
uN

∑

k>0

ukFk,
∑

l>0

ulFl

〉

=
∑

k,l>0

〈uN+k−lFk, Fl〉

=
∑

l−k=N

〈Fk, Fl〉.

This leads us to the following.

Proposition 3.2. A unit vector f ∈ H2 with expansion

f = F0 + uF1 + u2F2 + · · · , Fj ∈ Ku,

as in (3.1) is Tu-inner if and only if

(3.3)
∞∑

k=0

〈Fk, FN+k〉 = 0, N > 1.

Though this is just a restatement of the condition for f to be Tu-inner,
it is useful for producing more tangible examples of Tu-inner functions.

Example 3.4. Choose orthogonal vectors Fj , j > 0 from Ku so that∑
j>0 ‖Fj‖2 = 1. Then the condition (3.3) is easily satisfied and thus

the unit vector f =
∑

j>0 u
jFj is a Tu-inner function (as is any inner

function times this vector).
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Example 3.5. If u(z) = zn, then Ku = span{1, z, z2, . . . zn−1} and the
vectors

Fj =
zj√
n
, 0 6 j 6 n− 1,

satisfy the conditions of the previous example. Thus

f =
n−1∑

j=0

ujFj =
1√
n
+

zn+1

√
n

+
z2n+2

√
n

+
z3n+3

√
n

+ · · ·+ z(n−1)(n+1)

√
n

is a Tzn-inner vector.

Example 3.6. The previous example can be generalized to a finite
Blaschke product

u(z) =
n∏

j=1

z − aj
1− ajz

, aj ∈ D.

If we define

F0(z) =

√
1− |a1|2
1− a1z

,

F1(z) =

√
1− |a2|2
1− a2z

z − a1
1− a1z

,

F2(z) =

√
1− |a3|2
1− a3z

z − a1
1− a1z

z − a2
1− a2z

,

...

Fn−1(z) =

√
1− |an|2
1− anz

n−1∏

j=1

z − aj
1− ajz

,

one can show that {F0, . . . , Fn−1} is an orthonormal basis for Ku. Now
choose α0, . . . , αn−1 ∈ C such that

∑n=1
j=0 |αj|2 = 1. Then

f =
n−1∑

j=0

αju
jFj

is Tu-inner.

From Corollary 2.4 we know, for an inner function I, that any unit
vector from the set {I ker Tu : I is inner} is a Tu-inner vector. Perhaps
one might think we have equality here. Indeed, sometimes we do. For
example, if u(z) = z, then ker Tz = C and, as discussed earlier, the Tz-
inner vectors are precisely the inner functions. Here is another positive
example of when the unit vectors from {I ker Tu : I is inner} constitute
the complete set of Tu-inner vectors.
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Example 3.7. If the inner function u is the single Blaschke factor

u(z) =
z − a

1− az
, a ∈ D,

one can show [8, Ch. 5] that

ker Tu = Ku = C
1

1− az
.

As shown in [4], the Tu-inner vectors are

I

√
1− |a|2
1− az

, I inner.

However, in general, the unit vectors from {I ker Tu : I is inner} form
a proper subset of the Tu-inner vectors. One can see this with the
following example.

Example 3.8. Using the technique from Example 3.5, we see that
when u(z) = zn the vector

f =
1√
2
+

zn+1

√
2

is Tu-inner. However, f is not of the form Ig, where I is inner and
g ∈ Ku. This follows from the fact that f is outer and does not belong
to Ku = span{1, z, z2, . . . , zn−1}.

The papers [10, 11] yield a description of the Tu-inner vectors. From
the Wold decomposition (3.1) we see that any f ∈ H2 can be written
as

f =
∞∑

k=0

Fku
k.

If {vj}j>1 is an orthonormal basis for Ku, then we can expand things
a bit further and write

f =

∞∑

k=0

Fku
k

=

∞∑

k=0

uk
(∑

j>1

cj,kvj

)

=
∑

j>1

vj

( ∞∑

k=0

cj,ku
k
)
.
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Observe that ∑

j>1

|cj,k|2 = ‖Fk‖2

and that

‖f‖2 =
∞∑

k=0

‖Fk‖2

=

∞∑

k=0

∑

j>1

|cj,k|2

=
∑

j>1

∞∑

k=0

|cj,k|2.

