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PARTIALLY ISOMETRIC MATRICES: A BRIEF AND

SELECTIVE SURVEY

STEPHAN RAMON GARCIA, MATTHEW OKUBO PATTERSON, AND WILLIAM T. ROSS

Abstract. We survey a variety of results about partially isometric matrices.

We focus primarily on results that are distinctly finite-dimensional. For exam-
ple, we cover a recent solution to the similarity problem for partial isometries.

We also discuss the unitary similarity problem and several other results.

1. Introduction

This paper is a selective survey about partially isometric matrices. These matri-
ces are characterized by the equation AA∗A = A, in which A∗ denotes the conjugate
transpose of A. We refer to such a matrix as a partial isometry. Much of this ma-
terial dates back to early work of Erdélyi [3–5], Halmos & McLaughlin [17], and
Hearon [20], among others. Some of our results will be familiar to many readers.
Others are more recent or perhaps not so well known.

The study of partial isometries on infinite-dimensional spaces is much richer and
more difficult. A proper account of the infinite-dimensional setting would occupy
a large volume and we therefore restrict ourselves here to the finite-dimensional
case. For the sake of simplicity, and because we are interested in topics such as
similarity and unitary similarity, we further narrow our attention to square matrices.
However, many of the following results hold for nonsquare matrices if the indices
and subscripts are adjusted appropriately.

This survey is organized as follows. Section 2 introduces the basic properties
of partial isometries. In particular, the connection between partial isometries, or-
thogonal projections, and subspaces is considered. Section 3 covers the algebraic
structure of partial isometries. For example, we consider the singular value and
polar decompositions, the Moore–Penrose pseudoinverse, and products of partial
isometries. In Section 4 we study the similarity problem for partial isometries and
characterize their spectra and Jordan canonical forms. Section 5 concerns various
topics connected to unitary similarity. For example, partial isometric extensions of
contractions, the Livšic characteristic function, and the Halmos–McLaughlin char-
acterization of defect-one partial isometries are covered. We conclude in Section 6
with a brief treatment of the compressed shift operator, a concrete realization of
certain partial isometries in terms of operators on spaces of rational functions.

2010 Mathematics Subject Classification. 15B10, 15B99, 15A23, 15A60, 15A18.
Key words and phrases. Partial isometry, unitary matrix, partially isometric matrix, com-

pressed shift, singular value decomposition, polar decomposition, numerical range, Moore–Penrose
inverse, pseudoinverse, characteristic function, similarity, unitary similarity.

The first author was partially supported by NSF grant DMS-1800123.

1

ar
X

iv
:1

90
3.

11
64

8v
1 

 [
m

at
h.

FA
] 

 2
7 

M
ar

 2
01

9



2 S.R. GARCIA, M.O. PATTERSON, AND W.T. ROSS

Notation. In what follows, Mm×n denotes the set of m×n complex matrices. We
write Mn for the set of n × n complex matrices. A convenient shorthand for the
n × n diagonal matrix with diagonal entries λ1, λ2, . . . , λn is diag(λ1, λ2, . . . , λn).
The spectrum of A ∈ Mn (the set of eigenvalues of A) is denoted σ(A) and its
characteristic polynomial is pA(z) = det(zI − A). The open unit disk |z| < 1 and
unit circle |z| = 1 are denoted D and T, respectively. We write In and 0n for the
n×n identity and zero matrices, respectively. Occasionally 0 denotes a zero matrix
whose size is to be inferred from context. Boldface letters, such as x, denote column
vectors. Zero vectors are written as 0 and their lengths determined from context.
A row vector is the transpose xT of a column vector. The range (or column space)
and kernel (or nullspace) of A ∈ Mn are denoted ranA and kerA, respectively. By
‖A‖ we mean the operator norm of A, the maximum of ‖Ax‖ for ‖x‖ = 1.

2. Preliminaries

Although partially isometric matrices enjoy several equivalent definitions, we
choose a distinctively algebraic approach because of its intrinsic nature. This suits
the matrix-theoretic perspective adopted in this article and permits us to phrase
things mostly in terms of matrices (as opposed to subspaces).

Definition 2.1. A ∈ Mn is a partially isometric matrix (or partial isometry) if
AA∗A = A.

The preceding definition is concise. However, it does not provide much intuition
about what a partial isometry is, although it does hint at potential relationships
with unitary matrices, orthogonal projections, and the Moore–Penrose pseudoin-
verse. All of these suggestions are fruitful and relevant.

Before proceeding, we require a brief review of two important topics. We say that
A,B ∈ Mn are unitarily similar (denoted A ∼= B) if there is a unitary U ∈ Mn such
that A = UBU∗. As the notation ∼= suggests, unitary similarity is an equivalence
relation on Mn. Recall that P ∈ Mn is an orthogonal projection if P is Hermitian
and idempotent (P = P ∗ and P 2 = P ). The spectrum of an orthogonal projection
is contained in {0, 1} and the spectral theorem ensures that P ∼= Ir ⊕ 0n−r, in
which r = rankP . We permit P = 0 and P = I in the degenerate cases r = 0 and
r = n, respectively. In particular, Cn = kerP ⊕ ranP , in which kerP and ranP ,
the eigenspaces corresponding to 0 and 1, respectively, are orthogonal.

We now investigate several consequences of Definition 2.1 and identify a few
distinguished classes of partial isometries.

Proposition 2.2.

(a) A is a partial isometry if and only if A∗ is a partial isometry.

(b) If P ∈ Mn is an orthogonal projection, then P is a partial isometry.

(c) If A ∈ Mn is a partial isometry and U, V ∈ Mn are unitary, then UAV is a
partial isometry.

(d) A matrix that is unitarily similar to a partial isometry is a partial isometry.

(e) If U ∈ Mn is unitary, then U is a partial isometry.

(f) If A is a normal partial isometry, then A is unitarily similar to the direct sum
of a zero matrix and a unitary matrix (either factor may be omitted).
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(g) An invertible partial isometry is unitary.

Proof. (a) AA∗A = A and A∗(A∗)∗A∗ = A∗ are adjoints of each other.

(b) If P ∈ Mn is an orthogonal projection, then PP ∗P = P 3 = P .

(c) If A ∈ Mn is a partial isometry and B = UAV , in which U, V ∈ Mn are unitary,
then BB∗B = (UAV )(UAV )∗(UAV ) = UAA∗AV = UAV = B.

(d) Let V = U∗ in (c).

(e) Let A = V = I in (c).

(f) Suppose that A ∈ Mn is a normal partial isometry. In light of the spectral
theorem and (d), we may assume that A is diagonal. Then A = AA∗A implies that
λ = λ|λ|2 for all λ ∈ σ(A). Thus, σ(A) ⊆ {0} ∪T and hence A is the direct sum of
a zero matrix and a unitary matrix (either factor may be omitted).

(g) If A ∈ Mn is invertible and AA∗A = A, then A∗A = I. Thus, A is unitary. �

An important relationship between partial isometries and orthogonal projections
is contained in the following theorem.

Theorem 2.3. For A ∈ Mn the following conditions are equivalent.

(a) A is a partial isometry.

(b) A∗A is an orthogonal projection (in fact, the projection onto (kerA)⊥).

(c) AA∗ is an orthogonal projection (in fact, the projection onto ranA).

Proof. (a) ⇒ (b) If AA∗A = A, then (A∗A)2 = A∗A. Since A∗A is selfadjoint and
idempotent, it is an orthogonal projection. Since1 kerA∗A = kerA, it follows that
A∗A is the orthogonal projection onto (kerA)⊥.

(b) ⇒ (a) If A∗A is an orthogonal projection, then it is the orthogonal projection
onto (kerA)⊥. For x ∈ kerA, we have Ax = 0 = AA∗Ax. If x ∈ (kerA)⊥, then
x = A∗Ax and hence Ax = A(A∗Ax) = (AA∗A)x. Thus, A = AA∗A.

(b) ⇔ (c) Proposition 2.2 and the equivalence (a) and (b) ensure that A∗A is an
orthogonal projection ⇔ A is a partial isometry ⇔ A∗ is a partial isometry ⇔
(A∗)∗(A∗) = AA∗ is a partial isometry. �

Corollary 2.4. If A ∈ Mn is a partial isometry and A 6= 0, then ‖A‖ = 1.

Proof. If A ∈ Mn is a partial isometry and A 6= 0, then ‖A‖2 = ‖A∗A‖ = 1 since
A∗A is a nonzero orthogonal projection. �

Example 2.5. The matrices

A =

[
0 0
√
3
2

1
2

]
, B =

[
0 1
0 0

]
, and C =

1

3

 2 −1 0
2 2 0
−1 2 0


are partial isometries since

A∗A =

[
3
4

√
3
4√

3
4

1
4

]
, B∗B =

[
0 0
0 1

]
, and C∗C =

1 0 0
0 1 0
0 0 0


1First observe that kerA ⊆ kerA∗A. For the converse, note that if x ∈ kerA∗A, then ‖Ax‖2 =

〈Ax, Ax〉 = 〈A∗Ax,x〉 = 0 and hence x ∈ kerA. Thus, kerA∗A ⊆ kerA.
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are orthogonal projections. Also note that

AA∗ =

[
0 0
0 1

]
, BB∗ =

[
1 0
0 0

]
, and CC∗ =

1

9

 5 2 −4
2 8 2
−4 2 5


are orthogonal projections.

