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THE SQUARE ROOTS OF SOME CLASSICAL
OPERATORS

JAVAD MASHREGHI, MAREK PTAK, AND WILLIAM T. ROSS

Abstract. In this paper we give complete descriptions of the set of
square roots of certain classical operators, often providing specific for-
mulas. The classical operators included in this discussion are the square
of the unilateral shift, the Volterra operator, certain compressed shifts,
the unilateral shift plus its adjoint, the Hilbert matrix, and the Cesàro
operator.

1. Introduction

If H is a complex Hilbert space and A ∈ B(H), the bounded linear

operators on H, when does A have a square root? By this we mean, does

there exist a B ∈ B(H) such that B2 = A? If A has a square root, can we

describe {B ∈ B(H) : B2 = A}, the set of all the square roots of A?

First let us make the, perhaps unexpected, observation that not every

operator has a square root. For example, Halmos showed that the unilateral

shift Sf = zf on the Hardy space H2 [5] does not have a square root [7].

Other examples of operators constructed with the shift S and its adjoint

S∗, for example S⊕S∗ and S⊗S∗, also do not have square roots [3]. See the

papers [9, 13, 14, 19, 20] for some general results concerning square roots

of operators.

Second, many operators have an abundance of square roots. For example,

any nilpotent operator of order two is a square root of the zero operator.

Moreover, to highlight their abundance, Lebow proved (see [8, Prob. 111])

that when dimH = ∞, the set {A ∈ B(H) : A2 = 0} is dense in B(H) in

the strong operator topology.

Much of the work on square roots has focused on the general topic of

which operators have square roots and the prevalence of types of square

roots (pth roots and logarithms) in B(H). Previous papers also have results
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2 J. MASHREGHI, M. PTAK, AND W. ROSS

which explore the relationship between the type of square root as related to

the type of operator. In this paper, we focus on a collection of some well-

known classical operators and proceed to characterize all of their square

roots. The classical operators included in this discussion are the square of

the unilateral shift (Theorem 2.4), the Volterra operator (Theorem 3.2),

certain compressed shifts (Theorem 4.1), the unilateral shift plus its adjoint

(Theorem 5.2), the Hilbert matrix (Theorem 6.2), and the Cesàro operator

(Theorem 7.2 and Theorem 7.4). Our work on the Cesàro operator answers

a question posed in [13] and stems from a question posed by Halmos.

2. Square roots of S2

Suppose that (Sf)(z) = zf(z) denotes the unilateral shift on the Hardy

space H2 [12]. In this section we explore the square roots of S2. One square

root of S2 is, of course, S itself. Our characterization of all of the square

roots of S2, requires a few preliminaries.

For g ∈ H2, let

ge(z) :=
1
2
(g(z) + g(−z)) and go(z) :=

1
2
(g(z)− g(−z))

and observe that g(z) = ge(z) + go(z). If g(z) =
∑∞

n=0 anz
n, then

ge(z) =
∞∑
k=0

a2kz
2k and go(z) =

∞∑
k=0

a2k+1z
2k+1.

This is the “even” and “odd” decomposition of g since ge(−z) = ge(z) and

go(−z) = −go(z). Finally, let

(Wg)(z) =


∞∑
k=0

a2kz
k

∞∑
k=0

a2k+1z
k


and note that W is a unitary operator from H2 onto

H2 ⊕H2 =
{[

f
g

]
: f, g ∈ H2

}
,

with

W ∗
[
g1
g2

]
= g1(z

2) + zg2(z
2).

Our last bit of notation is the vector-valued shift

S ⊕ S : H2 ⊕H2 → H2 ⊕H2, (S ⊕ S)

[
g1
g2

]
=

[
Sg1
Sg2

]
.
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It is traditional to think of S ⊕ S in matrix form as

S ⊕ S =

[
S 0
0 S

]
.

The above formulas yield the following well-known fact.

Proposition 2.1. W ∗(S ⊕ S)W = S2.

Some other well-known facts used in the section involve the commutants

of S and S ⊕ S. For φ ∈ H∞, the bounded analytic functions on D, the
Toeplitz (Laurent) operator Tφg = φg is bounded on H2 and STφ = TφS.

Let

{S}′ = {A ∈ B(H2) : SA = AS}
denote the commutant of S. The following fact is standard [21, Thm. 3.4].

Proposition 2.2. {S}′ = {Tφ : φ ∈ H∞}.

In a similar way, let

Φ =

[
Φ11 Φ12

Φ21 Φ22

]
,

where Φij ∈ H∞. We use the notationM2(H
∞) for the 2×2 matrices above

with H∞ entries. Define TΦ : H2 ⊕H2 → H2 ⊕H2 by

TΦ

[
g1
g2

]
=

[
Φ11 Φ12

Φ21 Φ22

] [
g1
g2

]
=

[
Φ11g1 + Φ12g2
Φ21g1 + Φ22g2

]
.

A calculation shows that (S ⊕ S)TΦ = TΦ(S ⊕ S). Similar to the above, we

have the following [21, Cor. 3.20].

Proposition 2.3. {S ⊕ S}′ = {TΦ : Φ ∈M2(H
∞)}.

Here is the main theorem of this section describing all of the square roots

of S2.

Theorem 2.4. For Q ∈ B(H2) the following are equivalent.

(i) Q2 = S2.

(ii) There is a 2× 2 constant unitary matrix U and functions a, b, c ∈ H∞

satisfying

(2.5) za2 + bc = 1

such that

(2.6) Q = W ∗U∗
[
za b
zc −za

]
UW.
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Proposition 2.1 shows that to prove Theorem 2.4, it suffices to prove the

following.

Theorem 2.7. For A ∈ B(H2 ⊕H2) the following are equivalent.

(i) A2 = S ⊕ S.

