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Unexpected phylogenetic positions of the genera Rupirana and Crossodactylodes
reveal insights into the biogeography and reproductive evolution of
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a b s t r a c t

Despite major progress in deciphering the amphibian tree of life by molecular phylogenetics, we identi-
fied two questions remaining to be answered regarding relationships within Hyloidea, the clade of South
American origin that comprises most extant anuran diversity. A few genera like Rupirana and Crossodac-
tylodes have enigmatic phylogenetic positions, and relationships among major lineages within some fam-
ilies like Leptodactylidae remain ambiguous. To resolve these specific questions we used two approaches
(1) a complete matrix approach representing >6.6 kb, including most major Hyloidea lineages (61 termi-
nals) combining different methods of phylogenetic reconstruction and measures of node support; and (2)
a supermatrix approach >11.6 kb with a focus on Leptodactylidae. Both Rupirana and Crossodactylodes are
unambiguously grouped with Paratelmatobius and Scythrophrys. The clade comprising these four genera is
named Crossodactylodinae and embedded within Leptodactylidae. Crossodactylodinae is moderately
supported as sister group of Leptodactylinae from (1) and as the sister group of the other Leptodactylidae
from (2) with low support. Genera within Crossodactylodinae are scattered along a north–south axis in
the Atlantic forest and their origins are very ancient (Paleocene). Such results stress the importance of the
northern Atlantic forest in terms of conservation. Moreover, the position of Pseudopaludicola, which is
well supported as the sister group to all other Leiuperinae, suggests that foam-nest building may have
arisen independently in Leptodactylinae and Leiuperinae. Moreover, in spite of being of similar age,
foam-nest builders are more widespread than nonfoam-nest breeders and have higher species diversity.
Nevertheless, the bulk of the diversity within foam-nest breeders arose some 20 Myr later than the char-
acter itself.

� 2013 Elsevier Inc.

1. Introduction

Molecular phylogenetics have revitalized taxonomy and sys-
tematics of most living groups, including amphibians (Faivovich
et al., 2005; Frost et al., 2006; Grant et al., 2006; Pyron and Wiens,
2011). Furthermore, it has brought exciting new insights into the
relationships and temporal/spatial patterns of diversification in
amphibians (e.g. Roelants et al., 2007; Santos et al., 2009) often

revealing otherwise cryptic evolutionary trends of amphibian mor-
phology (e.g. Bossuyt and Milinkovitch, 2000; Wiens, 2008).

More than 90% of the current anuran species belong to Neoba-
trachia, and recent studies show that this clade has a Gondwanan
origin and that its diversification began during Jurassic (Roelants
et al., 2007). Neobatrachia consists of two well-supported clades:
Ranoidea and Hyloidea; Ranoidea originated in Africa and India
(Bossuyt et al., 2006) and Hyloidea (=Nobleobatrachia sensu Frost
et al., 2006) in South America. Hyloidea has a relatively recent ori-
gin, 65–110 million years ago (Ma), considering that extant anu-
rans started diversifying about 250 Mya (Marjanovic and Laurin,
2007; Roelants et al., 2007; San Mauro et al., 2005; Santos et al.,
2009; Zhang et al., 2005). However, Hyloidea includes more than
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half of the neobatrachian species, and thus almost half of the spe-
cies of the world.

Within Hyloidea, a few groups have been thoroughly
investigated. Monophyly and relationships among most genera in
Bufonidae (Pauly et al., 2004; Pramuk, 2006; Pramuk et al., 2007;
Van Bocxlaer et al., 2010), Hylidae (Faivovich et al., 2005,2010;
Wiens et al., 2005), Centrolenidae (Guayasamin et al., 2008, 2009),
Terrarana (Hedges et al., 2008; Heinicke et al., 2007,2009), Hemiphr-
actidae (Duellman et al., 2011; Wiens, 2011), and Dendrobatidae
(Brown et al., 2011; Grant et al., 2006; Santos et al., 2009) are now
relatively well-understood. The most recent contribution, with the
largest composite dataset, is that of Pyron and Wiens (2011) based
on 2871 terminals and 12712 bp, gathering sparse data for some ne-
glected Hyloidea families like Leptodactylidae, Leiuperidae, Cerat-
ophryidae, and Cycloramphidae, which were redefined by Pyron
and Wiens (2011). However, despite Pyron and Wiens (2011) and
preceding efforts in documenting amphibian tree of life (Frost
et al., 2006; Heinicke et al., 2009), we identified two questions that
remain to be answered: (1) the phylogenetic position of some enig-
matic genera/species remains unresolved and these are considered
as incertae sedis within Hyloidea, and (2) relationships of major
clades within some families like Leptodactylidae remain ambiguous.