Example 2.6. If N ∈ Mn×r has orthonormal columns, then A = [N 0] ∈ Mn is a
partial isometry since N∗N = I ∈ Mr and hence

A∗A =

[
N∗

0

]
[N 0] =

[
N∗N 0

0 0

]
=

[
Ir 0
0 0n−r

]
is an orthogonal projection.

Definition 2.7. If A ∈ Mn is a partial isometry, then (kerA)⊥ is the initial space
of A and ranA is the final space of A.

If A ∈ Mn is a partial isometry, then A∗A and AA∗ are orthogonal projections.
We can be more specific: they are the orthogonal projections onto the initial and
final spaces of A, respectively. The following proposition indicates the origin of the
term “partial isometry.”

Proposition 2.8. If A ∈ Mn is a partial isometry, then A maps (kerA)⊥ isomet-
rically onto ranA.

Proof. If A ∈ Mn is a partial isometry, then A∗A is the orthogonal projection
onto (kerA)⊥ (Theorem 2.3). For x ∈ (kerA)⊥, we have ‖Ax‖2 = 〈Ax, Ax〉 =
〈A∗Ax,x〉 = 〈x,x〉 = ‖x‖2. Thus, A maps (kerA)⊥ isometrically into ranA. Since

dim kerA+ dim(kerA)⊥ = n = dim kerA+ dim ranA,

we see that dim ranA = dim(kerA)⊥, so the image of (kerA)⊥ under A is ranA. �

Example 2.9. For the partial isometries in Example 2.5,

(kerA)⊥ = span

{[
1

−
√

3

]}
, ranA = span

{[
0
1

]}
,

(kerB)⊥ = span

{[
0
1

]}
, ranB = span

{[
1
0

]}
,

(kerC)⊥ = span


1

0
0

 ,
0

1
0

 , ranC = span


 2

2
−1

 ,
−1

2
2

 .

3. Algebraic properties and factorizations

In this section we survey a few algebraic results about partial isometries. Section
3.1 concerns singular value decompositions of a partial isometry. A characterization
of partial isometries in terms of the Moore–Penrose pseudoinverse is discussed in
Section 3.2. The role of partial isometries in the polar decomposition of a square
matrix is covered in Section 3.3. We wrap up with a study of products of partial
isometries in Section 3.4.
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3.1. Singular value decomposition. A singular value decomposition (SVD) of
A ∈ Mn is a factorization of the form A = UΣV ∗, in which U, V ∈ Mn are unitary
and

Σ = diag(σ1, σ2, . . . , σn)

with

σ1 > σ2 > · · ·σn > 0;

see [6, Thm. 14.1.4]. Singular value decompositions always exist, but they are
never unique (for example, replace U, V with −U,−V , respectively). For a general
A ∈ Mm×n, a similar decomposition holds with U ∈ Mm, V ∈ Mn, and Σ ∈ Mm×n.

The nonnegative numbers σi above are the singular values of A; they are the
square roots of the eigenvalues of A∗A and AA∗ since

V ∗(A∗A)V = Σ2 = U∗(AA∗)U.

In particular, σ1 = ‖A‖ and σr+1 = · · · = σn = 0, in which rankA = r. For
r = 1, 2, . . . , n− 1, define

Xr = Ir ⊕ 0n−r. (3.1)

By convention, we let Σ0 = 0 and Σn = I. The following theorem characterizes
singular value decompositions of partial isometries.

Theorem 3.2. For A ∈ Mn with rankA = r, the following are equivalent.

(a) A ∈ Mn is a partial isometry.

(b) A = UXrV
∗ for some unitary U, V ∈ Mn.

(c) U∗AV is a partial isometry for some unitary U, V ∈ Mn.

Proof. (a)⇒ (b) If A ∈ Mn is a partial isometry with singular value decomposition
A = UΣV ∗, then A = AA∗A implies Σ3 = Σ. Thus, the diagonal entries of Σ
belong to {0, 1}. Since rankA = rank Σ, we have Σ = Xr, in which r = rankA.

(b) ⇒ (c) Since Xr is an orthogonal projection, this follows from Proposition 2.2.

(c) ⇒ (a) If B = U∗AV is a partial isometry for some unitary U, V ∈ Mn, then
A = UBV ∗ is a partial isometry by Proposition 2.2. �

Example 3.3. The rank-2 partial isometry1 0 0

0
√
3
2 0

0 1
2 0


has singular value decomposition 0 1 0

√
3
2 0 − 1

2
1
2 0

√
3
2


1 0 0

0 1 0
0 0 0

0 1 0
1 0 0
0 0 1

 .
The characterization of partial isometries in terms of the singular value decompo-

sition leads to a standard presentation of a partial isometry, up to unitary similarity.

Theorem 3.4. For A ∈ Mn with rankA = r the following are equivalent.

(a) A is a partial isometry.

(b) A ∼= [N 0], in which N ∈ Mn×r has orthonormal columns.
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(c) A ∼=
[
B 0
C 0

]
, in which B ∈ Mr, C ∈ M(n−r)×r, and B∗B + C∗C = Ir.

Proof. (a) ⇒ (b) Let A ∈ Mn be a partial isometry. Theorem 3.2 ensures that
A = UXrV

∗ for some unitary U, V ∈ Mn. Thus, V ∗AV = (V ∗U)Xr = [N 0], in
which N ∈ Mn×r is comprised of the first r columns (necessarily orthonormal) of
the unitary matrix V ∗U .

(b) ⇒ (c) Suppose that A ∼= [N 0], in which N ∈ Mn×r has orthonormal columns.
Then Proposition 2.2 ensures that

[N 0] =

[
B 0
C 0

]
, B ∈ Mr, C ∈ M(n−r)×r,

is a partial isometry. Since N∗N = Ir,[
Ir 0
0 0n−r

]
=

[
N∗

0

]
[N 0] =

[
B∗ C∗

0 0

] [
B 0
C 0

]
=

[
B∗B + C∗C 0

0 0

]
(3.5)

and hence B∗B + C∗C = Ir.

(c)⇒ (a) The computation (3.5) and Theorem 2.3 ensure that A is unitarily similar
to a partial isometry. �

Example 3.6. The matrix

A =
1

9

 8 2 2
2 5 −4
−2 4 −5


is a partial isometry. Indeed, A = UX2V

∗, in which

U =


2√
5

2
3
√
5

1
3

0
√
5
3 − 2

3

− 1√
5

4
3
√
5

2
3

 and V =


2√
5

2
3
√
5
− 1

3

0
√
5
3

2
3

1√
5
− 4

3
√
5

2
3


are unitary. Following the proof of (a) ⇒ (b) in Theorem 3.4 we find

V ∗AV =


3
5

8
15 0

8
15

13
45 0

− 4
3
√
5

16
9
√
5

0

 = [N 0],

in which N has orthonormal columns. Moreover, B∗B + C∗C = I2, in which

B =

[
3
5

8
15

8
15

13
45

]
and C =

[
− 4

3
√
5

16
9
√
5

]
,

as suggested by Theorem 3.4c.

3.2. Pseudoinverses. Let A ∈ Mn with rankA = r and let σ1 > σ2 > · · · > σr be
the nonzero singular values of A. Let A = UΣV ∗ be a singular value decomposition
of A, in which

Σ = diag(σ1, σ2, . . . , σr, 0, 0, . . . , 0).

Then
Σ+ = diag(σ−11 , σ−12 , . . . , σ−1r , 0, 0, . . . , 0)

satisfies
ΣΣ+ = Σ+Σ = Xr,
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in which Xr = Ir ⊕ 0n−r, as defined in (3.1). The pseudoinverse of A is

A+ = V Σ+U∗,

which satisfies

(a) AA+A = A,

(b) A+AA+ = A+,

(c) (AA+)∗ = AA+, and

(d) (A+A)∗ = A+A.

In particular, A+ = A−1 if A is invertible. The matrix A+ is uniquely determined
by the conditions (a)-(d) above and is often alternately referred to as the Moore–
Penrose generalized inverse of A. The pseudoinverse satisfies (AB)+ = B+A+ for
A,B ∈ Mn.

Theorem 3.7. A ∈ Mn is a partial isometry if and only if A+ = A∗.

Proof. Let A ∈ Mn have singular value decomposition A = UΣV ∗. If A is a partial
isometry, then Σ = Xr, in which rankA = r (Theorem 3.2). Thus, A+ = V Σ+U∗ =
V XrU

∗ = A∗. Conversely, suppose that A+ = A∗. Then V Σ+U∗ = V ΣU∗ and
hence Σ+ = Σ. The definition of Σ+ ensures that each nonzero singular value of A
is 1 and hence A = UXrV

∗ is a partial isometry (Theorem 3.2). �

3.3. Polar decomposition. The singular value decomposition leads to a matrix
analogue of the polar form of a complex number z, in which partial isometries play
a critical role. We first consider a closely-related factorization of partial isometries.

Theorem 3.8. For A ∈ Mn the following are equivalent.

(a) A is a partial isometry.

(b) A = WP , in which P is an orthogonal projection and W is unitary.

(c) A = QW , in which Q is an orthogonal projection and W is unitary.