(ii) There is a 2× 2 constant unitary matrix U and functions a, b, c ∈ H∞

satisfying

(2.8) za2 + bc = 1

such that

(2.9) A = U∗
[
za b
zc −za

]
U.

A matrix calculation shows that the operator A from (2.9) satisfies

A2 = U∗
[
za b
zc −za

]
UU∗

[
za b
zc −za

]
U

= U∗
[
z2a2 + zbc 0

0 z2a2 + zbc

]
U

= U∗
[
z 0
0 z

]
U

= U∗(S ⊕ S)U

= S2.

In the above, we use the fact that any constant matrix commutes with S⊕S.
Thus every operator of the form (2.9) is a square root of S ⊕S. The rest of

this section will be devoted to proving the converse – and providing some

instances of this characterization.

Our proof involves a few more preliminaries. The first is a simple fact

about square roots of bounded Hilbert space operators.

Lemma 2.10. If B ∈ B(H) and A2 = B, then A ∈ {B}′.

Proof. Note that AB = AA2 = A2A = BA. □

Combining this with the discussion above, we see that if Q ∈ B(H2) with

Q2 = S2, then WQW ∗ ∈ B(H2 ⊕H2) with (WQW ∗)2 = S ⊕ S. It follows

from Lemma 2.10 and Proposition 2.3 that

WQW ∗ = A, A ∈M2(H
∞).
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To identify A, let us start with a lemma about 2× 2 matrices M2(C) of
complex numbers. For X, Y ∈M2(C) let

[X, Y ]+ := XY + Y X.

One can quickly verify the following useful facts about the subspace

(2.11) S =
{[

α β
γ −α

]
: α, β, γ ∈ C

}
.

Lemma 2.12. Let α, β, γ, λ ∈ C.

(i) If

X =

[
α β
0 γ

]
and X2 = 0, then α = γ = 0, in other words, X2 = 0 if and only if

X =

[
0 β
0 0

]
.

(ii) If

X =

[
0 β
0 0

]
and Y ∈M2(C) with [X, Y ]+ = λI2 with λ ̸= 0, then β ̸= 0 and

Y =

[
α η
λ/β −α

]
,

where α, η ∈ C are arbitrary.

(iii) If

X =

[
0 β
0 0

]
with β ̸= 0 and and Y ∈M2(C) with [X, Y ]+ = 0, then

Y =

[
α η
0 −α

]
,

where α, η ∈ C are arbitrary.

(iv) If X, Y ∈ S, then X2 and [X, Y ]+ ∈ CI2.

For a sequence (Ak)
∞
k=0, where Ak ∈ M2(C) for all k ⩾ 0, consider the

formal sum

A =
∞∑
k=0

Ak(S ⊕ S)k.

Each term Ak(S ⊕ S)k belongs to B(H2 ⊕H2) as does each partial sum of

the series above. If we suppose that the series above converges in the strong
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operator topology, then A ∈ B(H2⊕H2). Suppose U ∈M2(C) is a constant

unitary matrix. A simple 2× 2 matrix calculation shows that

U(S ⊕ S)k = (S ⊕ S)kU for all k ⩾ 0.

This yields the important identity

(2.13) UAU∗ =
∞∑
k=0

UAkU
∗(S ⊕ S)k.

Proof of Theorem 2.4. We will prove Theorem 2.7. Proposition 2.1 will then

imply Theorem 2.4.

Let A ∈ B(H2 ⊕H2) with A2 = S⊕S. Lemma 2.10 and Proposition 2.3

together show that

A =

[
a b
c d

]
,

where a, b, c, d ∈ H∞. Let ak, bk, ck, dk denote the Taylor coefficients of

a, b, c, d respectively and define

Ak =

[
ak bk
ck dk

]
∈M2(C), k ⩾ 0.

Notice that

(2.14) A =
∞∑
k=0

Ak(S ⊕ S)k.

For the matrix A0, Schur’s theorem provides us with a unitary matrix U

such that UA0U
∗ is upper triangular. By (2.13) (and unitary equivalence)

we can always assume that A is a square root of (S ⊕ S) with A0 being

upper triangular. As a reminder, the convergence of the series above is in

the strong operator topology.



SQUARE ROOT 7

Since A2 = S ⊕ S then

S ⊕ S = A2

=
( ∞∑
k=0

Ak(S ⊕ S)k
)2

=
∞∑
k=0

( k∑
m=0

AmAk−m

)
(S ⊕ S)k

= A2
0 + [A0, A1]

+(S ⊕ S)

+
∞∑

k=3,k odd

(
[A0, Ak]

+ +

[
k
2

]∑
m=1

[Am , Ak−m]
+
)
(S ⊕ S)k

+
∞∑

k=2,k even

(
[A0, Ak]

+ +

[
k
2

]
−1∑

m=1

[Am , Ak−m]
+ + A k

2
A k

2

)
(S ⊕ S)k.

The expansion in (2.14) is unique since S ⊕ S is diagonal with the same

entires along the diagonal. Moreover, the Cauchy product (and gathering

up like terms) is also justified since S ⊕ S commutes with each of the Ak.

Comparing the operator coefficients in front of each (S ⊕ S)k we have

A2
0 = 0,(2.15)

[A0, A1]
+ = I2 (2× 2 identity matrix),(2.16)

[A0, Ak]
+ = −

[
k
2

]∑
m=1

[Am , Ak−m]
+, for k ⩾ 2, k odd,(2.17)

[A0, Ak]
+ = −

[
k
2

]
−1∑

m=1

[Am , Ak−m]
+ − A k

2
A k

2
for k ⩾ 2, k even.(2.18)

Now we will inductively find a formula for A.

The matrix A0 is upper triangular. By (2.15) and Lemma 2.12,

A0 =

[
0 b0
0 0

]
.

