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The Dual of the Compressed Shift

M. C. Câmara and W. T. Ross

Abstract. For an inner function u, we discuss the dual operator for the compressed shi� PuS∣Ku
,

where Ku is the model space for u. We describe the unitary equivalence/similarity classes for these

duals as well as their invariant subspaces.

1 Introduction

�is paper deals with the unitary equivalence classes and the invariant subspaces of
the dual operators for the well-known compressed shi� operator on a model space.
�emain tool to explore these results is to connect these dual operators to the bilateral
shi� on L2 as well as a direct sum of the unilateral shi� and its adjoint.

For an inner function u on D ∶= {∣z∣ < 1}, consider themodel space [11]

Ku ∶= H2 ∩ (uH2)⊥ ,
where H2 is the Hardy space [10]. By Beurling’s theorem, the subspaces uH2 are the
non-zero invariant subspaces of the shi� operator

(S f )(z) = z f (z)(1.1)

on H2 , and thus, via annihilators, the spaces Ku are the non-trivial S∗-invariant
subspaces of H2. �e operator S∗ can be realized as the backward shi�

(S∗ f )(z) = f (z) − f (0)
z

.(1.2)

As H2 is a closed subspace of L2(T, dθ/2π), one denotes by Pu the orthogonal
projection of L2 ontoKu . �e operator

Su ∶= PuS∣Ku
,

is called the compressed shi� and plays an important role in operator theory
[11, p. 195].

Related to Su are the truncated Toeplitz operators Au
φ ∶= PuMφ ∣Ku

, where φ ∈ L∞
and Mφ f = φ f is multiplication by φ on L2. Note that Au

z = Su . �ese truncated
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�e Dual of the Compressed Shi� 99

Toeplitz operators have received considerable attention since their initial introduction
in [15] (see also [4, 12]).

�e recent papers [3, 7, 8, 9] began an interesting study of the dual truncated
Toeplitz operators Du

φ , φ ∈ L∞, defined onK
⊥
u by

Du
φ ∶= (I − Pu)Mφ ∣K⊥u .

Notice that I − Pu is the orthogonal projection of L2 onto K
⊥
u . Decomposing

L2 as L2 =Ku ⊕K
⊥
u , one can think of Au

φ and its associated dual Du
φ as parts of

the multiplication operator

Mφ ∶ L2 =Ku ⊕K
⊥
u Ð→ L2 , Mφ f = φ ⋅ f ,

by means of its matrix decomposition

Mφ = [ Au
φ ∗∗ Du

φ
] .(1.3)

In this paper, we focus on the dual of the compressed shi� Su , denoted by

Du ∶= (I − Pu)S∣K⊥u .(1.4)

By (3), we can understand Du in terms of matrices as

M ∶= [ Su ∗∗ Du
] ,

where M ∶= Mz on L2 and the matrix above is, with respect to the orthogonal
decomposition, L2 =Ku ⊕K

⊥
u . �ere are other contexts of dual operators defined for

Toeplitz and subnormal operators [1, 5, 6, 16], and thus these duals enjoy a tradition
in operator theory.

Along with a discussion of some basic properties of Du , we will describe the Du

invariant subspaces ofK⊥u as well as the similarity and unitary equivalence properties
of Du and Dv for inner u and v. We will show that when u(0) = 0, Du is unitarily
equivalent to S ⊕ S∗ on H2 ⊕H2, and thus Du and Dv are unitarily equivalent
whenever u(0) = v(0) = 0. When u(0) /= 0, Du turns out to be similar to M on L2,
and thus Du is similar to Dv whenever u(0) /= 0, v(0) /= 0. Finally, we show that
Du is unitarily equivalent to Dv precisely when ∣u(0)∣ = ∣v(0)∣. �ese results become
important when describing the invariant subspaces of Du (Sections 6 and 7) and have
connections to results from [14, 17]. A�er this paper was completed, we learned of the
paper [17], which approaches the Du-invariant subspaces ofK

⊥
u in a different way.