Thus for each j,
∑

k>0 |cj,k|2 < ∞ and so

fj(z) =

∞∑

k=0

cj,kz
k

defines a function in H2 (square summable power series). By the Lit-
tlewood subordination principle [8, p. 126], fj ◦ u also belongs to H2.

Thus every unit vector f ∈ H2 has the unique representation

(3.9) f(z) =
∑

j>1

vj(z)fj(u(z)),

where fj ∈ H2 with
∑

j>1 ‖fj‖2 < ∞, and {vj}j>1 is an orthonormal

basis for Ku. Furthermore, as observed in [10, Prop. 1] (and can be
proved using the above calculation), if

(3.10) f =
∑

j>1

vjfj(u), g =
∑

j>1

vjgj(u),

as in (3.9), then

(3.11) 〈f, g〉 =
∑

j>1

〈fj, gj〉.

Theorem 3.12. A unit vector f written as in (3.9) is Tu-inner if and
only if

∞∑

j>1

|fj(ξ)|2 = 1

for almost every ξ ∈ T.



INNER VECTORS FOR TOEPLITZ OPERATORS 9

Proof. Here is the original proof from [10]. With

f =
∑

j>1

vjfj(u),

and n > 1, (3.11) yields

〈T n
u f, f〉 = 〈fun, f〉

=
〈∑

j

vju
nfj(u),

∑

k

vkfk(u)
〉

=
∑

j>1

〈znfj, fj〉

=
∑

j>1

∫

T

ξn|fj(ξ)|2dm(ξ)

=

∫

T

ξn
(∑

j>1

|fj(ξ)|2
)
dm(ξ).(3.13)

Then 〈T n
u f, f〉 = 0 for all n = 1, 2, . . . if and only if, by Fourier analysis,∑

j>1 |fj|2 is constant almost everywhere. But since we assuming that f

is a unit vector, we see, by putting n = 0 in (3.13), that
∑

j>1 |fj|2 = 1
almost everywhere. �

When u is a finite Blaschke product, then Ku is finite dimensional. In
this case (3.9) is finite and each basis vector vj is a rational function

that is analytic in a neighborhood of D [8, Ch. 5]. From here it follows
that every Tu-inner vector is a bounded function. Contrast this with
Corollary 2.5 which says that when u is not a finite Blaschke product
there are always Tu-inner vectors that are unbounded functions.

The two papers [10, 11] go further and discuss an “inner-outer” factor-
ization of any f ∈ H2 in terms of Tu-inner and Tu-outer vectors. They
also discuss the concept of Tu-inner in Hp, for p > 1, along with some
properties of the norms of Tu-inner vectors as well as their growth near
T.

4. Inner vectors via the operator-valued Poisson kernel

We can rephrase the language of inner vectors for Toeplitz operators in
terms of operator-valued Poisson kernels [2]. Moreover, using this new
language, we can extend our discussion to inner vectors for contractions
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on Hilbert spaces. For λ ∈ D and ξ ∈ T, define

(4.1) Pλ(ξ) :=
1

1− λξ
+

1

1− λξ
− 1

and observe that this can be written as

Pλ(ξ) =
1− |λ|2
|ξ − λ|2 ,

which is the standard Poisson kernel. Classical theory says that for
any g ∈ L1 = L1(T, m) the function

∫

T

Pλ(ξ)f(ξ)dm(ξ)

is harmonic on D with

(4.2) lim
r→1−

∫

T

Prζ(ξ)f(ξ)dm(ξ) = f(ζ)

for almost every ζ ∈ T. Furthermore, if µ is a finite complex measure
on T, we have

(4.3)

∫

T

Pλ(ξ)dµ(ξ) = µ̂(0) +
∑

n>1

µ̂(n)λn +
∑

n>1

µ̂(−n)λ
n
,

where

µ̂(n) :=

∫

T

ξ
n
dµ(ξ), n ∈ Z,

are the Fourier coefficients of µ. We will now discuss an operator
version of the Poisson kernel.

For a contraction T on a Hilbert space H, we imitate the formula in
(4.1) and define, for λ ∈ D, the operator-valued Poisson kernel Kλ(T )
as

Kλ(T ) := (I − λT ∗)−1 + (I − λT )−1 − I.

By the spectral radius formula, notice how σ(T ) ⊆ D and thus the
formula for Kλ(T ) above makes sense. A computation with Neumann
series will show that for r ∈ [0, 1) and θ ∈ [0, 2π)

(4.4) Kreiθ(T ) =
∞∑

n=0

rneinθT ∗n +
∞∑

n=0

rne−inθT n − I.