By (2.16) and Lemma 2.12 we get b0 ̸= 0 and

A1 =

[
a1 b1
1/α −a1

]
for arbitrary a1, b1.

We will now use induction to prove that Ak ∈ S. The base cases A0, A1

belong to S. By Lemma 2.12, right hand side of (2.17) or (2.18) are constant
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multiples of the identity operator I on H2 ⊕ H2. Thus, by Lemma 2.12,

Ak ∈ S.

By the expansion

A =
∞∑
k=0

Ak(S ⊕ S)k,

and the fact that each Ak ∈ S, yields a, b, c ∈ H∞ such that

A =

[
a b
c −a

]
with a(0) = 0, c(0) = 0 and b(0) ̸= 0. Since

S ⊕ S =

[
z 0
0 z

]
=

[
a b
c −a

]2
=

[
a2 + bc 0

0 a2 + bc

]
,

it follows that a2 + bc = z. Equivalently, by relabeling a, b, c, we can write

A =

[
za b
zc −za

]
,

where a, b, c ∈ H∞ with za2 + bc = 1.

The converse was shown earlier. □

Remark 2.19. (i) Since unitary operators preserve determinants, every

square root A of S ⊕ S will satisfy detA = −z.

(ii) It follows from Proposition 2.3 and Proposition 2.1 that every B ∈ {S2}′

is of the form (Bg)(z) = φ(z)ge(z) + ψ(z)go(z) for some φ, ψ ∈ H∞.

This is an interesting (and known) fact.

(iii) Taking U = I2 (the 2 × 2 identity matrix in M2(C)) in Theorem 2.4

yields the following class of square roots Q of S2:

(2.20) (Qg)(z) =
(
z2a(z2) + z3c(z2)

)
ge(z) +

(
b(z2)− z3a(z2)

)go(z)
z

,

where za2 + bc = 1. Setting a ≡ 0, b ≡ 1, c ≡ 1 ,we get

(Qg)(z) = z3ge(z) +
go(z)

z
.
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With respect to the standard basis (zn)∞n=0 for H2, the operator Q has

the matrix representation

[Q] =



0 1 0 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
0 0 0 1 0 0 0 · · ·
1 0 0 0 0 0 0 · · ·
0 0 0 0 0 1 0 · · ·
0 0 1 0 0 0 0 · · ·
0 0 0 0 0 0 0 · · ·
...

...
...

...
...

...
...

. . .


.

(iv) Taking

U =

[
0 1
1 0

]
in Theorem 2.4, yields another class of square roots Q of S2:

(2.21) (Qg)(z) = (zb(z2)− z2a(z2))ge(z) + (z2a(z2) + zc(z2))go(z).

Setting a ≡ 1, b(z) =
√
1− z, c(z) =

√
1− z, this becomes

(Qg)(z) = (z
√
1− z2 − z2)ge(z) + (z2 + z

√
1− z2)ge(z).

With respect to the standard basis, Q has the matrix representation,

[Q] =



0 0 0 0 0 0 0 0 0 · · ·
1 0 0 0 0 0 0 0 0 · · ·

−1 1 0 0 0 0 0 0 0 · · ·
−1

2
1 1 0 0 0 0 0 0 · · ·

0 −1
2

−1 1 0 0 0 0 0 · · ·
−1

8
0 −1

2
1 1 0 0 0 0 · · ·

0 −1
8

0 −1
2

−1 1 0 0 0 · · ·
− 1

16
0 −1

8
0 −1

2
1 1 0 0 · · ·

0 − 1
16

0 −1
8

0 −1
2

−1 1 0 · · ·
...

...
...

...
...

...
...

...
...

. . .


.

(v) In (2.21) take a ≡ 0 and b = c ≡ 1 to get

(Qg)(z) = zge(z) + zg0(z) = zg(z)

which is just the “obvious” square root of S2, namely S.

(vi) If a(D) ⊆ D (a analytic self map of D), then 1 − za(z)2 is outer and

thus
√
1− za(z)2 is a bounded analytic function on D. With b(z) =

c(z) =
√

1− za(z)2 (and e.g., U = I2), we can produce an infinite class
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of square roots Q from (2.20) and (2.21) as

(Qg)(z) =
(
z2a(z2) + z3

√
1− z2a(z2)2

)
ge(z)

+
(√

1− z2a(z2)2 − z2a(z2)
)go(z)

z
.

This brings us to a brief comment as to when the square root of S2 is

a (analytic) Toeplitz operator. Here is a general fact concerning Toeplitz

operators. For φ ∈ L∞(T), define the Toeplitz operator Tφ on H2 by Tφf =

P+(φf), where P+ is the orthogonal projection (the Riesz projection) of

L2(T) onto H2. See [5, Ch. 4] for the basics of Toeplitz operators on H2.

A well-known result of Brown and Halmos [1] says that TfTg is a Toeplitz

operator if and only if either g ∈ H∞ or f ∈ H∞. This yields the following.

Theorem 2.22. For φ ∈ L∞(T), the following are equivalent.

(i) There is a Toeplitz operator T such that T 2 = Tφ.

(ii) φ = ψ2 for some ψ ∈ H∞. or φ = ψ2 for some ψ ∈ H∞.

The previous theorem, along with the standard inner-outer factorization

of H∞ functions yields the following corollary.

Corollary 2.23. For φ ∈ H∞, the analytic Toeplitz operator Tφ has a

square root in the Toeplitz operators if and only if all zeros of φ inside the

open unit disc D are of even degrees.

We end this section with the remark that S2n has infinitely many square

roots since S2n is unitarily equivalent to (S⊕S)(n), and we already know that

S ⊕ S has infinitely many square roots. However S2n+1 does not have any

square roots. We will discuss these results and some others in a forthcoming

paper.