2 Some Basics

�e space L2 = L2(T, dm), where T is the unit circle and m = dθ/2π on T, is a
Hilbert spacewith inner product ⟨ f , g⟩ ∶= ⟨ f , g⟩L2 .�eFourier coefficients of f will be

denoted by f̂ ( j) = ⟨ f , ξ j⟩. Viewing theHardy spaceH2 as { f ∈ L2 ∶ f̂ (n) = 0 ∀n < 0}
and H2

0 as {z f ∶ f ∈ H2}, note that L2 = H2 ⊕H2
0 . Let P+ and P− denote the standard

orthogonal projections from L2 onto H2 and H2
0 , respectively.
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100 M. C. Câmara and W. T. Ross

For an inner function u, define the model space Ku = H2 ∩ (uH2)⊥ . Elementary
facts about annihilators will verify that

K
⊥
u = H2

0 ⊕ uH2 .

AsKu is a closed subspace of L2, we have an orthogonal projection Pu from L2 onto
Ku . A result from [11, p. 124] relates Pu , I − Pu , P+, and P−.

Lemma 2.1 If u is inner, then Pu = P+ −MuP
+Mu = MuP

−MuP
+ and I − Pu = P− +

MuP
+Mu .

Any f ∈ L2 = H2 ⊕H2
0 can be written uniquely as

f = f+ + f− , f+ ∈ H2 , f− ∈ H2
0 ;

that is, f+ = P+ f and f− = P− f .
We will also use the notation

φ f ∶= z f− , f ∈ L2 .(2.1)

Observe that φ f ∈ H2, and hence is analytic on D, and so we can utilize the quantity
φ f (0). A Fourier series argument will show that

φ f (0) = ∫
T

z f− dm = f̂−(−1).(2.2)

Any f ∈K⊥u = H2
0 ⊕ uH2 can be written uniquely as

f = f− + u f̃+ , f− ∈ H2
0 , f̃+ ∈ H2 .(2.3)

Lemma 2.1 shows that f− = P− f and f̃+ = P+(u f ) and a Fourier series argument will
verify the following identities.

Lemma 2.2 For f ∈ L2 , we have

(i) P−(z f−) = φ f − φ f (0);
(ii) P−(z f+) = f+(0)z;
(iii) P+(z f+) = ( f+ − f+(0))z;
(iv) P+(z f−) = φ f (0).

RegardingKu as a subspace of L
2, we have the following useful result.

Proposition 2.3 If u is inner, then uKu = zKu .

Proof It is a standard fact [11] that the conjugate-linear operator

Cu ∶ L2 Ð→ L2 , Cu f = uz f ,(2.4)

is an involutive isometry on L2 with CuKu =Ku and CuK
⊥
u =K⊥u . �us, uKu =

uCuKu = zKu . ∎
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�e Dual of the Compressed Shi� 101

�e model spaceKu is a reproducing kernel Hilbert space on D with kernel

kuλ(z) = 1 − u(λ)u(z)
1 − λz , λ, z ∈ D,

meaning that f (λ) = ⟨ f , kuλ⟩ for f ∈Ku and λ ∈ D [11, p. 111].

3 Some Basic Facts About the Dual

In this section, we will develop some useful facts about Du . We start with a more
useful formula for Du than the one in (1.4).

Proposition 3.1 If u is inner, then

Du f = z f − φ f (0)ku0 , f ∈K⊥u .
Proof For f = f− + u f̃+ ∈K⊥u , use Lemma 2.1 to see that

Du f = (I − Pu)(z f ) = (P− + uP+u)(z f− + zu f̃+)
= z f− − φ f (0) + uP+zu f− + zu f̃+
= z f− + zu f̃+ − φ f (0) + uu(0)φ f (0)
= z f − φ f (0)(1 − u(0)u) = z f − φ f (0)ku0 .

Note the use of Lemma 2.2 and u f− = zuφ f and φu f− = uφ f . ∎
Corollary 3.2 If u is inner, then Du ∣uH2 = S∣uH2 , and thus Du(uH2) ⊂ uH2. When

u(0) = 0, we have DuH2
0 = H2

0.

�e definition of Du from (4) shows that D∗u = Du
z . In fact, via the conjugation

operator Cu from (4), we have CuDuCu = D∗u [7]. Proposition 3.1 and the above
conjugation identity yield the following proposition.

Proposition 3.3 If u is inner, then D∗u f = z f − f̃+(0)Cuk
u
0 . Furthermore, D∗u ∣H2

0

=
M∗∣

H2
0

, where M∗ f = z f , and thus D∗uH2
0 ⊂ H2

0. When u(0) = 0, we have D∗u(uH2) =
uH2.

Here are some interesting facts from [2, 7] about Du .

