

University of Richmond UR Scholarship Repository

Department of Math & Statistics Faculty Publications

Department of Math & Statistics

9-24-2021

Interpolating with outer functions

Javad Mashreghi

Marek Ptak

William T. Ross University of Richmond, wross@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/mathcs-faculty-publications

Part of the Special Functions Commons

Recommended Citation

Mashreghi, J., Ptak, M. & Ross, W.T. "Interpolating with outer functions." *Analysis and Mathematical Physics*, 11, 168 (2021): 1-17. doi: 10.1007/s13324-021-00604-2

This Article is brought to you for free and open access by the Department of Math & Statistics at UR Scholarship Repository. It has been accepted for inclusion in Department of Math & Statistics Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.

Interpolating with outer functions

Check for updates

Javad Mashreghi¹ · Marek Ptak² · William T. Ross³

Received: 5 July 2021 / Revised: 14 September 2021 / Accepted: 16 September 2021 / Published online: 24 September 2021 © The Author(s), under exclusive licence to Springer Nature Switzerland AG 2021

Abstract

The classical theorems of Mittag-Leffler and Weierstrass show that when $(\lambda_n)_{n\geq 1}$ is a sequence of distinct points in the open unit disk \mathbb{D} , with no accumulation points in \mathbb{D} , and $(w_n)_{n\geq 1}$ is any sequence of complex numbers, there is an analytic function φ on \mathbb{D} for which $\varphi(\lambda_n) = w_n$. A celebrated theorem of Carleson [2] characterizes when, for a bounded sequence $(w_n)_{n\geq 1}$, this interpolating problem can be solved with a bounded analytic function. A theorem of Earl [5] goes further and shows that when Carleson's condition is satisfied, the interpolating function φ can be a constant multiple of a Blaschke product. Results from [4] determine when the interpolating function φ can be taken to be zero free. In this paper we explore when φ can be an outer function.

Keywords Interpolating sequences · Hardy spaces · Outer functions

Mathematics Subject Classification $~30H10\cdot 47B35\cdot 30E05\cdot 41A05$

Dedicated to Harold S. Shapiro.

This work was supported by the NSERC Discovery Grant (Canada) and by the Ministry of Science and Higher Education of the Republic of Poland.

⊠ William T. Ross wross@richmond.edu

> Javad Mashreghi javad.mashreghi@mat.ulaval.ca

Marek Ptak rmptak@cyf-kr.edu.pl

- ¹ Département de Mathématiques et de Statistique, Université Laval, Québec, QC G1K 0A6, Canada
- ² Department of Applied Mathematics, University of Agriculture, ul. Balicka 253c, 30-198 Kraków, Poland
- ³ Department of Mathematics and Computer Science, University of Richmond, Richmond, VA 23173, USA

1 Interpolation

Interpolation problems for analytic functions have been a mainstay in complex and harmonic analysis since its conception in the late 19th century. The general idea is that we have a certain class \mathcal{X} of analytic functions on the open unit disk \mathbb{D} (e.g., all analytic functions, bounded analytic functions, analytic self maps of \mathbb{D} , Blaschke products, zero-free functions, outer functions). Then, for a sequence $(\lambda_n)_{n\geq 1}$ of distinct points in \mathbb{D} and sequence $(w_n)_{n\geq 1}$ of complex numbers, when can we find an $f \in \mathcal{X}$ such that

$$f(\lambda_n) = w_n \quad \text{for all } n \ge 1? \tag{1.1}$$

If we are not able to solve this problem for all $(\lambda_n)_{n=1}^{\infty}$ and $(w_n)_{n=1}^{\infty}$, what restrictions must we have?

Suppose \mathcal{X} is the class of *all* analytic functions on \mathbb{D} . For a sequence $(\lambda_n)_{n\geq 1}$ of distinct points in \mathbb{D} (with no limit point in \mathbb{D}) and any sequence $(w_n)_{n\geq 1}$, an application of the classical Mittag–Leffler theorem and the Weierstrass factorization theorem produces an $f \in \mathcal{X}$ that satisfies (1.1). In other words, for the class \mathcal{X} of all analytic functions on \mathbb{D} , besides the obvious restriction that $(\lambda_n)_{n\geq 1}$ has no limit points in \mathbb{D} , there is no other restriction on $(\lambda_n)_{n\geq 1}$ to be able to interpolate any sequence $(w_n)_{n\geq 1}$ with an analytic function.

Of course, there are the finite interpolation problems. For example, a well known result of Lagrange (from 1795) says that given distinct $\lambda_1, \ldots, \lambda_n$ in \mathbb{C} and arbitrary w_1, \ldots, w_n in \mathbb{C} there is a polynomial p of degree n - 1 such that $p(\lambda_j) = w_j$ for all $1 \le j \le n$. There is also the often-quoted result of Nevanlinna and Pick (from 1916) which says that given distinct $\lambda_1, \ldots, \lambda_n$ in \mathbb{D} and arbitrary w_1, \ldots, w_n in \mathbb{D} , there is an analytic $f : \mathbb{D} \to \mathbb{D}$ for which $f(\lambda_j) = w_j$, $1 \le j \le n$, if and only if the Nevanlinna-Pick matrix

$$\left[\frac{1-\overline{w_i}w_j}{1-\overline{\lambda_i}\lambda_j}\right]_{1\leq i,j\leq n}$$

is positive semidefinite [1,7].