Proof. (a) ⇒ (b) Let A ∈ Mn be a partial isometry with singular value decompo-
sition A = UXrV

∗ (Theorem 3.2). Then A = WP , in which W = UV ∗ is unitary
and P = V XrV

∗ is an orthogonal projection.

(b)⇒ (c) Let A = WP , in which W is unitary P is an orthogonal projection. Then
A = QW , in which Q = WPW ∗ is an orthogonal projection.

(c) ⇒ (a) If A = QW , in which Q is an orthogonal projection and W is unitary,
then AA∗A = (QW )(QW )∗(QW ) = QWW ∗Q∗QW = Q3W = QW = A since Q
is Hermitian and idempotent. �

Theorem 3.8 permits one to extend a non-unitary partial isometry to a unitary
matrix. If A is a partial isometry and A = WP , in which W is unitary and P = A∗A
is an orthogonal projection, then W agrees with A on the initial space (kerA)⊥ and
acts on kerA such that ‖Wx‖ = ‖x‖ for all x ∈ Cn. We regard W as a unitary
extension of A.
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Example 3.9. The rank-2 partial isometry from Example 3.3 factors as1 0 0

0
√
3
2 0

0 1
2 0


︸ ︷︷ ︸

A

=

1 0 0

0
√
3
2 − 1

2

0 1
2

√
3
2


︸ ︷︷ ︸

W

1 0 0
0 1 0
0 0 0


︸ ︷︷ ︸

P

=

1 0 0

0 3
4

√
3
4

0
√
3
4

1
4


︸ ︷︷ ︸

Q

1 0 0

0
√
3
2 − 1

2

0 1
2

√
3
2


︸ ︷︷ ︸

W

,

in which W is unitary and P,Q are orthogonal projections.

For each A ∈ Mn, the positive semidefinite matrix A∗A has a unique positive
semidefinite square root (A∗A)1/2, usually denoted |A|. In fact, |A| = p(A∗A) for
any polynomial p with the property that p(λ) = λ1/2 for each λ ∈ σ(A∗A) ⊆ [0,∞).

Theorem 3.10. If A ∈ Mn, then there is a unique partial isometry E ∈ Mn and
positive semidefinite R ∈ Mn so that A = ER and kerE = kerR. In fact, R = |A|.

Proof. Let A ∈ Mn and r = rankA. Write a singular value decomposition A =
UΣV ∗ and observe that A∗A = V Σ2V ∗ and hence |A| = V ΣV ∗. Then A = ER, in
which E = UXrV

∗ is a partial isometry and R = |A|. Moreover, kerE = kerR by
construction. This establishes the existence of the desired factorization.

Now suppose that A = FS, in which F ∈ Mn is a partial isometry, S ∈ Mn is
positive semidefinite, and kerF = kerS. Then A∗A = S∗F ∗FS = S∗S since F ∗F
is the orthogonal projection onto (kerF )⊥ = ranS. The uniqueness of the positive
semidefinite square root of a positive semidefinite matrix ensures that S = |A|. In
particular, kerF = ker |A| = kerE. Let y ∈ (kerF )⊥ = ran |A|. Then y = |A|x for
some x ∈ Cn and hence Fy = F |A|x = Ax = E|A|x = Ey. Thus, E = F . �

3.4. Products of partial isometries. The set of partial isometries is not closed
under multiplication. For example,[

0 1
0 0

][
0 1√

2

0 1√
2

]
=

[
0 1√

2

0 0

]
is the product of partial isometries but is not a partial isometry. The main result
of this section (Theorem 3.13) is a criterion for when the product of two partial
isometries is a partial isometry. The proof requires two preparatory lemmas.

Lemma 3.11. If A ∈ Mn is idempotent and ‖A‖ 6 1, then A is an orthogonal
projection.

Proof. Suppose that A ∈ Mn is idempotent and ‖A‖ 6 1. For x ∈ Cn,

‖Ax−A∗Ax‖2 = ‖Ax‖2 + ‖A∗Ax‖2 − 2 Re〈Ax, A∗Ax〉
6 ‖Ax‖2 + ‖A∗‖2‖Ax‖2 − 2 Re〈A2x, Ax〉
6 ‖Ax‖2 + ‖Ax‖2 − 2 Re〈Ax, Ax〉
= ‖Ax−Ax‖2

= 0.

Thus, A = A∗A is Hermitian and hence A is an orthogonal projection. �

Lemma 3.12. Let P,Q ∈ Mn be orthogonal projections. Then PQ is a partial
isometry if and only if it is an orthogonal projection.
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Proof. Let P,Q ∈ Mn be orthogonal projections. If A = PQ is a partial isom-
etry, then ‖A‖ = ‖PQ‖ 6 ‖P‖‖Q‖ 6 1 and A = AA∗A = (PQ)(QP )(PQ) =
(PQ)(PQ) = A2, so Lemma 3.11 ensures that A is an orthogonal projection. Con-
versely, if A = PQ is an orthogonal projection, then it is a partial isometry. �

With the preceding two lemmas, we can prove the following result [19, Thm. 5].

Theorem 3.13. Let A,B ∈ Mn be partial isometries. Then AB is a partial isom-
etry if and only if A∗A and BB∗ commute.

Proof. Let A,B ∈ Mn be partial isometries. Write A = UP and B = QV , in which
U, V ∈ Mn are unitary and P = A∗A and Q = AA∗ are orthogonal projections.

(⇒) If AB ∈ Mn is a partial isometry, then AB = UPQV is a partial isometry,
so PQ is a partial isometry (Proposition 2.2). Lemma 3.12 ensures that PQ is
an orthogonal projection, so PQ = (PQ)∗ = Q∗P ∗ = QP . Thus, A∗A and BB∗

commute.

(⇐) If P = A∗A and Q = BB∗ commute, then PQ is a partial isometry since
(PQ)(PQ)∗(PQ) = PQQ∗P ∗PQ = PQPQ = PQ. Thus, AB = (UP )(QV ) =
U(PQ)V is a partial isometry. �

Example 3.14. The partial isometries

A =

1 0 0

0 1
2 0

0
√
3
2 0

 and B =

0 0 0
2
3

2
3

1
3

1
3 − 2

3
2
3


satisfy A∗A = diag(1, 1, 0) and BB∗ = diag(0, 1, 1). Since A∗A and B∗B commute,
Theorem 3.13 implies that

AB =

 0 0 0
1
3

1
3

1
6

1√
3

1√
3

1
2
√
3


is a partial isometry (it is a partial isometry of rank one).

Theorem 3.7 ensures that A ∈ Mn is a partial isometry if and only if A∗ = A+.
This yields the following result of Erdélyi [5, Thm. 3] (this paper contains several
other results concerning products of partial isometries).

Proposition 3.15. Let A1, A2, . . . , Ak ∈ Mn be partial isometries. Then A1A2 · · ·Ak
is a partial isometry if and only if (A1A2 · · ·An)+ = A+

nA
+
n−1 · · ·A

+
1 .

Any product of partial isometries is a contraction. Which contractions are prod-
ucts of partial isometries? A precise answer was provided by Kuo and Wu [23].

Theorem 3.16. For a contraction A ∈ Mn the following are equivalent.

(a) A is the product of k partial isometries.

(b) rank(I −A∗A) 6 k dim kerA.

(c) |A| = (A∗A)1/2 is the product of k idempotent matrices.

Since the proof of the Kuo–Wu theorem is long and somewhat computational, we
do not include it here. Their theorem provides the following interesting corollary.

Corollary 3.17.
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(a) Any contraction A ∈ Mn can be factored into a finite product of partial
isometries if and only if A is unitary or singular.

(b) Any singular contraction can be factored as a product of n partial isometries.

(c) There are singular contractions that cannot be factored as a product of n−1
partial isometries.

See Theorem 5.6 for another problem concerning products of partial isometries.
Although the matrix product of two partial isometries need not be a partial

isometry, their Kronecker product is.

Proposition 3.18. Let A ∈ Mm and B ∈ Mn. Then A ⊗ B is a partial isometry
if and only if A and B are partial isometries.

Proof. This follows from the fact that AA∗A⊗BB∗B = (A⊗B)(A⊗B)∗(A⊗B);
see [6, Sect. 3.6] for properties of the Kronecker product. �

4. Similarity

In this section we consider similarity invariants, such as the spectrum, charac-
teristic polynomial, and Jordan canonical form, of partial isometries. Among other
things, we discuss a recent result of the first author and David Sherman, who solved
the similarity problem for partially isometric matrices [11].

4.1. Spectrum and characteristic polynomial. In this section we describe the
spectrum and characteristic polynomial of a partial isometry.

Proposition 4.1. If A ∈ Mn is a partial isometry, then σ(A) ⊆ D−. Moreover,
0 ∈ σ(A) if and only if A is not unitary.

Proof. If Az = λz and ‖z‖ = 1, then |λ| = ‖Az‖ 6 ‖A‖‖z‖ 6 1 by Corollary 2.4.
Thus, σ(A) ⊆ D−. For the second statement, observe that 0 /∈ σ(A) if and only if
A is an invertible partial isometry, that is, A is unitary. �

Not every finite subset of D− is the spectrum of a partial isometry. Proposition
4.1 ensures that 0 is an eigenvalue of every non-unitary partial isometry. Halmos
and McLaughlin proved that this is essentially the only restriction [17, Thm. 3].