The operator identity

Kλ(T ) = (I − λT )−1(I − |λ|2TT ∗)(I − λT ∗)−1

from [2, Lemma 2.4] shows that for each x ∈ H

〈Kλ(T )x,x〉 > 0, λ ∈ D.
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Moreover, the function

λ 7→ 〈Kλ(T )x,x〉

is harmonic on D. Hence, a classical harmonic analysis result of Her-
glotz ([6, p. 10] or [8, p. 17]) produces a unique positive finite Borel
measure µT,x on T such that

(4.5) 〈Kλ(T )x,x〉 =
∫

T

Pλ(ζ)dµT,x(ζ).

Since K0(T ) = I we have

1 = 〈x,x〉 = 〈K0(T )x,x〉 =
∫

T

dµT,x

and so µT,x is a probability measure.

As we defined for Toeplitz operators earlier in Definition 2.2, we say
that a unit vector x is T -inner if

〈T nx,x〉 = 0, n > 1.

Note that x is T -inner if and only if x is T ∗-inner. From (4.4) we
see that x is T -inner if and only if 〈Kλ(T )x,x〉 = 1 for all λ ∈ D, or
equivalently,

1 =

∫

T

Pλ(ζ)dµT,x(ζ), λ ∈ D.

By (4.3) this is equivalent to the condition µT,x = m. This gives us the
following.

Proposition 4.6. Suppose that T is a contraction on a Hilbert space H
and x is unit vector in H. Then x is T -inner if and only if µT,x = m,
where µT,x is defined as in (4.5).

For an inner function u, note that Tu is an isometry, hence a contrac-
tion. Thus we can apply the above analysis to µTu,f .

Proposition 4.7. If

f =
∑

j>1

vjfj(u)

is a vector from H2 as in (3.9), then

(4.8) dµTu,f =
∑

j>1

|fj|2 dm.
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Proof. If

f =
∑

j>1

vjfj(u),

then

‖f‖2 =
∑

j>1

‖fj‖2 =
∑

j>1

∫

T

|fj|2dm =

∫

T

∑

j>1

|fj|2dm

and the calculation used to prove Theorem 3.12 yields

〈T n
u f, f〉 =

∫

T

ξn
(∑

j>1

|fj(ξ)|2
)
dm(ξ),

〈T ∗n
u f, f〉 =

∫

T

ξ
n
(∑

j>1

|fj(ξ)|2
)
dm(ξ).

From here we observe∫

T

Pλ(ξ)dµTu,f(ξ) = 〈Kλ(Tu)f, f〉

=
∑

n>0

λn〈T ∗n
u f, f〉+

∑

n>0

λ
n〈T n

u f, f〉 − 〈f, f〉.

=
∑

n>0

λn

∫

T

ξ
n
(∑

j>1

|fj(ξ)|2
)
dm(ξ)

+
∑

n>0

λ
n
∫

T

ξn
(∑

j>1

|fj(ξ)|2
)
dm(ξ)

−
∑

j>1

∫

T

|fj(ξ)|2dm

=

∫

T

(
1

1− λξ
+

1

1− λξ
− 1)

∑

j>1

|fj(ξ)|2dm(ξ)

=

∫

T

Pλ(ξ)
∑

j>1

|fj(ξ)|2dm(ξ)

Now use the uniqueness of the Fourier coefficients of a measure along
with (4.3) to obtain (4.8). �

Notice how this gives us another way of thinking about Theorem 3.12:
a unit vector f ∈ H2 is Tu-inner if and only if µTu,f = m.

This brings us to an interesting related question. One can also show
that for any f, g ∈ H2, we can define the harmonic function 〈Kλ(Tu)f, g〉
on D and prove this function also has bounded integral means. This
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yields, via Herglotz’s theorem, a complex valued measure µTu,f,g on T

for which

(4.9) 〈Kλ(Tu)f, g〉 =
∫

T

Pλ(ξ)dµT,f,g(ξ), λ ∈ D.

See [2, Prop. 2.6] for details. A similar calculation used to prove Propo-
sition 4.6 shows that

(4.10) dµTu,f,g =
∑

j>1

fjgj dm.