When \mathcal{X} is the class of bounded analytic functions on \mathbb{D} , denoted in the literature by H^{∞} , a well-known theorem of Carleson [2] (see also [7]) says the following: for a sequence $(\lambda_n)_{n\geq 1} \subseteq \mathbb{D}$ the following conditions are equivalent:

(i) given any bounded sequence (w_n)_{n≥1} there is a φ ∈ H[∞] satisfying (1.1);
(ii)

$$\inf_{n\geq 1}\prod_{k=1,k\neq n}^{\infty} \left| \frac{\lambda_k - \lambda_n}{1 - \overline{\lambda}_k \lambda_n} \right| > 0.$$
(1.2)

Such a $(\lambda_n)_{n\geq 1}$ is called an *interpolating sequence* since the map

$$\Lambda: H^{\infty} \to \ell^{\infty}(\mathbb{N}), \quad \Lambda(\varphi) = (\varphi(\lambda_n))_{n \ge 1}$$

is surjective.

In this paper we investigate the type of functions $\varphi \in H^{\infty}$ that can perform the interpolating. For example, a result of Earl [5] says that when (1.2) holds, one can always take the interpolating function φ to be a constant multiple of a Blaschke product. Blaschke products have zeros in \mathbb{D} which leads us to ask: can one choose φ to be zero free? Can one choose φ to be outer? Under certain circumstances, the answer to the first question is yes and was explored in [4]. The answer to the second question is not as well understood and is the focus of this paper.

2 Some notation

Let us set our notation and review some well-known facts about the classes of analytic functions that appear in this paper. The books [3,7,9] are thorough references for the details and proofs. In this paper, \mathbb{D} is the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$, \mathbb{T} the unit circle $\{z \in \mathbb{C} : |z| = 1\}$, and $dm = d\theta/2\pi$ is normalized Lebesgue measure on \mathbb{T} . For $0 , we use <math>L^p(m)$ to denote the space of (Lebesgue) integrable functions and $L^{\infty}(m)$ to denote the essentially bounded measurable functions.

For $0 , the Hardy space <math>H^p$ is the set of analytic functions f on \mathbb{D} for which

$$||f||_p := \left(\sup_{0 < r < 1} \int_{\mathbb{T}} |f(r\xi)|^p dm(\xi)\right)^{\frac{1}{p}} < \infty.$$

Standard results say that every $f \in H^p$ has a radial limit

$$f(\xi) := \lim_{r \to 1^-} f(r\xi)$$

for almost every $\xi \in \mathbb{T}$ and $||f||_{L^p(m)} = ||f||_p$. As is the usual practice in Hardy spaces, we use the symbol f to denote the boundary function on \mathbb{T} as well as the analytic function on \mathbb{D} .

Let H^{∞} denote the bounded analytic functions on \mathbb{D} and observe that $H^{\infty} \subseteq H^p$ for all p and thus every $f \in H^{\infty}$ also has a radial boundary function. In fact,

$$\sup_{z\in\mathbb{D}}|f(z)|=\|f\|_{L^{\infty}(m)}.$$

If $f \in H^p \setminus \{0\}$ then

$$\int_{\mathbb{T}} \log |f| dm > -\infty$$

and thus the boundary function for f does not vanish on any set of positive measure.

3 Known facts about outer functions

For $W \in L^1(m)$ and real valued,

$$\varphi(z) = \exp\left(\int_{\mathbb{T}} \frac{\xi + z}{\xi - z} W(\xi) dm(\xi)\right)$$
(3.1)

is analytic on \mathbb{D} and is called an *outer function*. The class of outer functions will be denoted by \mathcal{O} . For all $z \in \mathbb{D}$, observe that

$$\log |\varphi(z)| = \int_{\mathbb{T}} \Re\left(\frac{\xi+z}{\xi-z}\right) W(\xi) \, dm(\xi) = \int_{\mathbb{T}} \frac{1-|z|^2}{|\xi-z|^2} W(\xi) \, dm(\xi),$$

which is the Poisson integral of W. By some harmonic analysis [7, p. 15],

$$\lim_{r \to 1^{-}} \log |\varphi(r\zeta)| = \log |\varphi(\zeta)| = W(\zeta)$$
(3.2)

for almost every $\zeta \in \mathbb{T}$. Moreover, $\varphi \in H^p$ precisely when $e^W \in L^p(m)$ and $\varphi \in H^\infty$ precisely when $e^W \in L^\infty(m)$.

The outer functions belong to the Smirnov class

$$N^{+} = \left\{ f/g : f \in H^{\infty}, g \in H^{\infty} \cap \mathcal{O} \right\}$$

and every $F \in N^+$ can be factored as $F = I_F O_F$, where I_F is inner ($I_F \in H^\infty$ with unimodular boundary values almost everywhere on \mathbb{T}) and O_F is outer. There are also the (proper) inclusions $H^\infty \subsetneq H^p \subsetneq N^+$.

The following are well known classes of outer functions.

Proposition 3.1 If f is analytic on \mathbb{D} , then any of the following conditions implies that $f \in \mathcal{O}$.

- (a) $\Re f > 0$ on \mathbb{D} .
- (b) $f \in H^p$ for some $0 and <math>1/f \in H^r$ for some $0 < r < \infty$.
- (c) f is a rational function with no zeros or poles in \mathbb{D} .

Important to this paper will be outer functions which take the form $f = \varphi^{\psi}$, where $\varphi, \psi \in \mathcal{O}$. Indeed this is something that needs checking since if $\varphi, \psi \in \mathcal{O}$, then $f = \varphi^{\psi}$, though analytic on \mathbb{D} and zero-free, need not be outer. In fact with $\varphi = e$ (a constant outer function) and

$$\psi(z) = -\frac{1+z}{1-z},$$

which is outer by Proposition 3.1, then

$$f(z) = \varphi(z)^{\psi(z)} = \exp\left(-\frac{1+z}{1-z}\right)$$

is inner! Note that the only functions that are both inner and outer are the unimodular constants.