Theorem 4.2. Every monic polynomial whose roots lie in D− and include zero is
the characteristic polynomial of a (non-unitary) partial isometry.

Proof. We proceed by induction on the degree n of the polynomial. The base
case n = 1 concerns the polynomial z, which is the characteristic polynomial of
the 1 × 1 partial isometry [0]. For our induction hypothesis, suppose that every
monic polynomial of degree n − 1 whose roots lie in D− and include zero is the
characteristic polynomial of a partial isometry. Suppose that p is a polynomial of
degree n whose roots lie in D− and include 0. There are two possibilities.

(a) If the other n − 1 roots of p lie on T, then there is a unitary U ∈ Mn−1 with
these roots as eigenvalues, repeated according to multiplicity. The characteristic
polynomial of the partial isometry U ⊕ [0] ∈ Mn is p(z), as desired.

(b) If p(z)/z has a root λ ∈ D, then p(z) = (z−λ)q(z), in which q is monic, has zero
as a root, and deg q = n − 1. The induction hypothesis give a partial isometry A
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with characteristic polynomial q(z). Since 0 ∈ σ(A), it follows that rankA 6 n− 1
and hence there is a z ∈ (ranA)⊥ with ‖z‖2 = 1− |λ|2. Now verify that[

A z
0T λ

]
∈ Mn+1

is a partial isometry with characteristic polynomial (z − λ)q(z) = p(z).

This completes the induction. �

Example 4.3. z(z − 1
2 ) is the characteristic polynomial of the partial isometry[

0
√
3
2

0 1
2

]
.

On the other hand, (z− 1
2 )2 is not the characteristic polynomial of a partial isometry.

If it were, then the partial isometry would be invertible (0 is not an eigenvalue) and
hence unitary. Thus, its eigenvalues would lie on T, which is not the case.

There is another proof, which appeared in [11], of Theorem 4.2 that is of inde-
pendent interest because of its critical use of the Weyl–Horn inequalities [21,32].2

Theorem 4.4. There is an n × n matrix with singular values σ1 > σ2 > · · · >
σn > 0 and eigenvalues λ1, λ2, . . . , λn, indexed so that |λ1| > |λ2| > · · · > |λn|, if
and only if

σ1σ2 · · ·σn = |λ1λ2 · · ·λn| and σ1σ2 · · ·σk > |λ1λ2 · · ·λk|

for k = 1, 2, . . . , n− 1.

Suppose that λ1, λ2, . . . , λn ∈ D are indexed so that

|λ1| > |λ2| > · · · > |λr| > |λr+1| = · · · = |λn| = 0;

that is, the final n− r terms in the sequence are 0. If we let

σ1 = σ2 = · · · = σr = 1 and σr+1 = · · · = σn = 0,

then Theorem 4.4 provides an A ∈ Mn with singular values σ1, σ2, . . . , σn and
eigenvalues λ1, λ2, . . . , λn. The singular values of A are in {0, 1}, so A is a partial
isometry whose characteristic polynomial has the prescribed roots.

4.2. Similarity and Jordan form. Theorem 4.2 describes the possible charac-
teristic polynomials of partial isometries. The following examples show that this
does not settle the similarity problem for the class.

Example 4.5. The partial isometries[
0 1
0 0

]
and

[
0 0
0 0

]
have the same characteristic polynomial, namely z2, but they are not similar since
their ranks differ.

A complicating issue is that the property “similar to a partial isometry” is not
inherited by direct summands. Consider the next example.

2The Horn in question is Alfred Horn, not the Roger A. Horn of Matrix Analysis fame [22].
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Example 4.6. The 1 × 1 matrix [ 12 ] is a direct summand of diag(0, 12 ), which is
similar to the partial isometry [

0
√
3
2

0 1
2

]
.

However, [ 12 ] is not similar to a partial isometry since the spectrum of a non-unitary
partial isometry must include 0 (Proposition 4.1).

The following theorem is due to the first author and David Sherman [11]. The
proof requires several lemmas and is deferred until the end of this section. In what
follows, let Jn(λ) denote the n × n Jordan block with eigenvalue λ. Recall that
every n × n matrix is similar to a direct sum of Jordan blocks [6, Thm. 11.2.14].
The nullity of A− λI equals the number of Jordan blocks for the eigenvalue λ.

Theorem 4.7. A ∈ Mn is similar to a partial isometry if and only if the following
conditions hold.

(a) σ(A) ⊆ D−.

(b) If ζ ∈ σ(A) ∩ T, then its algebraic and geometric multiplicities are equal.

(c) dim kerA > dim ker(A− λI) for each λ ∈ σ(A) ∩ D.

Condition (b) ensures that the Jordan blocks for each eigenvalue of unit modulus
are all 1 × 1 and (c) tells us that no eigenvalue in D can give rise to more Jordan
blocks than 0 does. Consequently,

1
2

1
2

0
0

 ,


1
2 1

1
2

0
0

 and


1
2 1

1
2

0 1
0


are possible Jordan forms for a partial isometry, while

1
2

1
2

0 1
0


is not.

The first lemma that we need is a variation of Theorem 4.2. To prescribe the
Jordan canonical form of the resulting upper-triangular partial isometry, we need
to control the entries on its first superdiagonal.

Lemma 4.8. For any ξ1, ξ2, . . . , ξn−1 ∈ D, there exists an upper-triangular partial
isometry V ∈ Mn such that

(a) the diagonal of V is (0, ξ1, ξ2, . . . , ξn−1),

(b) the final n− 1 columns of V are are orthonormal, and

(c) each entry of V on the first superdiagonal is nonzero.

Proof. We proceed by induction on n. For the base case n = 2,

V =

[
0
√

1− |ξ1|2
0 ξ1

]
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is a partial isometry with the desired properties. For the induction hypothesis,
suppose that the lemma holds for some n. Suppose that ξ1, ξ2, . . . , ξn ∈ D are given
and apply the induction hypothesis to ξ1, ξ2, . . . , ξn−1 to obtain an upper-triangular
partial isometry V ∈ Mn that satisfies (a), (b), and (c). Since the first column of

V is 0, there is a v ∈ (ranV )⊥ with ‖v‖ =
√

1− |ξn|2. Define

V ′ =

[
V v
0T ξn

]
∈ Mn+1.

Then V ′ has diagonal (0, ξ1, ξ2, . . . , ξn). Its first column is 0 and its final n columns
are orthonormal, so V ′ is a partial isometry. The entries of V on the first superdiag-
onal are nonzero, so all of the entries of V ′ on its first superdiagonal are nonzero,
except possibly the (n, n+ 1) entry. Suppose toward a contradiction that

V ′ =



0 v1,2 · · · v1,n−1 v1,n v1,n+1

0 ξ1 · · · v2,n−1 v2,n v2,n+1

0 0
. . .

...
...

...
0 0 · · · ξn−1 vn−1,n vn−1,n+1

0 0 · · · 0 ξn−1 0
0 0 · · · 0 0 ξn


.

Then the upper right (n − 2) × (n − 1) submatrix has n − 1 orthogonal nonzero
columns, which is impossible. Thus, each entry on the first superdiagonal of V ′ is
nonzero. This completes the induction. �

Lemma 4.9. If T ∈ Mn is upper triangular with σ(T ) = {λ}, and the entries on
the first superdiagonal of T are all nonzero, then T ∼ Jn(λ).

Proof. The superdiagonal condition ensures that rank(T − λI) = n − 1 since the
reduced row echelon form of T − λI has exactly n − 1 leading ones. Thus, the
Jordan canonical form of T is Jn(λ). �

The following lemma is [22, Theorem 2.4.6.1]:

Lemma 4.10. Suppose that T = [Tij ]
d
i,j ∈ Mn is block upper triangular, and each

Tii ∈ Mni
(C) is upper triangular with all diagonal entries equal to λi. If λi 6= λj

for i 6= j, then T ∼ T11 ⊕ T22 ⊕ · · · ⊕ Tdd.

We are now ready for the proof of Theorem 4.7.

Proof of Theorem 4.7. (⇒) Since conditions (a), (b), and (c) of Theorem 4.7 are
preserved by similarity, it suffices to show that all three conditions are satisfied by
any partial isometry. Conditions (a) and (b) are implied by Proposition 4.1 and
Theorem 5.7, respectively, so we focus on (c). Suppose that A ∈ Mn is a partial
isometry with rankA = r. Then A = UP , in which U is unitary and P is an
orthogonal projection of rank r (Theorem 3.8). If λ ∈ D, then the unitarity of U
ensures that U − λI is invertible and hence

n = rank(U − λI)

= rank
(
(UP − λI) + U(I − P )

)
6 rank(A− λI) + rank(I − P )

= rank(A− λI) + n− r.
Thus, rankA 6 rank(A− λI) from which (c) follows.
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(⇐) Suppose that A ∈ Mn satisfies conditions (a), (b), and (c) of Theorem 4.7.
Condition (b) ensures that A ∼ A′ ⊕ U , in which σ(A′) ⊆ D and U is a diagonal
matrix whose eigenvalues are on T (either summand may be vacuous). Then U is
unitary, so A is similar to a partial isometry if and only if A′ is.