In the above formula, fj and gj come from the representations of f and
g from (3.10). A general result from [3] says that given any F ∈ L1 and
a non-constant inner function u that is not an automorphism, there are
f, g ∈ H2 for which

(4.11) F (ζ) =
dµTu,f,g

dm
(ζ)

m-almost everywhere. In the language of [3] this says that any F ∈ L1

can be “factored through Tu”. Equivalently stated, using (4.10) and
(4.11), we have

F (ζ) =
∑

j>1

fj(ζ)gj(ζ).

This is an interesting representation for L1 functions and a refinement
of the one from [3].

Question 4.12. Proposition 4.7 shows that when ϕ is an inner function
and f, g ∈ H2, then dµTϕ,f,g is absolutely continuous with respect to m.
When ϕ ∈ b(H∞) is this still the case? For this to be true we would
need to know that 〈ϕnf, g〉, n > 1, are the Fourier coefficients of an L1

function.

5. Inner vectors via Clark measures

For any fixed α ∈ T and inner function u, the function

z 7→ 1− |u(z)|2
|α− u(z)|2 = ℜ

(α + u(z)

α− u(z)

)

is a positive harmonic function on D. Thus by Herglotz’s theorem,
there is a unique positive measure σα on T for which

1− |u(z)|2
|α− u(z)|2 =

∫

T

Pλ(ξ)dσα(ξ).
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The family of measures {σα : α ∈ T} is called the family of Clark
measures corresponding to u. Let us record some important facts about
this family of measures. Proofs can be found in [5].

First, one can use the fact that u is an inner function, along with
standard harmonic analysis, to prove that each σα is singular with
respect to m. Second, if Eα is defined to be the set of ξ ∈ T for which

lim
r→1−

u(rξ) = α,

then Eα is a Borel subset of T with

(5.1) σα(T \ Eα) = 0.

In other words, σα is “carried” by Eα. From this we also see that the
measures {σα : α ∈ T} are singular with respect to each other. Third,
a beautiful disintegration theorem of Aleksandrov says that if g ∈ L1

then for m-almost every α ∈ T, integral∫

T

g(ξ)dσα(ξ)

is well defined. Moreover this almost everywhere defined function

α 7→
∫

T

g(ξ)dσα(ξ)

is integrable with respect to m and

(5.2)

∫

T

( ∫

T

g(ξ)dσα(ξ)
)
dm(α) =

∫

T

g(ζ)dm(ζ).

Using Clark measures, we can use a technique from [11] to compute a
formula for 〈Kλ(Tu)f, f〉 along with the measure dµTu,f/dm. This gives
us another way to think about the formula (4.11). The result here is
the following.

Theorem 5.3. For an inner function u and f ∈ H2 we have

dµTu,f(α) =
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

Proof. For any f ∈ H2 use the formulas from (5.1) and (5.2) to obtain

〈T n
u f, f〉 =

∫

T

|f(ξ)|2u(ξ)ndm(ξ)

=

∫

T

(∫

T

|f(ξ)|2u(ξ)ndσα(ξ)
)
dm(α)

=

∫

T

(∫

T

|f(ξ)|2αndσα(ξ)
)
dm(α)
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=

∫

T

αn
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

In a similar way

〈T ∗n
u f, f〉 =

∫

T

αn
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

Now follow the proof of Proposition 4.7 to get
∫

T

Pλ(ξ)dµTu,f(ξ)

= 〈Kλ(Tu)f, f〉
=

∑

n>0

λn〈T ∗n
u f, f〉+

∑

n>0

λ
n〈T n

u f, f〉 − 〈f, f〉

=

∫

T

(( 1

1− λα
+

1

1− λα
− 1

)(∫

T

|f(ξ)|2dσα(ξ)
))

dm(α)

=

∫

T

Pλ(α)
(∫

T

|f(ξ)|2dσα(ξ)
)
dm(α).

Use (4.3) along with the uniqueness of Fourier coefficients of a measure
to compute the proof. �

Combing Theorem 5.3 and Proposition 4.6 yields the following result
from [11].

Corollary 5.4. A unit vector f ∈ H2 is Tu-inner if and only if
∫

T

|f(ξ)|2dσα(ξ) = 1

for m-almost every α ∈ T.

Recall the notation from (4.9) that for a given inner function u and
f, g ∈ H2

〈Kλ(Tu)f, g〉 =
∫

T

Pλ(ξ)dµTu,f,g(ξ).