If $u \in L^1(m) \setminus \{0\}$ and $u \ge 0$ on \mathbb{T} , the *Herglotz integral*

$$H_u(z) = \int_{\mathbb{T}} \frac{\xi + z}{\xi - z} u(\xi) dm(\xi)$$
(3.3)

is analytic on \mathbb{D} and

$$\Re H_u(z) = \int_{\mathbb{T}} \frac{1-|z|^2}{|\xi-z|^2} u(\xi) dm(\xi) > 0, \quad z \in \mathbb{D}.$$

By Proposition 3.1, H_u is outer. In fact $H_u \in H^p$ for all 0 .

Lemma 3.2 For $f \in H^1$ there are $G_j \in N^+$ with $\Re G_j > 0$ on \mathbb{D} for j = 1, 2 such that $f = G_1 - G_2$.

Proof Functions in H^1 have radial boundary values almost everywhere on \mathbb{T} and so let u_+ and u_- be defined for almost every $\xi \in \mathbb{T}$ by

$$u_{+}(\xi) = \max(\Re f(\xi), 0), \quad u_{-}(\xi) = \max(-\Re f(\xi), 0).$$

Since $|\Re f(\xi)| \le |f(\xi)|$ and |f| is integrable on \mathbb{T} , we see that u_+ , u_- are nonnegative integrable functions. Furthermore, by the discussion above, H_{u_+} and H_{u_-} belong to N^+ and have positive real parts on \mathbb{D} . Finally, $H_{u_+} - H_{u_-}$ belongs to N^+ and has the same real part as f on \mathbb{T} . Thus, by the uniqueness of the harmonic conjugate, $f = H_{u_+} - H_{u_-} + ic$ for some $c \in \mathbb{R}$. This completes the proof.

Lemma 3.3 If $f \in H^1$, then e^f is outer.

Proof By the previous lemma, $f = H_{u_+} - H_{u_-} + ic$ and so

$$e^f = e^{ic} \frac{e^{-H_{u_-}}}{e^{-H_{u_+}}}.$$

From the formula for the Herglotz integral in (3.3) and the definition of outer from (3.1), the functions $e^{-H_{u_+}}$ and $e^{-H_{u_-}}$ are outer. Thus, e^f is also outer.

Proposition 3.4 Let $\varphi \in \mathcal{O}$ and $\psi \in \mathcal{O} \cap H^{\infty}$.

(a) If $\arg \varphi \in L^1(m)$, then $f = \varphi^{\psi} \in \mathcal{O}$. (b) If $\arg \varphi \in L^{\infty}(m)$ and $\Re \psi > 0$ on \mathbb{D} , then $f = \varphi^{\psi} \in \mathcal{O} \cap H^{\infty}$.

Proof On \mathbb{T} we have

$$\begin{split} |\log \varphi| &\leq \left| \log |\varphi| \right| + |\arg \varphi| \\ &= \left| \log(|\varphi|/\|\varphi\|_{\infty}) + \log \|\varphi\|_{\infty} \right| + |\arg \varphi| \\ &\leq \left| \log(|\varphi|/\|\varphi\|_{\infty}) \right| + \left| \log \|\varphi\|_{\infty} \right| + |\arg \varphi| \end{split}$$

$$= -\log(|\varphi|/\|\varphi\|_{\infty}) + |\log \|\varphi\|_{\infty}| + |\arg \varphi|$$

= - log |\varphi| + 2 log⁺ ||\varphi|_{\infty} + | arg \varphi|.

Since $\log |\varphi| \in L^1(m)$ and $|\arg \varphi| \in L^1(m)$, it follows that $|\log \varphi| \in L^1(m)$. Since φ is outer, $\log \varphi \in N^+$. A standard result [3, p. 28] of Smirnov implies $\log \varphi \in H^1$. Therefore, $\psi \log \varphi \in H^1$. By the previous lemma, $f = \exp(\psi \log \varphi)$ is outer. This proves (a).

If we assume that

$$|\Im \log \varphi| = |\arg \varphi| \le M$$
 and $\Re \psi \ge 0$

on \mathbb{T} , we have

$$|f| = \exp(\Re \psi \log |\varphi| - \Im \psi \arg \varphi)$$

$$\leq \exp(\|\psi\|_{\infty} \log(1 + \|\varphi\|_{\infty}) + M\|\psi\|_{\infty}).$$

Thus, the function f is bounded and outer. Note that

$$\Re \psi \, \log |\varphi| \le \|\psi\|_{\infty} \log(1 + \|\varphi\|_{\infty})$$

follows from the fact that $\Re \psi \ge 0$ on \mathbb{T} . This proves (b).

4 Positive results

We start off with examples of bounded $(w_n)_{n\geq 1}$ which can be interpolated by outer functions and explore the ones which can not in the next section.

Theorem 4.1 Suppose $(\lambda_n)_{n\geq 1} \subseteq \mathbb{D}$ is interpolating. If $(w_n)_{n\geq 1}$ is bounded such that

$$\inf_{n\geq 1}|w_n|>0,$$

there is a $\varphi \in \mathcal{O} \cap H^{\infty}$ such that $\varphi(\lambda_n) = w_n$ for all n.