Without loss of generality, we may assume that σ(A) ⊆ D. Proposition 4.1
ensures that 0 ∈ σ(A). Then m = nullityA is the number of Jordan blocks for the
eigenvalue 0 in the Jordan canonical form of A. Moreover, condition (c) implies
that the Jordan canonical form of A has at most m Jordan blocks for any nonzero
eigenvalue of A. Thus, it suffices to show that any matrix of the form

B = Jn0
(0)⊕

d⊕
i=1

Jni
(λi), d > 0, 0 < ni 6 n, (4.11)

in which λ1, λ2, . . . , λd ∈ D\{0} are distinct, is similar to a partial isometry. This
is because A is similar to a direct sum of matrices of the form (4.11).

Lemma 4.8 ensures that there exists a partial isometry V ∈ Mn with nonzero
entries on its first superdiagonal and whose diagonal entries are

0, 0, . . . , 0︸ ︷︷ ︸
n0 times

, λ1, λ1, . . . , λ1︸ ︷︷ ︸
n1 times

, λ2, λ2, . . . , λ2︸ ︷︷ ︸
n2 times

, . . . , λd, λd, . . . , λd︸ ︷︷ ︸
nd times

,

in that order. Partition V with respect to B, that is, so that Vi,j ∈ Mni×nj
. Then

Lemma 4.9 implies that Vi,i ∼ Jni
(λi) and hence V ∼ B by Lemma 4.10. �

5. Unitary similarity

In this section we consider several questions connected to partial isometries and
unitary similarity. Recall that A,B ∈ Mn are unitarily similar if A = UBU∗ for
some unitary U ∈ Mn. This relationship is denoted A ∼= B.

5.1. Partial isometric extension of a contraction. Suppose that A ∈ Mn is
a contraction, that is, ‖A‖ 6 1. Then I − A∗A is positive semidefinite and has a
unique positive semidefinite square root, denoted (I −A∗A)1/2. We follow Halmos
and McLaughlin [17] and define

M(A) =

[
A (I −AA∗)1/2
0 0

]
∈ M2n,

which is a partial isometry since

M(A)M(A)∗ =

[
A (I −AA∗)1/2
0 0

] [
A∗ 0

(I −AA∗)1/2 0

]
=

[
I 0
0 0

]
(5.1)

is an orthogonal projection. Thus, every contraction is the restriction of a partial
isometry to an invariant subspace. The matrix M(A) is relevant to the unitary
similarity problem for contractions.

Theorem 5.2. Let A,B ∈ Mn be contractions. Then A ∼= B if and only if M(A) ∼=
M(B).

Proof. Let A,B ∈ Mn be contractions.

(⇒) Suppose that A ∼= B. Then UA = BU for some unitary U ∈ Mn and hence
U(AA∗) = (BB∗)U . In particular, AA∗ and BB∗ have the same eigenvalues, all



PARTIALLY ISOMETRIC MATRICES 15

of them nonnegative, with the same multiplicities. If p is a polynomial such that
p(λ) = (1− λ)1/2 for each such eigenvalue, then

p(AA∗) = (I −AA∗)1/2 and p(BB∗) = (I −BB∗)1/2.
Thus,

U(I −AA∗) 1
2 = Up(AA∗) = p(UAA∗) = p(BB∗U) = p(BB∗)U = (I −BB∗) 1

2U.

A computation then confirms that (U ⊕ U)M(A) = M(B)(U ⊕ U).

(⇐) If M(A) ∼= M(B), then (5.1) ensures that

A⊕ 0n = M(A)2M(A)∗ ∼= M(B)2M(B)∗ = B ⊕ 0n.

For any word w(x, y) in two noncommuting variables,

trw(A,A∗) = trw
(
A⊕ 0n, (A⊕ 0n)∗

)
= trw

(
B ⊕ 0n, (B ⊕ 0n)∗

)
= trw(B,B∗).

A well-known theorem of Specht ensures that A ∼= B [31].3 �

Remark 5.3. The proof that M(A) ∼= M(B) implies A ∼= B provided in Theorem
5.2 is inherently finite dimensional because of its reliance on Specht’s theorem [31].
This is to be expected, since the result fails for operators on infinite-dimensional
Hilbert spaces: let A = I and B = I ⊕ 0. Then M(A) ∼= I ⊕ 0 ∼= M(B), but A and
B are not unitarily similar.

The forward implication of Theorem 5.2 is due to Halmos and McLaughlin [17,
Thm. 1]. They proved the converse under the assumption that A or B is invertible.
A similar method applies if A or B is a strict contraction. Here is the argument.
Let M(A) ∼= M(B) and suppose without loss of generality that A is invertible or a
strict contraction. Then UM(A) = M(B)U for some unitary

U =

[
X Y
Z W

]
∈ M2n,

in which X,Y, Z,W ∈ Mn. Thus,[
XA X(I −AA∗) 1

2

ZA Z(I −AA∗) 1
2

]
=

[
BX + (I −BB∗) 1

2Z BY + (I −BB∗) 1
2W

0 0

]
. (5.4)

If A is invertible, we see from the (2, 1) entry above that Z = 0. If A is a strict
contraction, then (I−AA∗)1/2 is invertible and we see from the (2, 2) entry in (5.4)
that Z = 0. However,[

I 0
0 I

]
= I = U∗U =

[
X∗ 0
Y ∗ W ∗

] [
X Y
0 W

]
=

[
X∗X X∗Y
Y ∗X Y ∗Y +W ∗W

]
(5.5)

and hence X∗X = I, that is, X is unitary. Since Z = 0 in (5.4), we see that
XA = BX, so A ∼= B.

A related result about products of matrices is due to Erdélyi [5, Thm. 5].

Theorem 5.6. Let A,B ∈ Mn. Then M(A)M(B) is a partial isometry if and only
if A is a partial isometry.

3Pearcy showed that it suffices to consider words of total degree 2n2 [29]. For n = 3 and n = 4,
much better results are known [2,28,30]; see Section 5.3.
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Proof. Let A,B ∈ Mn and define

M = M(A)M(B) =

[
AB A(I −BB∗) 1

2

0 0

]
.

Then

MM∗ =

[
AB A(I −BB∗) 1

2

0 0

] [
B∗A∗ 0

(I −BB∗) 1
2A∗ 0

]
=

[
AA∗ 0

0 0

]
is an orthogonal projection if and only if AA∗ is an orthogonal projection. Thus,
M is a partial isometry if and only if A is (Proposition 2.2). �

5.2. Unitary and completely non-unitary parts. The spectrum of a partial
isometry is contained in D− (Proposition 4.1). The following theorem concerns a
useful decomposition of a partial isometry A ∈ Mn that corresponds to the partition
σ(A) = (σ(A) ∩ D) ∪ (σ(A) ∩ T) of its spectrum.

Theorem 5.7. Let A ∈ Mn be a partial isometry. Then A ∼= T ⊕ U , in which
T is an upper-triangular partial isometry with σ(T ) ⊆ D and U is unitary (either
summand may be absent).

Proof. If A ∈ Mn is a partial isometry, then Schur’s theorem on unitary triangu-
larization implies that

A ∼=
[
T B
0 U

]
,

in which σ(T ) ⊆ D and U is upper-triangular with σ(U) ⊆ T [6, Thm. 10.1.1]. Since
A is a contraction, each of its columns has norm at most 1. Since every entry on
the main diagonal of U has unit modulus, it follows that U is diagonal and hence
B = 0. Thus, A ∼= T ⊕ U , in which U is unitary and σ(T ) ⊆ D. Since AA∗A = A,
we conclude that TT ∗T = T , so T is a partial isometry. �

The summand U in Theorem 5.7 is the unitary part of A and the summand T is
the completely non-unitary (cnu) part of A. The latter name arises from the fact
that there is no reducing subspace upon which T acts unitarily. Indeed, otherwise
T ∼= T ′ ⊕ U ′, in which U ′ is unitary (and hence σ(U ′) ⊆ T), and this violates
the hypothesis that σ(T ) ⊆ D. In particular, a partial isometry is completely
non-unitary if and only if its spectrum lies in D.

Example 5.8. The partial isometry
0

√
3
2 0 0

0 1
2 0 0

0 0 −1 0
0 0 0 1

 =

[
0

√
3
2

0 1
2

]
︸ ︷︷ ︸

T

⊕
[
1 0
0 −1

]
︸ ︷︷ ︸

U

is a direct sum of a completely non-unitary partial isometry N and a unitary U .

Corollary 5.9. Let A ∈ Mn be a partial isometry. Then An → 0 if and only if A
is completely non-unitary.

Proof. One can use the Jordan canonical form of a matrix to show that An → 0 if
and only if σ(A) ⊆ D [6, Thm. 11.6.6]. �
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5.3. Low dimensions. In low dimensions there are simple conditions to determine
when two partial isometries are unitarily similar. Although the two-dimensional sit-
uation is rather straightforward, we include it for completeness because it suggests
a similar approach in dimensions three and four. Recall that pA(z) = det(zI − A)
is the characteristic polynomial of A ∈ Mn.

Theorem 5.10. Partial isometries A,B ∈ M2 are unitarily similar if and only if
pA = pB and rankA = rankB.