Moreover, if deg(u) > 2, any F ∈ L1 can be written as dµTu,f,g(ξ)/dm
for some f, g ∈ H2. Here is another way of thinking about this via
Clark measures. The same argument used to prove Theorem 5.3 shows
that

(5.5) dµTu,f,g =

∫

T

f(ξ)g(ξ)dσα(ξ) dm



16 CHENG, MASHREGHI, AND ROSS

Since any F ∈ L1 is equal to dµTu,f,g/dm for some f, g ∈ H2 [3], we see
that any F ∈ L1 can be written as

F (α) =

∫

T

f(ξ)g(ξ)dσα(ξ).

This Clark measure viewpoint has the additional feature, via Aleksan-
drov’s theorem, that∫

T

F (α)dm(α) =

∫

T

(∫

T

f(ξ)g(ξ)dσα(ξ)
)
dm(α)

=

∫

T

f(ζ)g(ζ)dm(ζ).

Example 5.6. If u is a finite Blaschke product of degree d and α ∈ T,
then one can compute (see [5, p. 209] for the details) the Clark measure
to be

dσα =

d∑

j=1

1

|u′(ζj)|
δζj ,

where ζ1, . . . , ζd are the d distinct solutions to the equation u(z) = α
and δζj is the unit point pass as ζj. The denominators in the above
expression may look troublesome but at the end of the day we have
u′ 6= 0 on T. By Theorem 5.3 we see that

dµTu,f

dm
(α) =

∫

T

|f(ξ)|2dσα(ξ) =
d∑

j=1

|f(ζj)|2
|u′(ζj)|

.

Thus the criterion for a unit vector f ∈ H2 to be a Tu-inner vector is
that the above sum is equal to 1 for m-almost every α ∈ T.

Furthermore, by (5.5), given F ∈ L1, there are f, g ∈ H2 so that

F (α) =
d∑

j=1

f(ζj)g(ζj)

|u′(ζj)|

for m-almost every α ∈ T. This formula appears in [3].

Example 5.7. Let us apply this to the simple case where u(z) = z2.
Given any α ∈ T, the two solutions ζ1, ζ2 to the equation z2 = α are

ζ1 = ei argα/2, ζ2 = −ei argα/2.

Thus the condition that a unit f is a Tz2-inner vector becomes

|f(ei argα/2)|2 + |f(−ei argα/2)|2 = 2, m-a.e. α ∈ T.

Furthermore, given any F ∈ L1, there are f, g ∈ H2 for which

F (α) = 1
2
f(ei argα/2)g(ei argα/2) + 1

2
f(−ei argα/2)g(−ei argα/2).
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This second fact was first observed in [3].

Example 5.8. Consider the atomic inner function

u(z) = exp
(z + 1

z − 1

)
.

For a fixed t ∈ [0, 2π), the solutions to u(z) = eit are

ζk =
i(t + 2πk) + 1

i(t+ 2πk)− 1
, k ∈ Z.

Noting that

|u′(ζk)| =
2

|ζk − 1|2 ,

a similar computation as in Example 5.6 shows that

dσeit =
1

2

∑

k∈Z

δζk |ζk − 1|2.

Thus
dµTu,f

dm
(eit) =

∫

T

|f(ξ)|2dσeit(ξ)

=
1

2

∑

k∈Z

|f(ζk)|2|ζk − 1|2

=
∑

k∈Z

∣∣∣f
( i[t+ 2πk] + 1

i[t + 2πk]− 1

)∣∣∣
2 2

|i(t+ 2πk)− 1|2 .

To create a Tu-inner function, we need to find a unit vector f ∈ H2

so that the above expression is equal to one for almost every t. Let us
create a specific example of when this happens. In fact we can even
make f unbounded. We already knew we could do this from Corollary
2.5 but our example below will be explicit, while the proof of Corollary
2.5 needed Grothendieck’s theorem and is not an explicit construction.

To see how to do this, fix β ∈ (1
2
, 1), and let ak, k ∈ Z, be the collection

of coefficients

(5.9) ak =
1

1 + |k|β .

Note that
∑

k∈Z |ak|2 < ∞.