3. Square roots of the Volterra operator

The Volterra operator

(V f)(x) =

∫ x

0

f(t) dt

is a well-known bounded operator on L2[0, 1] with a known square root [21,

p. 81]

(3.1) (Y f)(x) =
1√
π

∫ x

0

f(t)√
x− t

dt.
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One can prove this using the Laplace transform and convolutions. Thus, V

has at least two square roots, Y and −Y . As it turns out, these are the only

two.

Theorem 3.2 (Sarason [25]). The operators Y and −Y are the only two

square roots of the Volterra operator V .

For the sake of completeness, and since the ideas of the proof will be

used in the next section, we give an exposition, with a different proof, of

this result. The proof of this will involve expressing the Volterra operator

as the compression of the shift S to a model space. We will divide up the

proof into several parts.

If Θ is the atomic inner function

Θ(z) = exp
(z + 1

z − 1

)
,

a result of Sarason [24] (see also [21, Ch. 4]), shows that for g ∈ L2[0, 1],

the function

(Jg)(z) =
i
√
2

z − 1

∫ 1

0

g(t)Θ(z)t dt, z ∈ D,

belongs to the model space KΘ = H2 ∩ (ΘH2)⊥ and the operator J :

L2[0, 1] → KΘ is unitary. Since σ(V ) = {0}, it follows that (I−V )(I+V )−1

is a bounded operator on L2[0, 1]. The same paper says that

(3.3) J(I − V )(I + V )−1J∗ = SΘ,

where SΘ is the compression of S to KΘ, that is SΘ = PΘS|KΘ
, where PΘ is

the orthogonal projection of H2 onto KΘ. It follows that σ(SΘ) = {1} and

thus (I−SΘ)(I+SΘ)
−1 is a bounded operator on KΘ. The compressed shift

SΘ has an H∞ functional calculus in that φ(Sφ) is a well-defined bounded

operator on KΘ for any φ ∈ H∞ [5, Ch. 9].

For ψ ∈ H∞, the operator ψ(SΘ) can be written as a truncated Toeplitz

operator. Indeed, for any ψ ∈ L∞(T), define the operator Aψ on KΘ by

Aψf = PΘ(ψf), where PΘ denotes orthogonal projection of L2(T) onto KΘ

(where we regard KΘ, via radial boundary values, as a subspace of L2(T)).
Let us record some facts about truncated Toeplitz operators that will be

used below. One can find their proofs in [5] or [25].

Proposition 3.4. Let φ ∈ H∞ and ψ ∈ L∞(T).

(i) Az = SΘ.



12 J. MASHREGHI, M. PTAK, AND W. ROSS

Figure 1. The above is the the image of z 7→ 1+z+Θ(z) for
z ∈ D. Notice how the closure of this image does not contain
the origin and thus infz∈D |1 + z +Θ(z)| > 0.

(ii) Aψ = 0 if and only if ψ ∈ ΘH2 +ΘH2.

(iii) φ(SΘ) = Aφ.

(iv) {SΘ}′ = {Aφ : φ ∈ H∞}.

Though the operator (I − SΘ)(I + SΘ)
−1 is well defined, we need to

represent it as a truncated Toeplitz operator with an H∞ symbol. This is

accomplished with the following.

Proposition 3.5. If

φ(z) =
1− z

1 + z +Θ(z)
,

then φ ∈ H∞, is outer, and Aφ = (I − SΘ)(1 + SΘ)
−1.

Proof. We first argue that f(z) = 1 + z +Θ(z) is bounded away from zero

on D (see Figure 1) and thus is an invertible element of H∞. Thus φ ∈ H∞.

Notice that

ℜf(eiθ) = 1 + cos θ + cos(cot θ/2).

The function cot θ/2 is strictly decreasing on (0, π) as it moves from +∞
to zero, and at θ = π/2 its value is 1. Hence there is a unique θ0 ∈ (0, π/2)
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such that cot θ0/2 = π/2. Fix any θ′ ∈ (θ0, π/2) and consider the partition

(0, π] = (0, θ′) ∪ [θ′, π]. On (0, θ′),

ℜf(eiθ) = cos θ +

(
1 + cos(cot θ/2)

)
⩾ cos θ′,

and, on [θ′, π],

ℜf(eiθ) =
(
1 + cos θ

)
+ cos(cot θ/2) ⩾ cos(cot θ′/2).

Therefore, ℜf(eiθ) ⩾ m on T \ {1}, where

m = min{cos θ′, cos(cot θ′/2)} > 0.

By the Poisson integral formula, we conclude that

ℜf(z) =
∫ 2π

0

ℜf(eiθ) 1− |z|2

|z − eiθ|2
dθ

2π
⩾ m, z ∈ D.

A well known fact says that if ℜf > 0 then f is an outer function and thus

has no zeros in D [6, p. 65].

If ψ(z) = 1 + z + Θ(z), notice that φ(z)ψ(z) = 1 − z and hence the

functional calculus yields AφAψ = A1−z. Proposition 3.4 implies that

Aψ = A1+z+Θ = A1+z + AΘ = I + SΘ + 0.

Since A1−z = I − SΘ, it follows that Aφ = (I − SΘ)(I + SΘ)
−1. □

Corollary 3.6. V = J∗AφJ .

Proof of Theorem 3.2. Now let A ∈ B(L2[0, 1]) such that A2 = V .