Proof. A,B ∈ M2 are unitarily similar if and only if Φ(A) = Φ(B), in which Φ(x) =
(trx, trx2, trx∗x) [25]. Since the trace of a matrix is the sum of its eigenvalues,
counted with multiplicity, Φ(A) = Φ(B) occurs for partial isometries A,B ∈ Mn if
and only if pA = pB and rankA = trA∗A = trB∗B = rankB. �

The 3×3 case is slightly more complicated and involves a lemma of Sibirskĭı [30]
that streamlines an earlier result of Pearcy [28].

Lemma 5.11. A,B ∈ M3 are unitarily similar if and only if Φ(A) = Φ(B), in
which Φ : M3(C)→ C7 is

Φ(x) = (trx, trx2, trx3, trx∗x, trx∗x2, trx∗2x2, trx∗x2x∗2x). (5.12)

If A is a partial isometry, then PA∗ = A∗A and PA = AA∗ are the orthogonal
projections onto the initial and final spaces of A, respectively. That is, ranPA =
ranA and ranPA∗ = ranA∗. To extend Theorem 5.10 to 3× 3 matrices, we require
an additional condition concerning such projections.

Theorem 5.13. Partial isometries A,B ∈ M3 are unitarily similar if and only if

(a) pA = pB,

(b) rankA = rankB, and

(c) trPAPA∗ = trPBPB∗ .

Proof. Suppose that x ∈ M3 is a partial isometry. Observe that (trx, trx2, trx3) is
uniquely determined by the characteristic polynomial of x and that rankx = trx∗x.
The invariance of the trace under cyclic permutations of its argument ensures that

trx∗x2 = trxx∗x = trx,

trx∗2x2 = tr(x∗x)(xx∗), and

trx∗x2x∗2x = tr(x∗x)(xx∗)(x∗x) = tr(x∗x)2(xx∗) = tr(x∗x)(xx∗).

Thus, partial isometries A,B ∈ M3 are unitarily similar if and only if conditions
(a), (b), and (c) holds. �

In 2007, Djoković extended the Pearcy-Sibirskĭı trace conditions to four dimen-
sions and obtained a complete unitary invariant [2, Thm. 4.4].

Lemma 5.14. A,B ∈ M4 are unitarily similar if and only if

trwi(A,A
∗) = trwi(B,B

∗)

for i = 1, 2, . . . , 20, in which the words wi(x, y) are
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(1) x

(2) x2

(3) xy

(4) x3

(5) x2y

(6) x4

(7) x3y

(8) x2y2

(9) xyxy

(10) x3y2

(11) x2yx2y

(12) x2y2xy

(13) y2x2yx

(14) x3y2xy

(15) x3y2x2y

(16) x3y3xy

(17) y3x3yx

(18) x3yx2yxy

(19) x2y2xyx2y

(20) x3y3x2y2.

Using with Djoković’s result, we obtain a complete unitary invariant for 4 × 4
partial isometries.

Theorem 5.15. Partial isometries A,B ∈ M4 are unitarily similar if and only if

(a) pA = pB,

(b) rankA = rankB,

(c) trw(A,A∗) = trw(B,B∗) for the six words w(x, y) given by

x2y2, x3y2, x4y2, x3y3, x4y, x3y3x2y2. (5.16)

Proof. Suppose that A,B ∈ M4 are partial isometries, pA = pB , and rankA =
rankB. Then trAk = trBk for k = 1, 2, 3, 4 and hence we need not check words
w1(x, y) = x, w2(x, y) = x2, w4(x, y) = x3, and w6(x, y) = x4 on Djoković’s list.
Since trA∗A = rankA = rankB = trB∗B, we can also ignore w3(x, y) = xy. More
words can be proved redundant when we add the relations xyx = x and yxy = y:

w9(x, y) = xyxy = xy = w3(x, y),

w11(x, y) = x(xyx)xy = x3y = w7(x, y),

w12(x, y) = x2y2xy = x2y(yxy) = x2y2 = w8(x, y), and

w14(x, y) = x3y2xy = x3y(yxy) = x3y2 = w10(x, y).

The invariance of the trace under cyclic permutations yields

trw5(x, y) = trx2y = trxyx = trx = trw1(x, y),

trw7(x, y) = trx3y = trx(xyx) = trx2 = trw2(x, y),

trw13(x, y) = tr y2x2yx = trx2(yxy)y = trx2y2 = trw8(x, y),

trw17(x, y) = tr y3x3yx = trx3(yxy)y2 = trx3y3 = trw16(x, y), and

trw19(x, y) = trx2y2xyx2y = trxy(yxy)x(xyx) = trxy2x2 = trx3y2 = trw10(x, y).

Thus, wi(x, y) is redundant for i = 1, 2, 3, 4, 5, 6, 7, 9, 11, 12, 13, 14, 17, 19 and we
need only consider the six words wi(x, y) for i = 8, 10, 15, 16, 18, 20. For some of
these, we have simplifications:

trw15(x, y) = trx3y2x2y = trx2y2x(xyx) = trx2y2x2 = trx4y2,

trw16(x, y) = trx3y3xy = trx3y2(yxy) = trx3y3,

trw18(x, y) = trx3yx2yxy = trx2(xyx)x(yxy) = trx4y.

This yields the list (5.16). �
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The words in (5.16) can be interpreted more concretely in terms of orthogonal
projections. For example, if A ∈ M4 is a partial isometry, then the trace correspond-
ing to the second word in (5.16) is trA3A∗2 = trA(AA∗)(A∗A) = trPA∗APA. The
interested reader might pursue this further.

5.4. Defect index one. Let A ∈ Mn be a partial isometry. Then dim kerA is the
defect index of A. It measures, in a crude sense, the extent to which A fails to be
unitary. Indeed, if A is unitary, then its defect index is 0.

The following theorem of Halmos and McLaughlin provides a criterion to deter-
mine whether two partial isometries with defect index one are unitarily similar [17].

Theorem 5.17. Let A,B ∈ Mn be partial isometries with one-dimensional kernels.
Then A ∼= B if and only if they have the same characteristic polynomial.

Proof. (⇒) If A,B ∈ Mn are partial isometries and A ∼= B, then A and B have the
same characteristic polynomials [6, Thm. 9.3.1].

(⇐) We proceed by induction on n. The base case n = 1 is true because every
1×1 partial isometry with one-dimensional kernel is [0]. Suppose for our induction
hypothesis that two n × n partial isometries with defect index one are unitarily
similar whenever they have the same characteristic polynomial.

Let A,B ∈ Mn+1 be partial isometries with defect index one and suppose that
pA = pB . Note that 0 is an eigenvalue of both A and B. In light of Schur’s theorem
on unitary triangularization [6, Thm. 10.1.1], we may assume that

A =

[
A′ a
0∗ α

]
and B =

[
B′ b
0∗ α

]
,

in which α ∈ C, a,b ∈ Cn, and A′, B′ ∈ Mn are upper-triangular matrices with
pA′ = pB′ and 0 as their (1, 1) entries. Because A and B have one-dimensional
kernels and A′, B′ have first column 0, we have kerA = kerB = span{e1} and

A = [0 X] and B = [0 Y ], (5.18)

in which X,Y ∈ M(n+1)×n. Use (5.18) to compute A∗A = B∗B, the orthogonal

projection onto {e1}⊥, and deduce that

X∗X = Y ∗Y = In

and ‖a‖ = ‖b‖. Then X has orthonormal columns and hence the final n columns of
A are orthonormal. Consequently, the final n−1 columns of A′ are orthonormal and
its first column is 0. This implies that A′ is a partial isometry with one-dimensional
kernel. The same reasoning applies to B′. Since pA′ = pB′ , the induction hypothesis
provides a unitary W ′ ∈ Mn such that W ′A′ = B′W ′. Let ξ ∈ T be such that
ξW ′a = b. Then W = W ′ ⊕ [ξ] ∈ Mn+1 is unitary and WAW ∗ = B since[

W 0
0∗ ξ

] [
A′ a
0∗ α

] [
W ∗ 0

0∗ ξ

]
=

[
WA′W ∗ ξWa

0∗ α

]
=

[
B′ b
0∗ α

]
.

This completes the induction. �

Example 5.19. The matrices

A =


0 1 0 0
0 0 1 0
0 0 0 0
0 0 0 0

 and B =


0 1 0 0
0 0 0 0
0 0 0 1
0 0 0 0

 (5.20)
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are partial isometries, pA = pB , and dim kerA = dim kerB = 2. However, A and
B are not similar since they have different Jordan canonical forms. In particular,
A and B are not unitarily similar. Thus, the one-dimensional kernel condition
in Theorem 5.17 cannot be ignored. We will see another unitary invariant that
rectifies this in Section 5.6.

5.5. The transpose of a partial isometry. Although every A ∈ Mn is similar
to AT [6, Thm. 11.8.1], it is not always the case that A ∼= AT [18, Pr. 159]. In this
section we tackle the question of when A ∼= AT for a partial isometry A ∈ Mn.

Proposition 5.21. If A ∈ Mn is a partial isometry with one-dimensional kernel,
then A ∼= AT.

Proof. Suppose that A ∈ Mn is a partial isometry with one-dimensional kernel.
Then AT is a partial isometry with one-dimensional kernel and pA = pAT , so The-
orem 5.17 ensures that A ∼= AT. �

Example 5.25 below demonstrates that a partial isometry with two-dimensional
kernel need not be unitarily similar to its transpose. Our next lemma provides a
simple condition that ensures a matrix is unitarily similar to its transpose.