Proposition 3.4 For an inner function u we have the following:

(i) ∥Du∥ = 1;
(ii) σ(Du) = D when u(0) = 0 while σ(Du) = T when u(0) /= 0;
(iii) DuD

∗
u = I − (1 − ∣u(0)∣2)u ⊗ u.
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102 M. C. Câmara and W. T. Ross

4 Unitary Equivalence and Similarity

For two compressed shi�s Su and Sv we know that Su is unitarily equivalent to Sv if
and only if u is a constant unimodular multiple of v. For their duals, they are o�en
unitarily equivalent and evenmore o�en similar.�is will be an important part of our
analysis of their invariant subspaces.

For an inner function u, the authors in [8] define the onto isometry

U ∶ L2 = H2 ⊕H2
0 Ð→K

⊥
u = uH2 ⊕H2

0 , U = [ Mu 0
0 I

] ,(4.1)

where recall thatMu f = u ⋅ f on L2. A computation in that paper yields the following

lemma. For any φ ∈ L∞, recall the definition of the Hankel operator Hφ ∶ H2 → H2
0 ,

Hφ f = P−(φ f ) as well as the following formula for its adjoint: H∗φ ∶ H2
0 → H2, H∗φ f =

P+(φ f ).
Lemma 4.1 For an inner function u, we have

U∗DuU = [ S H∗uz
0 Q

] ,
where S is the shi� on H2 from (1) and Q ∶ H2

0 → H2
0, Qg = P−(zg).

One of the main theorems of this section is the following.

�eorem 4.2 Let u be an inner function.

(i) If u(0) = 0, then Du is unitarily equivalent to the operator

[ S 0
0 Q

] ∶H2 ⊕H2
0 Ð→ H2 ⊕H2

0 ,

and thus for any two inner functions u and v that vanish at 0, the operators Du

and Dv are unitarily equivalent.
(ii) If u(0) /= 0, then Du is unitarily equivalent to the operator

[ S u(0)(1⊗ z)
0 Q

] ∶H2 ⊕H2
0 Ð→ H2 ⊕H2

0 .

Proof If u(0) = 0, then H∗uz ≡ 0. Indeed, for g ∈ H2
0 ,

H∗uz g = P+(zug) = P+(uz ⋅ g) = 0,
since u/z ∈ H2 , and thus (u/z)g ∈ H2

0 .

When u(0) /= 0 and g ∈ H2
0 , we can use Lemma 2.2(iv) and (2.2) to get

H∗uz g = P+(uzg) = φug(0) = u(0)φg(0) = u(0)ĝ(−1).
But this is the rank one operator u(0)(1⊗ z) ∶ H2

0 → H2 . ∎
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�e Dual of the Compressed Shi� 103

We can refine this a bit further. Recall S and S∗ from (1.1) and (1.2).

Corollary 4.3 If u is inner and u(0) = 0, then Du is unitarily equivalent to S ⊕ S∗ on
H2 ⊕H2.

Proof Via the unitary operator U from (4.1), we see from �eorem 4.2 that Du

is unitarily equivalent to S ⊕ Q on H2 ⊕H2
0 , where Qg = P−(zg), g ∈ H2

0 . One can

quickly check that W ∶ H2
0 → H2, (Wg)(z) = g(z)/z is unitary with S∗W =WQ.

�us, the unitary operator L = I ⊕W ∶ H2 ⊕H2
0 → H2 ⊕H2 will satisfy (S ⊕ S∗)L =

L(S ⊕ Q). ∎
We will refine this unitarily equivalence result further in �eorem 4.6 below.
As it turns out, all of the operators Du , when u(0) /= 0, are similar to the bilateral

shi�M f = z f on L2.�is important observation will come into play when discussing
the invariant subspaces for Du . To this end, for u inner with u(0) /= 0, define

Vu ∶K⊥u Ð→ L2 , Vu ∶= P− + u

u(0)P
+(4.2)

with inverse

V−1u ∶ L2 →K
⊥
u , V−1u = P− + uu(0)P+.(4.3)

Observe that

Vu = P− + 1

u(0)P
+u.(4.4)

�eorem 4.4 If u is inner with u(0) /= 0, then VuDuV
−1
u = M on L2. Consequently,

for and inner u and v with u(0) /= 0, v(0) /= 0, Du is similar to Dv and Du =W−1DvW,

where W ∶ K⊥u →K
⊥
v , W = P− + v(0)

u(0)
vP+u.