Proof For a suitable branch of the logarithm, the sequence $\log w_n$ is bounded and thus there is an $f \in H^{\infty}$ such that $f(\lambda_n) = \log w_n$ (Carleson's theorem). By Lemma 3.3, $\varphi = e^f$ is bounded and outer with $\varphi(\lambda_n) = w_n$.

This next result says that for outer interpolation, we can always assume, for example, that the targets w_n are positive.

Proposition 4.2 Suppose $(\lambda_n)_{n\geq 1}$ is interpolating and $(w_n)_{n\geq 1}$ and $(w'_n)_{n\geq 1}$ are bounded with

$$0 < m \le \left|\frac{w'_n}{w_n}\right| \le M < \infty, \quad n \ge 1.$$

Then $(w_n)_{n\geq 1}$ can be interpolated by an outer (bounded outer) function if and only if $(w'_n)_{n\geq 1}$ can be interpolated by an outer (bounded outer) function.

Proof By Theorem 4.1 there is a bounded outer ψ such that $\psi(\lambda_n) = w'_n/w_n$ for all $n \ge 1$. If there is an outer (bounded outer) φ such that $\varphi(\lambda_n) = w_n$ for all n, then the outer (bounded outer) function $\varphi \psi$ (note that the class of outer functions is closed under multiplication) performs the desired interpolation for $(w'_n)_{n=1}^{\infty}$.

Remark 4.3 If φ is outer (bounded outer) then so is φ^c for any c > 0. Thus $(w_n^c)_{n \ge 1}$ can be interpolated by an outer (bounded outer) function whenever $(w_n)_{n \ge 1}$ can.

5 Negative results-existence of an inner factor

If $(\lambda_n)_{n\geq 1}$ is interpolating, we know that given any bounded $(w_n)_{n\geq 1}$ there is a $\varphi \in H^{\infty}$ such that $\varphi(\lambda_n) = w_n$. This next result says that under certain circumstances, any N^+ -interpolating function for $(w_n)_{n\geq 1}$ must have an inner factor.

Theorem 5.1 If $(\lambda_n)_{n\geq 1}$ is interpolating and $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ satisfies

$$\lim_{n\to\infty} (1-|\lambda_n|) \log |w_n| \neq 0,$$

then any $\varphi \in N^+$ satisfying $\varphi(\lambda_n) = w_n$ for all n must have a non-trivial inner factor.

Proof The proof of this theorem follows from the following fact from [10]: If $\varphi \in \mathcal{O}$, then

$$\lim_{|z| \to 1^{-}} (1 - |z|) \log |\varphi(z)| = 0.$$

We include a proof for the sake of completeness.

Let a > 1 and $E_a = \{\xi \in \mathbb{T} : |\varphi(\xi)| > a\}$. Then $\log |\varphi| > 0$ on E_a and an application of

$$\int_{\mathbb{T}} \frac{1-|z|^2}{|\xi-z|^2} dm(\xi) = 1 \quad \text{for all } z \in \mathbb{D},$$
(5.1)

and

$$\frac{1-|z|^2}{|\xi-z|^2} \le \frac{2}{1-|z|} \quad \text{for all } z \in \mathbb{D} \text{ and } \xi \in \mathbb{T},$$
(5.2)

give us

$$\begin{split} \log |\varphi(z)| &= \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi|^2} \log |\varphi(\xi)| dm(\xi) \\ &= \int_{E_a} \frac{1 - |z|^2}{|z - \xi|^2} \log |\varphi(\xi)| dm(\xi) + \int_{\mathbb{T} \setminus E_a} \frac{1 - |z|^2}{|z - \xi|^2} \log |\varphi(\xi)| dm(\xi) \\ &\leq \frac{2}{1 - |z|} \int_{E_a} \log |\varphi(\xi)| dm(\xi) + \log a \int_{\mathbb{T} \setminus E_a} \frac{1 - |z|^2}{|z - \xi|^2} dm(\xi) \end{split}$$

$$\leq \frac{2}{1-|z|} \int_{E_a} \log |\varphi(\xi)| dm(\xi) + \log a.$$

Hence for all $z \in \mathbb{D}$,

$$(1 - |z|) \log |\varphi(z)| \le 2 \int_{E_a} \log |\varphi(\xi)| dm(\xi) + (1 - |z|) \log a,$$

which implies

$$\overline{\lim}_{|z|\to 1^-} (1-|z|) \log |\varphi(z)| \le 2 \int_{E_a} \log |\varphi(\xi)| dm(\xi).$$

Now let $a \to +\infty$ and use the fact that $\log |\varphi| \in L^1(\mathbb{T})$ to deduce

$$\overline{\lim_{|z| \to 1^{-}}} (1 - |z|) \log |\varphi(z)| \le 0.$$
(5.3)

Since $1/\varphi$ is also outer, the above argument also implies

$$\overline{\lim}_{|z| \to 1^{-}} (1 - |z|) \log |1/\varphi(z)| \le 0,$$

or equivalently

$$\lim_{|z| \to 1^{-}} (1 - |z|) \log |\varphi(z)| \ge 0.$$
(5.4)

The result now follows by comparing (5.3) and (5.4).

Example 5.2 If

$$w_n := \exp\left(-\frac{1}{1-|\lambda_n|}\right), \quad n \ge 1,$$

then any interpolating $\varphi \in N^+$ for $(w_n)_{n=1}^{\infty}$ is not outer.

Remark 5.3 One notices from the proof of Theorem 5.1 that if

$$\lim_{n\to\infty}(1-|\lambda_n|)\log|w_n|\neq 0,$$

then any $\varphi \in N^+$ satisfying $|\varphi(\lambda_n)| \asymp |w_n|$ for all *n* must have a non-trivial inner factor.