Lemma 2.10 yields A ∈ {V }′. Since

(I − V )(I + V )−1 = I + 2
∞∑
n=1

(−1)nV n,

then A ∈ {(I−V )(I+V )−1}′. Note that the series above converges in norm

since V is quasinilpotent and thus ∥V n∥1/n → 0. From (3.3) we see that

JAJ∗ ∈ {SΘ}′. Thus JAJ∗ = Aψ for some ψ ∈ H∞ (Proposition 3.4). Since

A2
ψ = (JAJ∗)2 = JA2J∗ = JV J∗ = Aφ,

Proposition 3.4 also implies that ψ2 − φ ∈ ΘH2 + ΘH2. Since ψ2 − φ

belongs to H∞ and must also belong to ΘH∞ + ΘH∞, it follows from

ΘH∞ ∩H∞ = {0} that ψ2 − φ ∈ ΘH2. This implies that ψ2 = φ+Θh for

some h ∈ H∞.

Recall that φ is an outer function (and hence is zero free in D) and so

there are indeed ψ ∈ H∞ with ψ2 = φ. This says that A = J∗AψJ for some

ψ ∈ H∞ with ψ2 = φ+Θh for some h ∈ H∞.
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On the other hand, if ψ ∈ H∞ and h ∈ H∞ with ψ2 = φ+Θh, then the

operator J∗AψJ on L2[0, 1] satisfies

(J∗AψJ)
2 = J∗A2

ψJ = J∗(Aψ + AΘAh)J = J∗(Aφ + 0)J = J∗AφJ = V.

Note the use of the H∞ functional calculus for the compressed shift SΘ as

well as the fact that AΘ = 0 (Proposition 3.4). So far we have shown the

following: For A ∈ B(L2[0, 1])

(3.7) A2 = V ⇐⇒ A = J∗AψJ

for some ψ ∈ H∞ with ψ2 = φ+Θh for some h ∈ H∞.

So far we have shown that V has square roots. To show there are only

two square roots of V , we follow a variation of an argument of Sarason [25].

Notice that one square root of V is J∗A√
φJ . Let us show that the other

is J∗A−√
φJ . If B is another square root of V , then B = J∗AψJ where

ψ2 = φ+Θh. In other words, ψ2 − φ = Θh. Write

Θh = ψ2 − φ = (ψ +
√
φ)(ψ −√

φ)

and observe that for some γj ⩾ 0, the inner functions

q1(z) = exp
(
− γ1

1 + z

1− z

)
and q2(z) = exp

(
− γ2

1 + z

1− z

)
divide ψ−√

φ and ψ+
√
φ respectively. Moreover, choose the largest γ1, γ2

such that q1 and q2 are inner divisors of ψ −√
φ and ψ +

√
φ. Write

ψ +
√
φ = q1h1 and ψ −√

φ = q2h2, h1, h1 ∈ H∞.

It follows that
√
φ = 1

2
(q1h1 − q2h2). Since

√
φ is outer, it must be the case

that one of γ1 or γ2 must be zero. If γ1 > 0 and γ2 = 0, then γ1 ⩾ 1 and

it follows that ψ +
√
φ is divisible by Θ. An application of Proposition 3.4

yields Aψ = A−√
φ.

4. Square root of a compressed shift

The previous section leads us to a discussion about the square roots of

a compressed shift. For any inner function u, there is the compressed shift

Su = PuS|Ku . The proof of (3.7) implies the following theorem.

Theorem 4.1. For the atomic inner function Θ, the compressed shift SΘ

has exactly two square roots. They are A√
f and −A√

f , where

f(z) = z +Θ(z)(1− z)1/5.
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Figure 2. The image of z 7→ z + Θ(z)(1 − z)1/5 for z ∈ D.
Notice how the closure of this image does not contain the
origin.

Proof. First let us prove that the set of square roots of Su is nonempty. For

this it is enough to check that z + Θ(z)(1 − z)1/5 has no zeros in D (see

Figure 2) and thus has an analytic square root. The reasoning is similar to

the argument in Proposition 3.5, albeit a bit more complex. In this case

f(z) = z +Θ(z)(1− z)1/5

and thus

ℜf(eiθ) = cos θ + (2 sin θ/2)1/5 cos
(
θ−π
10

− cot(θ/2)
)
, 0 < θ < π.

There is a similar formula for −π < θ < 0. Then it is enough to observe

that

m = inf
0<|θ|⩽π

ℜf(eiθ) > 0.

By the Poisson integral formula, we conclude that ℜf(z) ⩾ m for all z ∈ D.
Thus f is outer and hence has no zeros in D.

Next we observe that A√
f is a square root of SΘ. Now follow the argu-

ment used to prove there are only two square roots of the Volterra operator

(following (3.7)) to prove that the other square root of SΘ is A−
√
f . □

Not every compressed shift has a square root.
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Proposition 4.2. Suppose u is inner and u has a zero at z = 0 of order at

least two. Then Su does not have a square root.

Proof. The discussion used to prove Theorem 4.1 shows that the set of

square roots of Su are {Aψ : ψ ∈ H∞, ψ2 = z + uh, h ∈ H∞}. If u has a

zero of order at least two at z = 0, then z + uh = z + z2k for some k ∈ H∞

and thus z + z2k(z) has a zero of order one at z = 0. Thus, there is no H∞

function ψ for which ψ2(z) = z + uh. □

5. Square roots of Tcos θ.

The Toeplitz operator with symbol cos θ, equivalently

Tcos θ =
1
2
(S + S∗),

is a self-adjoint operator. Therefore, by the spectral theorem for normal

operators, it has a square root and, at least theoretically, can write them

all down. However, in the special case of Tcos θ, one can be more specific.

A result of Hilbert [11] (see [23, Ch. 3] for a modern presentation) shows

that if (un)
∞
n=0 are the Chebyschev polynomials of the second kind [26], then

the operator F : L2(ρ) → H2, where ρ =
√
1− x2 on [−1, 1], defined by

(5.1) Fun =

√
π

2
zn, n ⩾ 0,

is unitary and intertwines Mx on L2(ρ) and Tcos θ. More explicitly,

FMx = Tcos θF.