Proof For f = f− + f+ ∈ L2 use Proposition 3.1 and Lemma 2.2 to obtain

VuDuV
−1
u ( f− + f+) = VuDu( f− + u(0)u f+)
= (P− + u

u(0)P
+)(z f− + zuu(0) f+ − φ f (0) + φ f (0)u(0)u)

= φ f − φ f (0) + u

u(0)φ f (0) + z f+ − u

u(0)φ f (0) + φ f (0)
= z f− + z f+ = M f .

From here it follows that Du =W−1DvW withW = V−1v Vu . ∎
Remark 4.5 It is important to point out that although Du is similar to M when
u(0) /= 0, it is not unitarily equivalent toM. �is is becauseM is normal, while Du is
not (Proposition 3.4). It also follows that Du is not similar to Dv when u(0) = 0 and
v(0) /= 0 (Proposition 3.4).

We return to the unitary equivalence of Du and Dv begun in�eorem 4.2.
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104 M. C. Câmara and W. T. Ross

�eorem 4.6 If u and v are inner functions, then Du is unitarily equivalent to Dv if
and only if ∣u(0)∣ = ∣v(0)∣.
Proof When u(0) = v(0) = 0, the result follows from�eorem 4.2. So assume that
u(0) and v(0) are both nonzero. Suppose Z ∶K⊥u →K

⊥
v is unitary with ZDuZ

∗ = Dv .
From Proposition 3.4, we have

I∣K⊥v − (1 − ∣u(0)∣2)Zu ⊗ Zu = ZDuD
∗
uZ
∗ = DvD

∗
v

= I∣K⊥v − (1 − ∣v(0)∣2)v ⊗ v ,

and it follows that

(1 − ∣u(0)∣2)Zu ⊗ Zu = (1 − ∣v(0)∣2)v ⊗ v .

Apply both sides to the unit vector v ∈ vH2 ⊂K⊥v and observe that

(1 − ∣u(0)∣2)⟨v , Zu⟩Zu = (1 − ∣v(0)∣2)v
implying that Zu = cv for some unimodular constant c (because u and v are unit
vectors and Z is unitary). �e previous equation yields ∣u(0)∣ = ∣v(0)∣.

Conversely, if ∣u(0)∣ = ∣v(0)∣, then�eorem 4.4 yields Du =W−1DvW where

W = P− + v(0)
u(0)vP

+u and W−1 = P− + u(0)
v(0)uP

+v =W∗ ,

since
v(0)
u(0)
= u(0)

v(0)
. �erefore,W is unitary. ∎

5 Invariant Subspaces

We begin our discussion with a few general results.

Proposition 5.1 Let u be any inner function. A subspaceS ⊂K⊥u is Du-invariant with
S ⊂ uH2, or equivalently P−S = {0}, if and only ifS = γuH2 for some inner function
γ.

Proof If S = γuH2, then S ⊂ uH2 [11, p. 87] and by Corollary 3.2, DuS = zS ⊂
S and so S is Du-invariant. Conversely, when S ⊂ uH2 is a Du-invariant, then,
again by Corollary 3.2, SS ⊂S . By Beurling’s theorem, S = βH2 for some inner β.
But βH2 ⊂ uH2 , and so β = γu.
Lemma 5.2 For a non-zero subspace X ⊂ H2

0 , we have X = zKα for some inner α if

and only if P−(zX) ⊂ X and X /= H2
0. ∎

Proof Observe that S∗ f = P+(z f ), f ∈ H2, and so

X = zKα for some α

⇐⇒ zX =Kα for some α

⇐⇒ P+(z(zX)) ⊂ zX and zX /= H2

⇐⇒ zP+(z(zX)) ⊂ X and X /= H2
0 .
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�e Dual of the Compressed Shi� 105

Using the identity P−( f ) = zP+(z f ), we see that
zP+(z(zX)) ⊂ X ⇐⇒ P−(zX) ⊂ X and X /= H2

0

∎
Lemma 5.3 Let u be any inner function and letS ⊂K⊥u be a Du-invariant subspace.
If P−S /= {0} then there is an f− ∈ P−S such that φ f−(0) /= 0.
Proof Suppose that for every f− ∈ P−S ∖ {0}, with f− = P− f , f ∈S ⊂K⊥u , we
have φ f (0) = 0. From Proposition 3.1 and (2.2), we have

P−(Du f ) = P−(z f−) = z f− ,
and so z f− ∈ P−S . �us, by assumption, z2 f− = ψ+ with ψ+ ∈ H2 and ψ+(0) =
φ′f (0) = 0. �erefore,

P−(D2
u f ) = P−(z2 f−) = z2 f− ∈ P−S .