Let us comment here that when the hypothesis of Theorem 5.1 is satisfied, the inner factor that appears in the interpolating function φ plays a significant role in the decay of φ .

Corollary 5.4 Suppose $(\lambda_n)_{n\geq 1}$ is interpolating and $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ is bounded and satisfies

$$\lim_{n \to \infty} (1 - |\lambda_n|) \log |w_n| \neq 0.$$

If I_{φ} is the inner factor for $a \varphi \in N^+$ for which $\varphi(\lambda_n) = w_n$ for all n, then

$$\lim_{n\to\infty}|I_{\varphi}(\lambda_n)|=0.$$

Proof Let $\varphi = F_{\varphi}I_{\varphi}$, where F_{φ} is outer and I_{φ} is inner. If $|I_{\varphi}(\lambda_n)| \ge \delta > 0$ for all n, then $I_{\varphi}(\lambda_n) = w_n/F_{\varphi}(\lambda_n)$ satisfies the hypothesis of Theorem 4.1 and so there is a $\psi \in \mathcal{O} \cap H^{\infty}$ with $\psi(\lambda_n) = I_{\varphi}(\lambda_n)$ and hence $F_{\varphi}\psi$ is outer and interpolates w_n . This says that $(w_n)_{n\ge 1}$ can be interpolated by an outer function – which it can not. \Box

Remark 5.5 The above says that a subsequence of $(\lambda_n)_{n=1}^{\infty}$ must approach

$$\Big\{\xi \in \mathbb{T} : \lim_{z \to \xi} |I_{\varphi}(z)| = 0\Big\},\$$

the boundary spectrum of the inner factor I_{φ} . This set will consist of the accumulation of the zeros of the Blaschke factor of I_{φ} as well as the support of the singular measure associated with the singular inner inner factor of I_{φ} [6, p. 152].

6 Negative results-existence of a Blaschke factor

This next result says that under the right circumstances, any N^+ -interpolating function must have a Blaschke factor.

Theorem 6.1 Suppose $(\lambda_n)_{n\geq 1}$ is interpolating and $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ is bounded and satisfies

$$\overline{\lim_{n\to\infty}}(1-|\lambda_n|)|\log|w_n||=\infty.$$

Then any $\varphi \in N^+$ for which $\varphi(\lambda_n) = w_n$ for all $n \ge 1$ must have a Blaschke factor.

Proof Any zero-free $\varphi \in N^+$ can be written as

$$\varphi(z) = \exp\left(\int_{\mathbb{T}} \frac{\xi + z}{\xi - z} W(\xi) dm(\xi)\right) \exp\left(-\int_{\mathbb{T}} \frac{\xi + z}{\xi - z} d\mu(\xi)\right),\tag{6.1}$$

where *W* is a real-valued integrable function and μ is a positive measure that is singular with respect to Lebesgue measure *m*. The theorem will follow from the following fact: if $\varphi \in N^+$ and zero free, then

$$\overline{\lim}_{|z| \to 1^{-}} (1 - |z|) \Big| \log |\varphi(z)| \Big| < \infty.$$

From (6.1) we have

$$\log |\varphi(z)| = \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi|^2} W(\xi) dm(\xi) - \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi|^2} d\mu(\xi).$$

The proof of Theorem 5.1 shows that

$$\lim_{|z| \to 1^{-}} (1 - |z|) \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi|^2} W(\xi) dm(\xi) = 0.$$

From (5.2) we have

$$0 \le (1 - |z|) \int_{\mathbb{T}} \frac{1 - |z|^2}{|z - \xi|^2} d\mu(\xi) \le 2 \int_{\mathbb{T}} d\mu = 2\mu(\mathbb{T}).$$

Combine these two facts to prove the result.

This says, for example, that for an interpolating sequence $(\lambda_n)_{n=1}^{\infty}$, any $\varphi \in H^{\infty}$ for which

$$\varphi(\lambda_n) = \exp\left(-\frac{1}{(1-|\lambda_n|)^2}\right)$$

(and such φ exist by Carleson's theorem) must have a Blaschke factor.

Remark 6.2 From the proof of Theorem 6.1 if

$$\overline{\lim_{n\to\infty}}(1-|\lambda_n|)|\log|w_n||=\infty.$$

Then any $\varphi \in N^+$ for which $|\varphi(\lambda_n)| \asymp |w_n|$ for all $n \ge 1$ must have a Blaschke factor.

7 Growth rates

We know from Corollary 5.4 that if $(\lambda_n)_{n\geq 1}$ is interpolating and if $(w_n)_{n\geq 1}$ can be interpolated by an outer function, then

$$\lim_{n\to\infty}(1-\lambda_n)\log|w_n|=0.$$

What is the decay rate of $(1 - \lambda_n) \log |w_n|$? To make our results less wordy, we focus our attention on the case when $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$. Though it does not play a role in our results, it is known [3, p. 156] that $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ is interpolating if and only if there is a 0 < c < 1 such that

$$(1 - \lambda_{n+1}) \le c(1 - \lambda_n), \quad n \ge 1.$$

$$\Box$$

Such sequences are called *exponential sequences*. Naively speaking, the following discussion from [8] says that the decay rate of $(1 - \lambda_n) \log |w_n|$ is controlled by an absolutely continuous function and this can not be of any desired decay. The sharpness of this observation will be studied in Theorem 7.2.