Thus, the matrix representation for Tcos θ with respect to the orthonormal

basis (zn)∞n=0 for H2 is [amn]
∞
m,n=0, where

amn := ⟨Tcos θzn, zm⟩H2 , m, n ⩾ 0,

which is the Toeplitz matrix
0 1

2
0 0 0 · · ·

1
2

0 1
2

0 0 · · ·
0 1

2
0 1

2
0 · · ·

0 0 1
2

0 1
2

· · ·
0 0 0 1

2
0 · · ·

...
...

...
...

...
. . .

 .
By means of the unitary operator F , we can also write

amn =
2

π

∫ 1

−1

xun(x)um(x)ρ(x)dx, m, n ⩾ 0.

This observation gives us a path to describe all of the square roots of Tcos θ

in a very explicit way. Indeed, if φ is any measurable function on [−1, 1]
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for which φ(x)2 = x for all x ∈ [−1, 1], then Mφ satisfies M2
φ = Mx. For

example, one choice of φ can be

φ(x) =

{√
x if x ⩾ 0,

i
√
−x if x < 0.

Therefore, FMφF
∗ is a square root of Tcos θ. Of course, there are many other

φ for which φ2 = x. The matrix representations of Mφ (with respect to the

Chebyschev basis) and FMφF
∗ (with respect to the standard basis for H2)

are [
2

π

∫ 1

−1

φ(x)un(x)um(x)ρ(x)dx

]∞
m,n=0

.

In fact, these are all the square roots of Tcos θ.

Theorem 5.2. For B ∈ B(H2) the following are equivalent.

(i) B2 = Tcos θ.

(ii) With respect to the orthonormal basis (zn)∞n=0 of H2, the matrix repre-

sentation of B is

(5.3)

[
2

π

∫ 1

−1

φ(x)un(x)um(x)ρ(x)dx

]∞
m,n=0

,

where φ is a measurable function on [−1, 1] satisfying φ(x)2 = x.

Proof. Let B be any fixed square root of Tcos θ. Since Tcos θ is unitarily equiva-

lent toMx on L
2(ρ) via the unitary operator F defined by (5.1), the operator

F ∗BF is a square root of Mx. By Lemma 2.10, F ∗BF commutes with Mx

and thus, by a standard characterization of cyclic normal operators, is equal

to Mφ for some φ ∈ L∞(ρ) This immediately implies

Mx = (F ∗BF )2 =Mφ2 .

By the uniqueness of the symbol of a multiplication operator, we must

have φ(x)2 = x. The matrix representation of F ∗BF = Mφ with respect

to the orthonormal basis (
√

2
π
un)

∞
n=0 of L2(ρ) is the same as the matrix

representation of B with respect to the orthonormal basis (zn)∞n=0 of H2,

and is given by (5.3). □

Notice that all of these square roots are complex symmetric operators,

since with respect to the Chebyschev basis, the matrix representation (5.3)

is self transpose.
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6. Square roots of the Hilbert matrix

The square root of the Hilbert matrix

H =



1 1
2

1
3

1
4

· · ·
1
2

1
3

1
4

1
5

· · ·
1
3

1
4

1
5

1
6

· · ·
1
4

1
5

1
6

1
7

· · ·
...

...
...

...
. . .

 ,

as an operator on ℓ2, involves a similar analysis as with the Toeplitz matrix

Tcos θ from the previous section. Indeed, H is selfadjoint and thus, by the

spectral theorem, has square roots and one can, at least in theory, write them

all down. As with the Toeplitz case, we can express these square roots in a

more tangible way. For this we replace the spectral representation theorem

of Hilbert with one of Rosenblum [22]. We outline this analysis here.

The Laguerre polynomials {Ln(x) : n ⩾ 0} form an orthonormal basis

for L2((0,∞), e−xdx). A simple integral substitution shows that the map

(Qf)(x) = e−x/2f(x) is unitary from L2((0,∞), e−xdx) onto L2((0,∞), dx).

Thus {QLn = e−x/2Ln(x) : n ⩾ 0} is an orthonormal basis for L2((0,∞), dx).

Lebedev [17, 18] proved that if

Kν(z) =

∫ ∞

0

e−z cosh(t) cosh(νt) dt,

the modified Bessel function of the third kind, then the operator

(Uf)(τ) =

∫ ∞

0

√
2τ sinh(πτ)

π
√
x

Kiτ (
x

2
)f(x)dx

is a unitary operator from L2((0,∞), dx) to itself. Thus {wn(x) = UQLn :

n ⩾ 0} is an orthonormal basis for L2((0,∞), dx). Rosenblum [22] proves

that if

(6.1) h(τ) =
π

cosh(πτ)
,

then

⟨Mhwm, wn⟩L2((0,∞),dx) =
1

n+m+ 1
, m, n ⩾ 0.

This last quantity equals ⟨Hem, en⟩ℓ2 (the entries of the Hilbert matrix). In

summary, the linear transformation W : ℓ2 → L2((0,∞), dx) defined by

W ({an}n⩾0) =
∞∑
n=0

anwn

is unitary with WHW ∗ =Mh.
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As in the previous section, if g ∈ L∞((0,∞), dx) with g2 = h, thenMg is

a square root of Mh and thus W ∗MgW is a square root of H. Conversely, if

T ∈ B(ℓ2) with T 2 = H, then WTW ∗ is a square root of Mh and hence, as

we have seen several times before,WTW ∗ belongs to the commutant ofMh.

Since h is a monotone decreasing function on (0,∞), h is injective and hence

by a well-known fact about multiplication operators, Mh is cyclic. Since the

commutant of a cyclic multiplication operator is the set of multiplication

operators Mg on L2((0,∞), dx) with g ∈ L∞((0,∞), dx) we see as before

that T = W ∗MgW , where g2 = h. We therefore arrive at the following

theorem. Below, we regard any T ∈ B(ℓ2) as an infinite matrix.