Continuing in this manner, we see that

Dn
u f− = zn f− ∈ H2

0 , n ≥ 0,
which is impossible if f− /= 0. ∎

�ese next two results further examine P+S and P−S .

Proposition 5.4 Let u be any inner function andS ⊂K⊥u be a Du-invariant subspace.
�en one of the following three possibilities occurs:

(i) P−S = {0};
(ii) P−S = H2

0;

(iii) there is a non-constant inner function α such that P−S = zKα .

Proof Let f− ∈ P−S . �en there is an f = f− + u f̃+ ∈S . �us,

Du f = z f− − φ f (0) + u(z f̃+ + u(0)φ f (0)),
and so P−(Du f ) = z f− − φ f (0) = P−(z f−). Since Du f ∈S , we have P−(z f−) ∈
P−S . Apply Lemma 5.2 to X = P−S to obtain the result. ∎
Proposition 5.5 Let u be any inner function andS ⊂K⊥u be a Du-invariant subspace.
If u ∈ P+S , then P+S = uH2.

Proof Let f ∈S with f = f− + u. We have P+(Du f ) ∈ P+S and

Du f = Du( f− + u) = z f− + zu − φ f (0) + φ f (0)u(0)u
= (z f− − φ f (0)) + zu + φ f (0)u(0)u.

�us, P+Du f = zu + φ f (0)u(0)u and so zu = P+Du f − φ f (0)u(0)u ∈ P+S . Now

let f1 ∈S be such that f1 = f1− + uzwith f1− ∈ H2
0 .�en P+Du f1 = uz2 − φ f1(0)u(0)u,
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106 M. C. Câmara and W. T. Ross

and it follows that uz2 ∈ P+S . Analogously, we conclude that z ju ∈ P+S for all j ≥ 0,
and so, since P+S ⊂ uH2, we have P+S = uH2. ∎

6 Invariant Subspaces when u(0) /= 0

�eorem 4.4 says that when u(0) /= 0, Du is similar to M on L2. Results of Wiener
and Helson [13] together describe the M-invariant subspaces F of L2 as follows: If
MF = F, then there is a measurable subset A ⊂ T such that F = χAL2 , while if MF /=
F, then F = wH2 for some w ∈ L∞ with ∣w∣ = 1 almost everywhere on T. �is yields
the following theorem.

�eorem 6.1 Suppose u is inner, u(0) /= 0, and S is a Du-invariant subspace ofK
⊥
u .

When DuS =S , there is a measurable A ⊂ T for which

S = (P− + uu(0)P+)χAL2 .

When DuS /=S ,

S = (P− + uu(0)P+)wH2 ,

for some w ∈ L∞ with ∣w∣ = 1 almost everywhere on T.

From P− + P+ = I, we see that any Du-invariant S takes the form

{g − ku0P+g ∶ g ∈ F},
where F is anM-invariant subspace of L2.

Below are a few examples of

(P− + uu(0)P+)(wH2)(6.1)

for choices of inner u with u(0) /= 0 and w = αβ for inner α and β.

Example 6.2 Let u be inner with u(0) /= 0. If α ≡ 1 and β is any inner function, then
(P− + uu(0)P+)(βH2) = uβH2 .

Observe how this connects to Proposition 5.1.

Example 6.3 Let u be inner with u(0) /= 0. If β ≡ 1 and α is any inner function, then

(P− + uu(0)P+)(αH2)
= {(P− + uu(0)P+)(α f+) ∶ f+ ∈ H2}
= {(P− + uu(0)P+)(α(k + αg+)) ∶ k ∈Kα , g+ ∈ H2}
= {(P− + uu(0)P+)(αk + g+) ∶ k ∈Kα , g+ ∈ H2}.