Theorem 7.1 Suppose $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ is interpolating and $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ satisfies

$$M:=\sup_{n\geq 1}|w_n|<\infty.$$

Suppose there is a $\varphi \in \mathcal{O}$ for which $\varphi(\lambda_n) = w_n$ for all n. Then there is an $h \in L^1[0, 1]$ that is positive and decreasing such that

$$-(1-\lambda_n)\log\left|\frac{w_n}{M}\right| \leq \int_0^{1-\lambda_n} h(t)dt, \quad n\geq 1.$$

Next we improve Theorem 7.1 with this sharpness result.

Theorem 7.2 Suppose $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ is interpolating and $h \in L^1[0, 1]$ is positive and decreasing. If $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ is bounded and satisfies

$$-(1-\lambda_n)\log|w_n| \asymp \int_0^{1-\lambda_n} h(t)dt,$$

then there is a $\psi \in \mathcal{O} \cap H^{\infty}$ such that

$$-(1-\lambda_n)\log\psi(\lambda_n) \asymp \int_0^{1-\lambda_n} h(t)dt.$$

In the above we use the notation $A_n \simeq B_n$ to mean there is a c > 0 such that $\frac{1}{c}A_n \le B_n \le cA_n$ for all n.

Without getting into the fine details, which are carefully done in [8], let us mention the ideas that go into proving these two results. Let $h : [0, \pi] \to [0, \infty)$ belong to $L^1[0, 1]$ be decreasing, right-continuous, and is zero on $(1, \pi]$. If

$$P_r(t) = \frac{1 - r^2}{1 - 2r\cos t + r^2}, \quad 0 \le r < 1, \quad -\pi \le t \le \pi,$$

is the standard Poisson kernel, consider the function

$$A_h(r) = (1-r) \int_{-\pi}^{\pi} P_r(t)h(|t|) \frac{dt}{2\pi}.$$

Then,

$$A_h(r) \asymp \int_0^{1-r} h(t) dt.$$
(7.1)

If $\varphi \in \mathcal{O} \cap H^{\infty}$ and, without loss of generality, $|\varphi| \leq 1$ on \mathbb{D} , then

$$\begin{aligned} -(1-r)\log|\varphi(r)| &= -(1-r)\int_{-\pi}^{\pi} P_r(t)\log|\varphi(e^{it})|\frac{dt}{2\pi} \\ &\leq (1-r)\int_{-\pi}^{\pi} P_r(t)k(t)\frac{dt}{2\pi}, \end{aligned}$$

where $k = -\min(0, \log |\psi|)$. If k^* is the symmetric decreasing rearrangement of k, a classical theorem of Hardy and Littlewood shows that

$$(1-r)\int_{-\pi}^{\pi} P_r(r)k(t)\frac{dt}{2\pi} \le (1-r)\int_{-\pi}^{\pi} P_r(t)k^*(t)\frac{dt}{2\pi}.$$

Thus,

$$-(1-r)\log|\varphi(r)| \le A_{k^*}(r).$$
(7.2)

To prove Theorem 7.2, use (3.2) to define the outer function φ by

$$|\varphi(e^{it})| = \exp(-h(|t|)).$$

Now use (7.1) to obtain the desired estimate. The proof of Theorem 7.1 follows from (7.2).

8 More delicate interpolation

Given *h* as in Theorem 7.2, there is a $\varphi \in \mathcal{O} \cap H^{\infty}$ such that

$$\log \varphi(\lambda_n) \asymp \frac{1}{1-\lambda_n} \int_0^{1-\lambda_n} h(t) dt \text{ for all } n \ge 1.$$

Can we replace \asymp with = in the above? Equivalently, can we find an outer (bounded outer) φ such that

$$\varphi(\lambda_n) = \exp\left(-\frac{1}{1-\lambda_n}\int_0^{1-\lambda_n}h(t)dt\right) \text{ for all } n \ge 1?$$

We certainly can find $0 < \alpha \le d_n \le \beta < \infty$ such that

$$\varphi(\lambda_n)^{d_n} = \exp\left(-\frac{1}{1-\lambda_n}\int_0^{1-\lambda_n}h(t)dt\right).$$

By Theorem 4.1 there is a $\psi \in \mathcal{O} \cap H^{\infty}$ with $\Re \psi > 0$ with $\psi(\lambda_n) = 1/d_n$ for all *n*. The function $f = \varphi^{\psi}$ is analytic on \mathbb{D} with

$$f(\lambda_n) = \exp\left(-\frac{1}{1-\lambda_n}\int_0^{1-\lambda_n}h(t)dt\right)$$

and thus performs the interpolation. But of course we need to check that f is outer (bounded outer).

Let us use the results above to refine Theorem 7.2.

Theorem 8.1 Suppose $h \in L^1[0, \pi]$ is positive and decreasing. Let $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ be interpolating and $(w_n)_{n\geq 1} \subseteq \mathbb{C} \setminus \{0\}$ be bounded with

$$-(1-\lambda_n)\log|w_n| \asymp \int_0^{1-\lambda_n} h(t)dt, \quad n \ge 1.$$

(a) If $h(|t|) \log^+ h(|t|) \in L^1[-\pi, \pi]$ then there is an $f \in \mathcal{O}$ such that $f(\lambda_n) = w_n$ for all n.

(b) If

$$\operatorname{PV} \int_{-\pi}^{\pi} \cot\left(\frac{\theta - t}{2}\right) h(|t|) \frac{dt}{2\pi}$$

is bounded on $[-\pi, \pi]$ then there is an $f \in \mathcal{O} \cap H^{\infty}$ such that $f(\lambda_n) = w_n$ for all n.