Let Ik be the indicator function of the interval [−π + 2πk, π + 2πk),
k ∈ Z. Now define F on T by

F (eiθ) :=
√
2
∑

k∈Z

ak
eiθ − 1

Ik

(
i
1 + eiθ

1− eiθ

)
.
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Then
∫

T

|F |2 dm = 2

∫ π

−π

|F (eiθ)|2 dθ
2π

= 2
∑

k∈Z

∫ π

−π

|ak|2
|eiθ − 1|2 Ik

(
i
1 + eiθ

1− eiθ

) dθ

2π

= 2
∑

k∈Z

∫
∞

−∞

|ak|2
|it− 1|2

22
Ik(t)

2 dt

2π|it− 1|2

=
∑

k∈Z

∫ π

−π

|ak|2
∣∣i[t + 2πk]− 1

∣∣2 dt

2π|i[t+ 2πk]− 1|2

=
∑

k∈Z

|ak|2 < ∞,

i.e., F is square integrable on T with

(5.10) ‖F‖2 =
∑

k∈Z

|ak|2.

Next we establish that log |F | is integrable. We’ll need the following
estimates, which hold for all k 6= 0. First note that for k 6= 0,

|ak|
∣∣i(t + 2πk)− 1

∣∣ = |ak|
(
[π + 2π|k|]2 + 1

)1/2

> |ak| · 2π|k|

>
2π|k|

1 + |k|β
> 1.

Consequently, for k 6= 0 and t ∈ [−π, π),
∣∣∣ log

(
|ak|

∣∣i(t + 2πk)− 1
)∣∣∣ = log |ak||i(t+ 2πk)− 1|

6 log
|i(π + 2π|k|)− 1|

1 + |k|β

6 log
([2π(|k|+ 1/2)]2 + 1)1/2

1 + |k|β

6 log
([2π(|k|+ |k|/2)]2 + |k|2)1/2

|k|β

6 log(|k|1−β
√
9π2 + 1).
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We now have∫

T

∣∣ log |F |
∣∣ dm

=

∫ π

−π

∣∣∣ log |F (eiθ)|
∣∣∣ dθ
2π

=
∑

k∈Z

∫ π

−π

∣∣∣ log |ak|
√
2

|eiθ − 1|
∣∣∣ Ik

(
i
1 + eiθ

1− eiθ

) dθ

2π

=
∑

k∈Z

∫
∞

−∞

∣∣∣ log
(
|ak|

∣∣it− 1
∣∣√2/2

)∣∣∣ Ik(t)
dt

2π|it− 1|2

=
∑

k∈Z

∫ π

−π

∣∣∣ log
(
6π|k|1−β

∣∣i[t + 2πk]− 1
∣∣/
√
2
)∣∣∣ dt

2π|i[t+ 2πk]− 1|2 .

The series is summable, because the terms behave like (log |k|)/|k|2.
It follows that there exists an outer function g ∈ H2 with radial limit
function satisfying |g| = |F | almost everywhere on T, namely

g(z) := exp
( ∫

T

eiθ + z

eiθ − z
log |F (eiθ)| dm(eiθ)

)
.

Finally, let J be any classical inner function, and define f = gJ . Then

dµTu,f

dm
(eit) =

∑

k∈Z

∣∣∣f
( i[t + 2πk] + 1

i[t + 2πk]− 1

)∣∣∣
2 2

|i(t+ 2πk)− 1|2

=
∑

k∈Z

∣∣∣F
( i[t + 2πk] + 1

i[t + 2πk]− 1

)∣∣∣
2 2

|i(t+ 2πk)− 1|2

=
∑

k∈Z

|ak(i[t + 2πk]− 1)
√
2|2

22
2

|i(t+ 2πk)− 1|2

=
∑

k∈Z

|ak|2.

Notice from (5.10) that

dµTu,f

dm
(eit) = ‖F‖2

and so one can scale F so that it (and hence f) is a unit vector This
also gives us dµTu,f/dm(eit) = 1 for almost every t. Any such f will be
a Tu-inner function.
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As a bonus, we get that the f we just constructed is unbounded. To
see this, note that F is unbounded, since for θ approaching zero, F (eiθ)
takes values

F
( i[t + 2πk] + 1

i[t+ 2πk]− 1

)
=

ak

1− i[t+2πk]+1
i[t+2πk]−1

=
−i[t + 2πk] + 1

2 + 2|k|β

where t ∈ [−π, π). Since β < 1, this expression is unbounded as
|k| → ∞.