From Proposition 2.3, notice that for any k ∈Kα we have αk ∈ H2
0 , and so P−(αk) =

αk and P+(αk) = 0. Apply Proposition 2.3 to get

(P− + uu(0)P+)(αH2) = αKα ⊕ uH2 = zKα ⊕ uH2 .
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Example 6.4 Let λ ∈ D/{0} and
u(z) = α(z) = z − λ

1 − λz , β(z) = z.
�en for any f+ ∈ H2,

(P− + uu(0)P+)(αβ f+)
= (P− + z − λ

1 − λz (−λ)P
+)( 1 − λz

z − λ z f+)
= P−( 1 − λz

z − λ z f+) − λ z − λ
1 − λz P

+( 1 − λz
z − λ z f+)

= { z

1 − λz λ(1 − ∣λ∣2) f+(λ) + λ(z f+ −
λ(1 − ∣λ∣2)
1 − λz f+(λ)) ∶ f+ ∈ H2}.

�e above is a proper subspace of zKα ⊕ uH2. Indeed, z − λ ∈ zKα ⊕ uH2 but there
is no f+ ∈ H2 for which

z − λ = z

1 − λz λ(1 − ∣λ∣2) f+(λ) + λ(z f+ −
λ(1 − ∣λ∣2)
1 − λz f+(λ)).

If there were such an f+, then due to the uniqueness of orthogonal decomposition
above, f+(λ) = 0. �is would mean that z − λ = λz f+(z) for which there is no such
f+ ∈ H2.

One can only go so far with these types of examples from (6.1) since there are
examples of unimodular w which are not the quotient of two inner functions.

Corollary 6.5 Let u be inner with u(0) /= 0. If S ⊂K⊥u , then P−VS = P−S .

Proof If g− ∈ P−VS , there is an h ∈S such that

g− = P−(P− + u

u(0)P
+)h = P−h + P− u

u(0)P
+h

= P−h + P− u

u(0) (uh1)²
P+h∈uH2

= P−h.

�us, P−VS ⊂ P−S .
Conversely, if h− ∈ P−S , there exists an h ∈S such that h− = P−h. �us for

g = (P− + u

u(0)P
+)h ∈ VS ,

we have P−g = h−. �us, P−S ⊂ P−VS . ∎
Corollary 6.6 Let u be inner with u(0) /= 0. If S ⊂K⊥u is a Du-invariant subspace

and {0} ⊊ P−S ⊊ H2
0, then S = V−1(αβH2) for two coprime inner functions α and

β.
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Proof By Proposition 5.4, we have P−S = zKα for some inner function α and by
Corollary 6.5, P−VS = P−S = αKα . �us,

VS = (P− + P+)VS ⊂ P−VS ⊕ P+VS = αKα ⊕ P+VS .

�us, αVS ⊂Kα ⊕ αP+VS ⊂ H2. By �eorem 4.4, αVS is an S-invariant sub-
space of H2 that means that αVS = βH2 for some inner function β. Dividing out by
any common inner factors between α and β, we can assume that α and β are coprime.
�us, S = V−1(αβH2). ∎
Corollary 6.7 Let F be an M-invariant subspace of L2 that is not of the form αβH2

for inner α and β. �en S = V−1F is a Du-invariant subspace with P−S = H2
0.

Remark 6.8 (i) �e theorems in this section identify P−S and P+S separately.
It is interesting that S can be a proper subset of P−S ⊕ P+S that seems to
create a rich invariant subspace structure.

(ii) If u(0) /= 0 andS /= {0}, we do not have P+S = {0}. Indeed, this would mean

that S ⊂ H2
0 . However, for any f− ∈S , we would have

Du f− = z f− − φ f (0) + u(0)φ f (0)u /∈ H2
0

if φ f (0) /= 0 (Lemma 5.3).

7 Invariant Subspaces when u(0) = 0

We characterized the Du-invariant subspaces ofK
⊥
u when u(0) /= 0. We now discuss

the u(0) = 0 case.
Proposition 7.1 Let u be inner with u(0) = 0. If α and γ are inner, then zKα ⊕ γuH2

is a Du-invariant subspace ofK
⊥
u .

Proof Let f = zk + γuh, where k ∈Kα , h ∈ H2. Proposition 3.1 yields

Du(zk + γuh) = (k − k(0)) + zγuh
= z ⋅ k − k(0)

z
+ zγuh ∈ zKα + γuH2 ,

where we took into account that k ∈Kα Ô⇒ z(k − k(0)) ∈Kα . ∎
Proposition 7.2 Suppose u is inner with u(0) = 0 andS ⊂K⊥u is Du-invariant.�en
either P+S = {0} or P+S = γuH2 where γ is inner.