Proof From the discussion at the very beginning of this section, we can find $\varphi, \psi \in \mathcal{O} \cap H^{\infty}$ such that $f = \varphi^{\psi}$ satisfies $f(\lambda_n) = w_n$ for all *n*. We just need to check that *f* is outer (bounded outer).

By the proof of Theorem 7.2, $\log |\varphi(e^{it})| = -h(|t|)$ and

$$\varphi(z) = \exp\left(\int_{\mathbb{T}} \frac{\xi + z}{\xi - z} \log |\varphi(\xi)| dm\right)$$

= $\exp\left(\int_{\mathbb{T}} \Re\left(\frac{\xi + z}{\xi - z}\right) \log |\varphi(\xi)| dm + i \int_{\mathbb{T}} \Im\left(\frac{\xi + z}{\xi - z}\right) \log |\varphi(\xi)| dm\right).$

From

$$\arg \varphi(z) = i \int_{\mathbb{T}} \Im\left(\frac{\xi + z}{\xi - z}\right) \log |\varphi(\xi)| dm \quad \text{for all } z \in \mathbb{D},$$

and standard theory involving the Hilbert transform on the circle, we have

$$\arg \varphi(e^{i\theta}) = -\operatorname{PV} \int_{-\pi}^{\pi} \cot\left(\frac{\theta - t}{2}\right) h(|t|) \frac{dt}{2\pi}.$$

A classical result of Zygmund [11, Vol I, p. 254] says that if

$$h(|t|) \log^+ h(|t|) \in L^1[-\pi, \pi],$$

then $\arg \varphi \in L^1(m)$. An application of Proposition 3.4 yields $f = \varphi^{\psi} \in \mathcal{O}$.

If the above Hilbert transform is bounded, another application of Proposition 3.4, along with the fact that we can always choose ψ so that $\Re \psi > 0$, yields $f = \varphi^{\psi} \in \mathcal{O} \cap H^{\infty}$.

Example 8.2 If $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ is interpolating, Theorem 5.1 says that any $\varphi \in N^+$ with

$$\varphi(\lambda_n) = \exp\left(-\frac{2}{1-\lambda_n}\right) \text{ for all } n \ge 1,$$

must have an inner factor. In fact, the obvious guess at an analytic function that interpolates this sequence is

$$\varphi(z) = \exp\left(-\frac{2}{1-z}\right)$$

which turns out to be a constant multiple of an inner function. Indeed, the singular inner function

$$\exp\left(-\frac{1+z}{1-z}\right)$$

can be written as

$$\exp\left(-\frac{1+z}{1-z}\right) = \exp\left(-\frac{2-(1-z)}{1-z}\right) = \exp\left(-\frac{2}{1-z}\right)e.$$

Thus φ is a constant multiple of a singular inner function.

Example 8.3 Let $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ be interpolating and

$$w_n = \exp\Big(-\frac{1}{1-\lambda_n}\frac{1}{(\log\frac{100}{1-\lambda_n})^2}\Big).$$

The funciton

$$h(t) = \frac{2}{t(\log(\frac{100}{t}))^3} \quad \text{for } 0 < t < 1,$$

is positive and decreasing on [0, 1] and $h(|t|) \log^+ h(|t|)$ belongs to $L^1[-1, 1]$. Thus $(w_n)_{n\geq 1}$ can be interpolated with an outer function.

Example 8.4 Let

$$w_n = \exp\left(-\frac{1}{(1-\lambda_n)^{\alpha}}\right),$$

where $0 < \alpha < 1$. In this case,

$$h(t) = \frac{1 - \alpha}{t^{\alpha}}$$

is positive, decreasing, and

$$h(|t|) \log^+ h(|t|) \in L^1[-\pi, \pi].$$

Thus, by the previous theorem, $(w_n)_{n\geq 1}$ can be interpolated by an outer function. In fact, one can take $\varphi \in \mathcal{O} \cap H^{\infty}$. To see this, observe that $(1-z)^{-\alpha} \in H^1$ and so

$$\varphi(z) = \exp\left(-\frac{1}{(1-z)^{\alpha}}\right)$$

is outer (Lemma 3.3). Furthermore,

$$\frac{1}{1 - e^{i\theta}} = \frac{e^{i\theta/2}}{e^{-i\theta/2} - e^{i\theta/2}} = \frac{e^{-i\theta/2}}{-2i\sin(\theta/2)} = \frac{1}{2\sin(\theta/2)}e^{i\frac{\pi-\theta}{2}}.$$

Thus,

$$|\varphi(e^{i\theta})| \le e^{-2^{-\alpha}\cos(\pi\alpha/2)}$$
 for all $\theta \in [-\pi, \pi]$,

and so $\varphi \in \mathcal{O}$ and is bounded on \mathbb{T} . A result of Smirnov [3, p. 28] says that $\varphi \in H^{\infty}$. If $0 < m \le d_n \le M < \infty$, one can also interpolate

$$w_n = \exp\left(-d_n \frac{1}{(1-\lambda_n)^{\alpha}}\right)$$

with an outer function.

Example 8.5 If $(\lambda_n)_{n\geq 1} \subseteq (0, 1)$ is interpolating and $(d_n)_{n\geq 1}$ satisfies $0 < m \leq d_n \leq M < \infty$ for all $n \geq 1$, one can appeal to Proposition 3.4 directly to interpolate $w_n = (1 - \lambda_n)^{d_n}$ with a bounded outer function. Here $f = \varphi^{\psi}$, where $\varphi(z) = 1 - z$ (which clearly has bounded argument) and ψ is the bounded outer function with $\Re \psi > 0$ and $\psi(\lambda_n) = d_n$ for all $n \geq 1$.