Lemma 5.22. If A ∈ Mn is unitarily similar to a complex symmetric (self-
transpose) matrix, then A ∼= AT.

Proof. If S = UAU∗, in which S = ST and U is unitary, then UAU∗ = S = ST =
UATUT and hence V A = ATV , in which V = UTU is unitary. �

The condition in Lemma 5.22 is sufficient but not necessary. The first author
and James Tener showed that in dimensions eight and above A ∼= AT may hold
while A is not unitarily similar to a complex symmetric matrix [12]. On the other
hand, if A ∈ Mn for some n 6 7 and A ∼= AT, then A is unitarily similar to a
complex symmetric matrix.

The following theorem, whose proof depends upon the theory of complex sym-
metric operators [9, 10,14], is due to the first author and Warren Wogen [13].

Theorem 5.23. A partial isometry [
X 0
Y 0

]
,

in which X is square and X∗X + Y ∗Y = I, is unitarily similar to a complex
symmetric matrix if and only if X is.

Theorem 3.4 ensures that any partial isometry is unitarily similar to one of the
form in Theorem 5.23. Thus, a partial isometry is unitarily similar to a complex
symmetric matrix if and only if its restriction to its initial space has that property.

Proposition 5.24. If A ∈ Mn is a partial isometry and 1 6 n 6 4, then A ∼= AT.

Proof. For n = 1 the result is obvious. If A ∈ M2 is a partial isometry, it is either 0,
unitary, or has a one-dimensional kernel. In all three cases, A ∼= AT. An alternate
approach is to use Lemma 5.22 after noting that every 2 × 2 matrix is unitarily
similar to a complex symmetric matrix [14, Cor. 1].

Suppose that A ∈ M3 is a partial isometry. If rankA = 0, then A = 0 and
we are done. If rankA = 1, then A is unitarily similar to a complex symmetric
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matrix [14, Cor. 5] and we may apply Lemma 5.22. If rankA = 2, then A has a one-
dimensional kernel and hence Proposition 5.21 implies that A ∼= AT. If rankA = 3,
then A is unitary and therefore A ∼= AT.

Suppose that A ∈ M4 is a partial isometry. Proceeding as before leaves only the
case rankA = 2 unsettled. Then A is unitarily similar to[

B 0
C 0

]
,

in which B,C ∈ M2 and B∗B + C∗C = I, by Theorem 3.4. Since every 2 × 2
matrix is unitarily similar to a complex symmetric matrix [14, Cor. 1], Theorem
5.23 ensures that A is unitarily similar to a complex symmetric. Thus, A ∼= AT. �

Example 5.25. The conditions in Propositions 5.21 and 5.24 are best possible.
The partial isometry

A =


0 1 0 0 0
0 0 1

2 0 0
0 0 0 0 0
1 0 0 0 0

0 0
√
3
2 0 0


is 5 × 5 and has a two-dimensional kernel. Although A and AT are similar, they
are not unitarily similar since the unitarily invariant function f(x) = trx3x∗3x2x∗2

assumes the values f(A) = 1
4 and f(AT) = 1

16 . The peculiar choice of trace is
motivated by Djoković [2, Thm. 4.4] (see Section 5.3). In fact, f(x) is Djoković’s
twentieth unitary invariant; the first nineteen are unable to distinguish A from AT.

5.6. Livšic characteristic functions. Theorem 5.17 provides a simple criterion
to determine whether two partial isometries of defect one are unitarily similar.
Example 5.19 illustrates that the defect-one condition cannot be overlooked. A
suitable replacement of Theorem 5.17 for higher defect is due to Livšic [24].

Let A ∈ Mn be a partial isometry with defect r > 1 whose spectrum contained
in D (so A is completely non-unitary; see Section 5.2). Let v1,v2, . . . ,vr be an
orthonormal basis for kerA. Theorem 3.8 ensures that A has a unitary extension
U (in fact many of them). For z ∈ D, define

wA(z) = z
[
〈(U − zI)−1vi,vj〉

][
〈(U − zI)−1Uvi,vj〉

]−1 ∈ Mr. (5.26)

Livšic showed that wA is an analytic, contractive Mr-valued function on D such that
wA(ζ) is unitary for ζ ∈ T. He showed that different choices of {v1,v2, . . . ,vr} and
U result in Q1wAQ2, where Q1, Q2 are constant unitary matrices. The function
wA (more precisely, the family of functions) is the Livšic characteristic function of
A and it is a unitary invariant for the partial isometries with defect r [24].

Theorem 5.27. Let A,B ∈ Mn be partial isometries with defect r > 1 and whose
spectra are contained in D. Then A and B are unitarily similar if and only if there
are unitary Q1, Q2 ∈ Mr such that

wA(z) = Q1wB(z)Q2

for all z ∈ D.

Proof. The details are technical so we only sketch the proof in the case r = 1. Let
A,B ∈ Mn be partial isometries with defect 1 and whose spectra are contained in
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D. In this case, kerA = span{v} for some unit vector v. Then

wA =
z〈(U − zI)−1v,v〉
〈(U − zI)−1Uv,v〉

,

in which U ∈ Mn is a unitary extension of A. One can verify that wA only changes
by a unimodular constant if one selects a different U .

If B = V AV ∗ for some unitary V ∈ Mn, then V UV ∗ is a unitary extension of B
and kerB = span{V v}. Thus,

wB(z) =
z〈(V UV ∗ − zI)−1V v, V v〉

〈(V UV ∗ − zI)−1V UV ∗V v, V v〉
=

z〈(U − zI)−1v,v〉
〈(U − zI)−1Uv,v〉

= wA(z).

For the other direction, we first give an alternate formula for wA. Let U ∈ Mn

be a unitary extension of A and write

U = Qdiag(ξ1, ξ2, . . . , ξn)Q∗,

in which Q ∈ Mn is unitary and |ξ1| = |ξ2| = · · · = |ξn| = 1. Denote the ith entry
of q = Q∗v by qi. Then

〈(U − zI)−1v,v〉 =

n∑
j=1

1

ξj − z
|qi|2 and 〈(U − zI)−1Uv,v〉 =

n∑
j=1

ξj
ξj − z

|qi|2.

From here we see that

wA(z) =
z〈(U − zI)−1v,v〉
〈(U − zI)−1Uv,v〉

=

n∑
i=1

z + ξi + z − ξi
z − ζi

|qi|2

n∑
i=1

z + ξi − z + ξi
z − ξi

|qi|2

=

n∑
i=1

z + ξi
z − ξi

|qi|2 +

n∑
i=1

|qi|2

n∑
i=1

z + ξi
z − ξi

|qi|2 −
n∑
i=1

|qi|2

=

n∑
i=1

z + ξi
z − ξi

|qi|2 + 1

n∑
i=1

z + ξi
z − ξi

|qi|2 − 1

since
n∑
i=1

|qi|2 = ‖Q∗v‖2 = ‖v‖2 = 1.

A similar formula holds for wB(z). Now suppose that wA = ξwB for some ξ ∈ T.
By adjusting the unitary extension of either A or B we can assume that wA = wB
(an equality of rational functions). Thus, UA and UB have the same eigenvalues
and multiplicities, so they are unitarily similar: XUAX

∗ = UB for some unitary
matrix X. Since X(kerA)⊥ = (kerB)⊥ and UA|(kerA)⊥ = UB |(kerB)⊥ , it follows
that XAX∗ = B and hence A and B are unitarily similar. �
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Example 5.28. The partial isometry

A =

0 − 1√
2

1
2

0 1√
2

1
2

0 0 1√
2


is completely non-unitary since σ(A) = {0, 1√

2
} ⊆ D. A unitary extension for A is

U =

−
1
2 − 1√

2
1
2

− 1
2

1√
2

1
2

1√
2

0 1√
2


and kerA = span{(1, 0, 0)}. A computation using (5.26) shows that

wA(z) = −z
(
z − 1/

√
2

1− z/
√

2

)2

.

This is a finite Blaschke product whose zeros are the eigenvalues of A with the
corresponding multiplicities.

Example 5.29. Consider the partially isometric matrix

A =


0 0 0 0
1√
2
− 1√

2
0 0

1
2

1
2 0 0

1
2

1
2 0 0

 .
Since σ(A) = {− 1√

2
, 0} ⊆ D, we may apply Livšic’s theorem. Noting that kerA =

span{(0, 0, 0, 1), (0, 0, 1, 0)}, we see that A has unitary extension

U =


0 0 1 0
1√
2
− 1√

2
0 0

1
2

1
2 0 − 1√

2
1
2

1
2 0 1√

2

 .
A computation with (5.26) yields the 2× 2 matrix-valued function

wA(z) =

 z√
2

z2(2z+
√
2)

2(z+
√
2)

− z√
2

z2(2z+
√
2)

2(z+
√
2)

 .
In particular, wA(ζ) is unitary for every ζ ∈ T.

Example 5.30. Consider the partial isometry

A =


0 1

2 0 1
2 0

0 0 0 0 0
0 1

2 0 1
2 0

0 1√
2

0 − 1√
2

0

0 0 0 0 0

 ,
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which has unitary extension

U =


0 1

2 − 1√
2

1
2 0

1 0 0 0 0
0 1

2
1√
2

1
2 0

0 1√
2

0 − 1√
2

0

0 0 0 0 1

 .