Proof Let P+S /= {0} and f = f− + u f̃+ ∈S . �en

P+(Du f ) = u(z f̃+ + u(0)φ f (0)) = zu f̃+ ∈ P+S .

�us, P+S (which is a subspace of uH2) is a non-zero S-invariant subspace and thus,
by Beurling’s �eorem, P+S = γuH2 for some inner γ. ∎
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Proposition 7.1 does not describe all the Du-invariant subspaces of K
⊥
u . To get a

better understanding where the complication lies, and since this is an interesting
problem in its own right, let us cast this in an equivalent setting. FromCorollary 4.3, a
description of theDu-invariant subspaces ofK

⊥
u will yield a description of the S ⊕ S∗-

invariant subspaces of H2 ⊕H2. One can also check that the unitary operator that
makes these two operators equivalent takes the Du-invariant subspace γuH

2 ⊕ zKα

to the S ⊕ S∗-invariant subspace γuH2 ⊕Kα . However, these are not all of them.

Example 7.3 For a ∈ D ∖ {0} consider the S ⊕ S∗-invariant subspace generated by

1

1 − az ⊕
1

1 − az ;
that is,

⋁{(S ⊕ S∗)n( 1

1 − az ⊕
1

1 − az ) ∶ n ≥ 0}.
For any polynomial p(z), we have

p(S ⊕ S∗)( 1

1 − az ⊕
1

1 − az ) =
p(z)
1 − az ⊕

p(a)
1 − az .

If {pn}n≥1 is a sequence of polynomials with

pn(S ⊕ S∗)( 1

1 − az ⊕
1

1 − az )Ð→ f ⊕ g

in H2 ⊕H2, one can argue that pn(z)→ (1 − az) f in the norm of H2 and thus
pn(a)→ (1 − a2) f (a). �us,

⋁{(S ⊕ S∗)n( 1

1 − az ⊕
1

1 − az ) ∶ n ≥ 0} = { f ⊕
f (a)(1 − a2)

1 − az ∶ f ∈ H2}.
�is subspace is contained in H2 ⊕ Kα , where

α(z) = z − a
1 − az ,

but the containment is proper. Indeed, we have

1⊕ 1

1 − az ∈ H2 ⊕Kα .

However,

1⊕ 1

1 − az /∈ { f ⊕
f (a)(1 − a2)

1 − az ∶ f ∈ H2}.
�is leads to the question: What are the invariant subspaces of S ⊕ S∗?

8 Orthogonal Sums

A complicating factor is that for a Du-invariant subspace S , we canot have P±S ⊂
S . We always have S ⊂ P−S ⊕ P+S , but Example 6.4 shows this containment can
be proper. Our main theorem is the following.
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�eorem 8.1 Let u be a inner and S be a non-trivial Du-invariant subspace of the

form S = X− ⊕ Y+ , where X− is a closed subspace of H2
0 and Y+ is a closed subspace of

uH2.

(i) If u(0) /= 0, then S takes one of the forms: γuH2 or zKα ⊕ uH2, where γ and α
are inner.

(ii) If u(0) = 0, thenS takes one of the following forms: H2
0 , zKα , γuH

2, H2
0 ⊕ γuH2,

or zKα ⊕ γuH2, where γ and α are inner.

Proof Proof of (i). By Proposition 5.1 we see that if X− = {0}, then Y+ = γuH2. On
the other hand, if X− /= {0}, then by Lemma 5.3 there is an f− ∈ X− ⊂S such that for

φ f = z f−, we have φ f (0) /= 0. Furthermore, Du f− = z f− − φ f (0) + u(0)φ f (0)u ∈S .
�erefore,

P−(Du f−) = z f− − φ f (0) ∈ X− ⊂S .

�ese equations imply that u ∈S . Proposition 5.5 implies Y+ = uH2. Proposition 5.4

says that either X− = H2
0 , which yields

S = X− ⊕ Y+ = H2
0 ⊕ uH2 =K⊥u

or X− = zKα , which implies S = zKα ⊕ uH2.
Proof of (ii). Proposition 7.2 says that either Y+ = {0} or Y+ = γuH2 for some inner

γ. �us S = X− or S = X− ⊕ γuH2. Proposition 5.4 says that either X− = {0}, X− =
H2

0 , or X− = zKα . ∎
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