Theorem 6.2. For T ∈ B(ℓ2) the following are equivalent.

(i) T 2 = H.

(ii) There is a measurable function g on (0,∞) with g2 = h, where h is the

function from (6.1), such that

T =
[ ∫ ∞

0

g(x)wm(x)wn(x)dx
]∞
m,n=0

.

7. Square roots of the Cesàro operator

The Cesàro operator C : H2 → H2 defined by

(Cf)(z) =
1

z

∫ z

0

f(ξ)

1− ξ
dξ, z ∈ D,

is bounded on H2 and a power series computation shows that if f(z) =∑∞
j=0 ajz

j ∈ H2, then

(Cf)(z) =
∞∑
n=0

( 1

n+ 1

n∑
j=0

aj

)
zn.

Some basic facts about the Cesàro operator C are found in [2]. With resect

to the standard orthonormal basis (zn)∞n=0 for H
2, the matrix representation

of C is

(7.1)



1 0 0 0 0 · · ·
1
2

1
2

0 0 0 · · ·
1
3

1
3

1
3

0 0 · · ·
1
4

1
4

1
4

1
4

0 · · ·
1
5

1
5

1
5

1
5

1
5

· · ·
...

...
...

...
...

. . .


which is known as the Cesàro matrix. Though not quite obvious, C has a

square root and in fact, one can write them all down - since there are only
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two of them. This is the topic of this section. It is important to note here

that by the Conway-Olin functional calculus for subnormal operators [4],

one can prove that C has at least two square roots. The purpose here is

to show that C has exactly two square roots and to specifically write them

down.

Our path to identify the (bounded) square roots of C is through subnor-

mal operators and the work of Kriete and Trutt. Along the way to proving

that C is subnormal, a paper of Kriete and Trutt [15] shows that for w ∈ D,
the function

vw(z) = (1− z)w/(1−w)

belongs to H2 and satisfies (I − C∗)vw = wvw. The space

H = {F (z) = ⟨f, vz⟩H2 : f ∈ H2}

defines a vector space of analytic functions on D that becomes a Hilbert

space, in fact a reproducing kernel Hilbert space, when endowed with the

norm ∥F∥H = ∥f∥H2 . This makes the operator (Uf)(z) = F (z) a unitary

operator from H2 to H. Furthermore,

(U(I − C)f)(z) = ⟨(I − C)f, φz⟩H2

= ⟨f, (I − C∗)vz⟩H2

= ⟨f, zvz⟩H2

= z⟨f, vz⟩H2

= z(Uf)(z)

for all f ∈ H2. Thus, U(I − C) = MzU on H. In summary, C is unitarily

equivalent to M1−z on H.

Thus if A is a (bounded) square root of C, then, as we have seen with

the other operators covered in this paper, A ∈ {C}′ and thus UAU∗ ∈
{M1−z}′ = {Mz}′. So now we need to identify {Mz}′. The Hilbert space H
also contains the polynomials as a dense set [15]. In fact, H can be identified

with the closure of the polynomials in L2(µ) for some finite positive Borel

measure µ on the closure of D. A well-known, and general fact for reproduc-

ing kernel Hilbert spaces for which the polynomials are dense [8, Pr. 147],

says that the commutant of Mz is the set of multiplication operators Mφ

where φ is a multiplier of H (i.e., φH ⊆ H). Another paper of Kriete and

Trutt [16] argues that the multipliers of H are precisely H∞.
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Putting this all together, it follows that if A is a square root of C, then

UAU∗ =Mφ for some φ ∈ H∞. But

Mφ2 =M2
φ = (UAU∗)2 = UCU∗ =M1−z.

and thus φ2 = 1− z on D. But since φ is analytic on D, it must be the case

that φ(z) = ±
√
1− z. Thus, the Cesàro operator has

U∗M√
1−zU and U∗M−

√
1−zU

as its only square roots.

The above formulas for the square roots of C are a bit unsatisfying since

they are hidden behind the unitary operator U and a somewhat mysterious

Hilbert space H. Our goal in the next two results is to produce a more

tangible description of the two square roots of C. Note that

√
1− z = 1− 1

2
z − 1

8
z2 − 1

16
z3 − 5

128
z4 − · · · = 1−

∞∑
k=1

∣∣∣(1
2

k

)∣∣∣zk,
where the branch of the square root is taken so that

√
1 = 1. It is well-known

that
∞∑
k=0

∣∣∣(1
2

k

)∣∣∣ <∞.

Theorem 7.2. The following are equivalent for A ∈ B(H2).

(i) A2 = C.

(ii) A = ±
(
I − 1

2
(I −C)− 1

8
(I −C)2 − 1

16
(I −C)3 + · · ·

)
, where the series

above converges in operator norm.

Proof. From the above discussion,

U∗M√
1−zU and U∗M−

√
1−zU

are the only two (bounded) square roots of C. Since ∥Mz∥ = ∥I − C∥ = 1

[2], the series

I − 1
2
Mz − 1

8
M2

z − 1
16
M3

z − · · ·
converges in operator norm to M√

1−z. But since M
k
z is unitarily equivalent

to (I − C)k, we get

U∗M√
1−zU = U∗

(
I − 1

2
Mz − 1

8
M2

z − 1
16
M3

z − · · ·
)
U

= I − 1
2
U∗MzU − 1

8
(U∗MzU)

2 − 1
16
(U∗MzU)

3 + · · ·

= I − 1
2
(I − C)− 1

8
(I − C)2 − 1

16
(I − C)3 + · · · .