We have σ(A) = {− 1√
2
, 0} ⊆ D and

kerA = span{(0, 0, 0, 0, 1), (0, 0, 1, 0, 0), (1, 0, 0, 0, 0)}.

A computation with (5.26) yields the 3× 3 matrix-valued function

wA(z) =


z 0 0

0 z√
2

z2(2z+
√
2)

2(z+
√
2)

0 − z√
2

z2(2z+
√
2)

2(z+
√
2)

 .
As expected, wA(ζ) is unitary for every ζ ∈ T.

Example 5.31. For the two matrices A and B from (5.20),

wA(z) =

[
z 0
0 z3

]
and wB =

[
z2 0
0 z2

]
.

There are no unitaries Q1, Q2 such that wA(z) = Q1wB(z)Q2 for all z ∈ D. If there
were, then |z| = ‖wA(z)‖ = ‖wB(z)‖ = |z|2 for all z ∈ D, which is impossible.

6. The compressed shift

If a partial isometry A ∈ Mn satisfies

σ(A) = {0, λ1, λ2, . . . λn−1} ⊆ D and dim kerA = 1, (6.1)

then there is a tangible representation of A as a certain operator on a Hilbert space
of rational functions. What follows is a highly abbreviated treatment. See [7,8] for
the basics and [26,27] for an encyclopedic treatment.

6.1. A concrete model. For a partial isometry A ∈ Mn that satisfies (6.1), the
model space corresponding to A is

KA =

{
a0 + a1z + a2z

2 + · · ·+ an−1z
n−1

(1− λ1z)(1− λ2z) · · · (1− λn−1z)
: aj ∈ C

}
.

We endow KA with a Hilbert-space structure by regarding it as a subspace of
L2 = L2(T), with inner product

〈f, g〉 =

∫
T
f(ζ)g(ζ)dm(ζ),

in which dm(ζ) = |dζ|/2π is normalized Lebesgue measure on the unit circle T.
Let H2 denote the Hardy space of analytic functions f : D → C with square-
summable Taylor coefficients at the origin. It can be viewed as a subspace of L2 by
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considering boundary values on T (see [7] and the references therein). We associate
to the partial isometry A, with data (6.1), the n-fold Blaschke product

BA(z) = z

n−1∏
j=1

z − λj
1− λjz

. (6.2)

Then an exercise with the Cauchy integral formula confirms that KA = H2	BAH2.
Moreover, KA is a reproducing kernel Hilbert space with kernel

kAλ (z) =
1−BA(λ)BA(z)

1− λz
.

A convenient orthonormal basis for KA is the Takenaka basis [7, Prop. 5.9.2].

Proposition 6.3. Let A ∈ Mn be a partial isometry that satisfies (6.1). Then

v1(z) = 1,

v2(z) = z

√
1− |λ1|2

1− λ1z
,

v3(z) = z
z − λ1
1− λ1z

√
1− |λ2|2

1− λ2z
,

v4(z) = z
z − λ1
1− λ1z

z − λ2
1− λ2z

√
1− |λ3|2

1− λ3z
,

...

vn(z) = z

( n−2∏
j=1

z − λj
1− λjz

)√
1− |λn−1|2

1− λn−1z
,

is an orthonormal basis for KA.

The orthogonal projection PA : L2 → L2 with range KA is

(PAf)(z) =

n∑
i=1

〈f, vi〉vi(z).

This permits us to define the following operator.

Definition 6.4. Let A ∈ Mn be a partial isometry that satisfies (6.1). The com-
pressed shift SA : KA → KA is

(SAf)(z) =

n∑
i=1

〈zf, vi〉vi(z).

The operator SA enjoys the following properties; see [8] for details. It is a
completely non-unitary partial isometry on KA (that is, SAS

∗
ASA = SA). Moreover,

σ(SA) = {0, λ1, λ2, . . . , λn−1} and kerSA = span{BA(z)/z} is one dimensional.
The matrix representation of SA with respect to the Takenaka basis is

0
λ1

. . .

qi,j λn−2
λn−1

 , (6.5)
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in which

qi,j =

(
j−1∏
k=i+1

(−λk)

)√
1− |λi|2

√
1− |λj |2.

In particular, A is unitarily similar to (6.5) because they are partial isometries with
one-dimensional kernels and the same characteristic polynomials (Theorem 5.17).

Proposition 6.6. If A ∈ Mn is a partial isometry that satisfies (6.1), then A is
unitarily similar to (6.5).

Thus, the compressed shift is a model for certain types of partial isometries.

6.2. Numerical range. The numerical range of A ∈ Mn is

W (A) =
{
〈Ax,x〉 : ‖x‖ = 1

}
.

The continuity of f(x) = 〈Ax,x〉, the compactness of the unit ball in Cn, and the
Cauchy–Schwarz inequality ensure that W (A) is a compact subset of {z ∈ C : |z| 6
‖A‖}. The Toeplitz–Hausdorff theorem says that W (A) is convex [8, Thm. 10.3.9].

The numerical range is unitarily invariant: if A ∼= B, then W (A) = W (B).
This permits us to characterize the numerical range of a normal matrix using the
following notions. A convex combination of ξ1, ξ2, . . . , ξn ∈ C is an expression

c1ξ1 + c2ξ2 + · · ·+ cnξn,

in which

c1, c2, . . . , cn ∈ [0, 1] and c1 + c2 + · · ·+ cn = 1.

The convex hull of {ξ1, ξ2, . . . , ξn} is the set of all convex combinations of ξ1, ξ2, . . . , ξn.
It is the smallest filled polygon that contains the points ξ1, ξ2, . . . , ξn.

Proposition 6.7. The numerical range of a normal matrix is the convex hull of
its eigenvalues.

Proof. Let N ∈ Mn be normal. The spectral theorem ensures that N is unitarily
similar to a diagonal matrix D = diag(ξ1, ξ2, . . . , ξn). Thus,

W (N) = W (D) =
{
〈Dx,x〉 : ‖x‖2 =

n∑
i=1

|xi|2 = 1
}

=
{ n∑
i=1

ξi|xi|2 :

n∑
i=1

|xi|2 = 1
}

=
{ n∑
i=1

ciξi :

n∑
i=1

ci = 1
}

is the convex hull of {ξ1, ξ2, . . . , ξn}. �

Since the eigenvalues of a unitary matrix have unit modulus, the numerical range
of a unitary matrix is a polygon inscribed in the unit circle (Proposition 6.7); see
Figure 1. For a partial isometry there is some beautiful geometry behind the scenes;
see the recent book of Daepp, Gorkin, Shaffer, and Voss [1].

A partial isometryA ∈ Mn with spectrum {0, λ1, λ2, . . . , λn−1} and one-dimensional
kernel, in which λ1, λ2, . . . , λn−1 ∈ D, is unitarily similar to (6.5). The numerical
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Figure 1. The numerical range of a unitary matrix with five eigenvalues on

the unit circle is the convex hull of these eigenvalues.

range of SA, and hence W (A), can be computed as follows. First consider the
(n+ 1)-fold Blaschke product

bA(z) = z2
n−1∏
j=1

z − λj
1− λjz

.

For each ξ ∈ T, there are n + 1 distinct points ζ1, ζ2, . . . , ζn+1 ∈ T such that
bA(ζi) = ξ for 1 6 i 6 n + 1 [8, p. 48]. Let Qξ denote the convex hull of
conv({ζ1, ζ2, . . . , ζn+1}), which is a (n+ 1)-gon whose vertices are on T. Then,

W (A) =
⋂
ξ∈T

Qξ. (6.8)

Example 6.9. The partial isometry

A =

[
0 0√
3
2

1
2

]
has σ(A) = {0, 12}. Then

bA(z) = z2
(
z − 1/2

1− z/2

)
.

The sets Qξ are filled triangles; see Figure 2a. The numerical range W (A) of A is
the intersection of the Qξ, which is an ellipse; see Figure 2b. See [1] for more on
the specifics about the ellipse.

Example 6.10. Consider the compressed shift A with

σ(A) = {0, 1√
2
, 1√

3
, 1√

5
}.

The associated five-fold Blaschke product is

bA(z) = z2
(
z − 1/

√
2

1− z/
√

2

)(
z − 1/

√
3

1− z/
√

3

)(
z − 1/

√
5

1− z/
√

5

)
.
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(a) The triangles Qξ for ξ = e2πik/3 with
k = 0, 1, 2.

(b) W (A) is the intersection of the trian-
gles Qξ for ξ ∈ T.

Figure 2. Illustration for Example 6.9

(a) The pentagons Qξ for ξ = e2πik/3 with
k = 0, 1, 2.

(b) W (A) is the intersection of the pen-
tagons Qξ for ξ ∈ T.

Figure 3. Illustration for Example 6.10

The sets Qξ are (irregular) pentagons; see Figure 3a. The numerical range W (A)
of A is the intersection of the Qξ, which is an ellipse; see Figure 3b.

A result that relates Corollary 6.6 and the Halmos–McLaughlin theorem on
defect-one partial isometries (Theorem 5.17) is the following [15,16].

Theorem 6.11. If A,B ∈ Mn are partial isometries with spectra contained in D
and one-dimensional kernels, then A ∼= B if and only if W (A) = W (B).
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