6. Inner vectors in model spaces

In this section we depart slightly from Toeplitz operators on H2 to the
related topic of compressions of Toeplitz operators on model spaces.
For an inner function Θ, recall the model space KΘ = (ΘH2)⊥. An
important operator to study here is the compressed shift operator

SΘ : Ku → Ku, SΘf = PΘ(zf),

where PΘ is the orthogonal projection of L2 onto Ku. This operator is
used to model a certain class of contraction operators on Hilbert space
[8, Ch. 9] – hence the use of the phrase “model space.”

As a generalization of our discussion of classifying the Tz-inner vectors
in H2, one can ask for a description of the SΘ-inner vectors in KΘ, i.e.,
those unit vectors f ∈ KΘ for which

〈Sn
Θf, f〉 = 0, n > 1.

Before continuing, let us make a few comments about SΘ. For the
proofs, see [8, Ch. 9]. First note that since SΘ is a compression of Tz

to KΘ we have the identity

Sn
Θ = PΘTzn |KΘ

.

Furthermore, we have the adjoint formula

S∗

Θ = Tz|KΘ
.

For any ϕ ∈ H∞ there is the functional calculus for SΘ which allows
us to define

ϕ(SΘ) = PΘTϕ|KΘ

along with the adjoint formula

ϕ(SΘ)
∗ = PΘTϕ|KΘ

.

One can actually compute the SΘ-inner vectors with the following result
from [8, p. 177].
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Theorem 6.1. Any SΘ-inner function is an inner function. Moreover,
KΘ contains an inner function if and only if u(0) = 0 and the inner
functions belonging to KΘ are precisely the inner divisors of Θ(z)/z.

So now the question becomes the following.

Question 6.2. What are the ϕ(SΘ)-inner functions?

As we did before with Toeplitz operators, we focus our attention on the
case where ϕ is inner. It is clear that the inner vectors for ϕ(SΘ) are
the same as those for ϕ(SΘ)

∗. As observed with an analogous result
in Proposition 2.3, we see that any (unit) vector in kerϕ(SΘ)

∗ is a
ϕ(SΘ)

∗-inner vector. It is well-known [8] that (assuming ϕ is an inner
function)

kerϕ(SΘ)
∗ = KΘ ∩Kϕ = Kgcd(Θ,ϕ),

where gcd(Θ, ϕ) is the greatest common inner divisor of the inner func-
tions Θ and ϕ.

At this point, it might the case that gcd(Θ, ϕ) is a unimodular constant
function whence Kgcd(Θ,ϕ) = {0} and it is not clear as to whether or
not there are any ϕ(SΘ)-inner vectors.

Question 6.3. We know that if gcd(Θ, ϕ) is non-constant, then there
are ϕ(SΘ)-inner vectors. Is the converse true?

For the special case where ϕ|Θ, let us find a class of ϕ(SΘ)-inner vectors.
Define

I :=
Θ

ϕ

and observe from a result in [7] that an analytic function g on D mul-
tiplies Kϕ to KΘ if and only g ∈ KzI . Recall from Theorem 6.1 that
the inner functions in KzI are precisely the inner divisors of I. Here is
our result about some of the ϕ(SΘ)-inner vectors.

Theorem 6.4. With the notation above, any unit vector from

{vKϕ : v|I}
is a ϕ(SΘ)-inner vector.

Proof. Let f be a unit vector from Kϕ and note that vf ∈ KΘ and
hence PΘ(vf) = vf . Thus for all n > 1 we have

〈(ϕ(SΘ))
n(vf), vf〉 = 〈PΘ(ϕ

nfv), vf〉
= 〈ϕnvf, PΘ(vf)〉
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= 〈ϕnvf, vf〉
= 〈ϕnf, f〉
= 〈f, T n

ϕf〉.

But since f ∈ Kϕ = ker Tϕ, this last quantity is equal to zero. This
shows that vf is a ϕ(SΘ)-inner vector. �

When Θ(0) = 0 and ϕ(z) = z, notice how this recovers Theorem 6.1.
At the other extreme, notice that when ϕ = Θ then I is a unimodular
constant inner function and the theorem above yields KΘ as the com-
plete set of TΘ-inner functions. Of course this result is obvious once
one realizes that 〈TΘf, f〉 = 0 for any f ∈ KΘ by the definition of the
model space KΘ = (ΘH2)⊥.

Also observe that one can relax the assumption that ϕ|Θ and set I =
u/ gcd(Θ, ϕ) and give a more general version of the theorem above.
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