The other square root of C is computed in a similar way. □
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Using an idea of Hausdorff [10], the paper [13] produces all of the lower

triangular square roots of the Cesàro matrix from (7.1). That paper con-

siders the Cesàro matrix and its resulting square roots as linear transfor-

mations on all one-sided sequences (not necessarily ℓ2 sequences nor any

assumption on the linear transformation being bounded). They show that

all of the lower triangular square roots of the Cesàro matrix are the matrices

Aσ = [Aσij]
∞
i,j=0, where

(7.3) Aσij =


(
i

j

) i−j∑
ℓ=0

(−1)ℓσ(ℓ+ j + 1)
1√

ℓ+ j + 1

(
i− j

ℓ

)
i ⩾ j,

0 i < j,

and σ : N → {−1, 1}. One can work out that Aσ equals
1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




±1 0 0 0 · · ·
0 ±

√
1
2

0 0 · · ·

0 0 ±
√

1
3

0 · · ·

0 0 0 ±
√

1
4

· · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .

,
where the sign along the diagonal of the middle matrix is determined by

the function σ.

They also conjecture that the choices of Aσ, where σ ≡ 1 or σ ≡ −1, are

the two bounded square roots of the Cesaro matrix (viewed as an operator

on ℓ2). This next theorem verifies this conjecture (thus answering a question

posted by Halmos) and also gives an exact description of the square roots

from Theorem 7.2.

Theorem 7.4. The following are equivalent for A ∈ B(H2).

(i) A2 = C.

(ii) With respect to the orthonormal basis (zn)∞n=0 for H2, the matrix repre-

sentation of A is either [Aij]
∞
i,j=0 or −[Aij]

∞
i,j=0, where

Aij =


(
i

j

) i−j∑
ℓ=0

(−1)ℓ
1√

ℓ+ j + 1

(
i− j

ℓ

)
i ⩾ j

0 i < j.

Proof. By the above discussion of the results from [13], all of the lower

triangular square roots of the Cesàro matrix (as viewed as an operator on

the space of all sequences) are of the form Aσ for some σ : N → {−1, 1}.
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From (7.3), notice that

(7.5) Aσii = σ(i+ 1)
1√
i+ 1

and so the choice of σ is determined by the entries of Aσ on its diagonal. If

A =
(
I − 1

2
(I − C)− 1

8
(I − C)2 − 1

16
(I − C)3 + · · ·

)
,

one of the bounded square roots of the Cesàro matrix from Theorem 7.2,

notice that (I − C)k is lower triangular for all k ⩾ 0 and thus so is A. We

just need to determine which choice of σ yields Aσ = A.

The (n, n) entry of I −C is (1− 1
n+1

) for n ⩾ 0 and since I −C is lower

triangular, it follows that the (n, n) entry of (I − C)k is (1 − 1
n+1

)k. Thus,

the (n, n) entry of A is

1− 1
2
(1− 1

n+1
)− 1

8
(1− 1

n+1
)2 − 1

16
(1− 1

n+1
)3 − · · · .

But the above is just the Taylor series of
√
1− z evaluated at z = 1− 1

n+1

and this turns out to be
√

1
n+1

. By (7.5), this corresponds to Aσ with σ ≡ 1.

When

A = −
(
I − 1

2
(I − C)− 1

8
(I − C)2 − 1

16
(I − C)3 + · · ·

)
,

a similar analysis shows that corresponds to Aσ with σ ≡ −1. □

Thus the only two bounded square roots of the Cesàro (matrix) operator

are 
1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




1 0 0 0 · · ·
0

√
1
2

0 0 · · ·

0 0
√

1
3

0 · · ·

0 0 0
√

1
4

· · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .


and

1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




−1 0 0 0 · · ·
0 −

√
1
2

0 0 · · ·

0 0 −
√

1
3

0 · · ·

0 0 0 −
√

1
4

· · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .

.

Remark 7.6. It is important to note that any other option of sign along

the main diagonal of the middle matrix will yield an unbounded operator
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on ℓ2. For example,
1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




−1 0 0 0 · · ·
0

√
1
2

0 0 · · ·

0 0
√

1
3

0 · · ·

0 0 0
√

1
4

· · ·
...

...
...

...
. . .




−1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .


(notice the minus sign in the first entry of the diagonal matrix and all the

other entries are positive) can be written as
1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




1− 2 0 0 0 · · ·
0

√
1
2

0 0 · · ·

0 0
√

1
3

0 · · ·

0 0 0
√

1
4

· · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .


which is equal to

1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




1 0 0 0 · · ·
0

√
1
2

0 0 · · ·

0 0
√

1
3

0 · · ·

0 0 0
√

1
4

· · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .



−2


1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .




1 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
0 0 0 0 · · ·
...

...
...

...
. . .




1 0 0 0 0 · · ·
1 −1 0 0 0 · · ·
1 −2 1 0 0 · · ·
1 −3 3 −1 0 · · ·
1 −4 6 −4 1 · · ·
...

...
...

...
...

. . .

.
The first matrix in the sum above is one of the bounded square roots of the

Cesàro operator while the second matrix in the sum turns out to be
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
1 0 0 0 0 · · ·
...

...
...

...
...

. . .


which is clearly an unbounded operator on ℓ2 (since the vector (1, 1, 1, . . .)

belongs to the range – and is clearly not in ℓ2).
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QC, Canada, G1K 0A6

Email address: javad.mashreghi@mat.ulaval.ca

Department of Applied Mathematics, University of Agriculture, ul.
Balicka 253c, 30-198 Kraków, Poland.

Email address: rmptak@cyf-kr.edu.pl

Department of Mathematics and Computer Science, University of Rich-
mond, Richmond, VA 23173, USA

Email address: wross@richmond.edu


	The square roots of some classical operators
	Recommended Citation

	tmp.1722272189.pdf.lQtD7