9 A Harnack restriction

As it turns out, a characterization of when one can interpolate with an outer function seems to depend on the regularity of the targets $(w_n)_{n=1}^{\infty}$ and not merely the decay rate in (5.1). We outline the following example, a variation of one from [4], to better explain what we mean here.

Consider the interpolating sequence $\lambda_n = 1 - 2^{-n}$ and targets $w_n = 2^{-n}$ for $n \ge 1$. If $\varphi(z) = 1 - z$, then $\varphi \in \mathcal{O}$ (Proposition 3.1) and $\varphi(\lambda_n) = w_n$. Furthermore,

$$-(1-\lambda_n)\log w_n \lesssim n2^{-n} \lesssim \int_0^{1-\lambda_n}\log \left(\frac{1}{t}\right) dt.$$

$$\widetilde{w_n} = \begin{cases} 1 & n \text{ is odd,} \\ 2^{-n} & n \text{ is even,} \end{cases}$$

then Carleson's theorem says there is a $\widetilde{\varphi} \in H^{\infty}$ for which $\widetilde{\varphi}(\lambda_n) = \widetilde{w_n}$. Observe that

$$-(1-\lambda_n)\log \widetilde{w_n} \lesssim n2^{-n} \lesssim \int_0^{1-\lambda_n} \log\left(\frac{1}{t}\right) dt.$$

In other words,

$$-(1-\lambda_n)\log w_n$$
 and $-(1-\lambda_n)\log \widetilde{w_n}$

have the same upper bound.

However, $\widetilde{\varphi} \notin \mathcal{O}$. Otherwise,

$$u(z) = \log\left(\frac{\|\widetilde{\varphi}\|_{\infty}}{|\widetilde{\varphi}(z)|}\right)$$

would be a positive harmonic function on $\mathbb D.$ The invariant form of Harnack's inequality says that

$$\frac{1-\rho(z_1,z_2)}{1+\rho(z_1,z_2)} \le \frac{u(z_1)}{u(z_2)} \le \frac{1+\rho(z_1,z_2)}{1-\rho(z_1,z_2)} \quad \text{for all } z_1, z_2 \in \mathbb{D},$$

where

$$\rho(z_1, z_2) = \frac{|z_1 - z_2|}{|1 - \overline{z_1} z_2|}$$

is the pseudohyperbolic metric. Applying this to

$$z_1 = \lambda_{2n}$$
 and $z_2 = \lambda_{2n+1}$

gives us

$$\frac{1-\rho(\lambda_{2n},\lambda_{2n+1})}{1+\rho(\lambda_{2n},\lambda_{2n+1})} \leq \frac{u(\lambda_{2n})}{u(\lambda_{2n+1})} \leq \frac{1+\rho(\lambda_{2n},\lambda_{2n+1})}{1-\rho(\lambda_{2n},\lambda_{2n+1})},$$

which works out to be

$$\frac{1}{2 + (-1 + 2 \cdot 2^{2n})^{-1}} \le \frac{\log(\|\widetilde{\varphi}\|_{\infty}/2^{-n})}{\log\|\widetilde{\varphi}\|_{\infty}} \le 2 + (-1 + 2 \cdot 2^{2n})^{-1}.$$

These inequalities do not hold for arbitrarily large *n*. Thus, $\tilde{\varphi} \notin \mathcal{O}$. That being said, Theorem 8.1, with $h(t) = \log(1/t)$ on (0, 1], supplies $\psi \in \mathcal{O}$ for which

$$\psi(\lambda_n) \asymp \int_0^{1-\lambda_n} \log(1/t) dt.$$

Declarations

Data availability This manuscript has no associated data.

References

- Agler, J., McCarthy, J.E.: Pick Interpolation and Hilbert Function Spaces. Graduate Studies in Mathematics, vol. 44. American Mathematical Society, Providence (2002)
- Carleson, L.: An interpolation problem for bounded analytic functions. Am. J. Math. 80, 921–930 (1958)
- 3. Duren, P.L.: Theory of H^p Spaces. Academic Press, New York (1970)
- Dyakonov, K., Nicolau, A.: Free interpolation by nonvanishing analytic functions. Trans. Am. Math. Soc. 359(9), 4449–4465 (2007)
- Earl, J.P.: On the interpolation of bounded sequences by bounded functions. J. London Math. Soc. 2(2), 544–548 (1970)
- Garcia, S.R., Mashreghi, J., Ross, W.T.: Introduction to Model Spaces and their Operators. Cambridge Studies in Advanced Mathematics, vol. 148. Cambridge University Press, Cambridge (2016)
- Garnett, J.: Bounded Analytic Functions. Graduate Texts in Mathematics, vol. 236, 1st edn. Springer, New York (2007)
- Mashreghi, J., Ptak, M., Ross, W.T.: A common range problem for model spaces. to appear, Forum Mathematicum
- Mashreghi, J.: Representation Theorems in Hardy Spaces. London Mathematical Society Student Texts, vol. 74. Cambridge University Press, Cambridge (2009)
- Yanagihara, N.: Mean growth and Taylor coefficients of some classes of functions. Ann. Polon. Math. 30, 37–48 (1974)
- Zygmund, A.: Trigonometric Series. Cambridge Mathematical Library, vol. I, II. Cambridge University Press, Cambridge (2002)

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.