(1) Previous attempts remained taxonomically incomplete
in genera included in several families. This is the case
of Rupirana, Crossodactylodes, and Zachaenus, which
were once included in Cycloramphidae (sensu Frost
et al., 2006). These genera were actually considered by
Pyron and Wiens (2011) as incertae sedis in Hyloidea,
ignoring that a close affinity between Zachaenus and
Cycloramphus was suggested by Maxson et al. (1981)
based on immunological data and subsequently con-
firmed based on morphology (Verdade, 2005) and
molecular data (Lourenço et al., 2008).

However, the phylogenetic position of Rupirana Heyer (1999)
remains to be investigated. This monotypic genus is restricted to
a mountain range in Bahia state, Brazil (Heyer, 1999; Juncá,
2005). The species is a stream dweller with aquatic eggs and
free-swimming larvae (Juncá and Lugli, 2009). In the original
description, Heyer (1999) included this genus as a member of
Leptodactylidae (sensu Lynch, 1971) with affinities to Thoropa
(now part of Cycloramphidae) given that both species are associ-
ated with streams and share other character states, but stressing
that this was based on plesiomorphies. Therefore, no conclusive
evidence was provided regarding the suggested relationship. Nev-
ertheless, Frost et al. (2006) included Rupirana in Cycloramphidae,
following Dubois (2005) who placed the genus in Cycloramphinae
Bonaparte, 1850 without clear justification probably following
Heyer (1975, 1999).

The history of the genus Crossodactylodes, which comprises
three bromeliaceous nominal species distributed in the Atlantic
forest of Brazil, is also ambiguous. The genus was erected by Coch-
ran (1938), without relating it to any other anuran taxon. Later, in a
reanalysis of the systematics of the ‘‘leptodactyloid’’ frogs, Lynch
(1971) placed the genus in the leptodactylid tribe Grypiscini, to-
gether with Cycloramphus and Zachaenus, on the basis of morphol-
ogy and breeding biology. Based on Lynch (1971), Frost et al.
(2006) included Crossodactylodes in the tribe Cycloramphini of
Cycloramphidae (also including Cycloramphus, Zachaenus, and Rhi-
noderma) without including sequences of Crossodactylodes in their
analysis. Grant et al. (2006) raised the tribe Cycloramphini to sub-
family (without modifying its content), within a redefined Cyclor-
amphidae also without including sequences of Crossodactylodes.

Pyron and Wiens (2011) left Crossodactylodes and Rupirana as
genera incertae sedis within Hyloidea. Reasons for this change were

(1) the findings of a polyphyletic Cycloramphidae (sensu Grant
et al., 2006), and (2) the fact that they did not include sequences
of any exemplar of these genera. Nevertheless, as shown by Blotto
et al. (in press) and Pyron and Wiens (2011), the former Cycloram-
phidae sensu Grant et al. (2006) needs to be thoroughly reevalu-
ated, because of the inclusion of chimeric sequences of distantly
related taxa, as well as several Homo sapiens contaminations. In
fact, morphological data (Verdade, 2005; VKV pers. obs.) suggest
that these two genera may be closer to Leptodactylidae. Cyclo-
ramphid frogs have intermandibularis and submentalis muscles
adjacent or medially overlapping, corresponding to superficial
throat muscles pattern 1 of Burton (1998), whereas Leptodactylus,
Physalaemus, Pseudopaludicola, and Paratelmatobius (Leptodactyli-
dae) have the m. intermandibularis overlapping the m. submentalis
laterally, corresponding to pattern 2 (Burton, 1998). Rupirana and
Crossodactylodes both present the pattern found in Leptodactylidae
(Verdade, 2005; VKV pers. obs.).

(2) Similarly, relationships within Leptodactylidae (sensu
Pyron and Wiens, 2011), a large family (186 species;
Frost, 2012) distributed over all neotropical habitats, still
remain ambiguous. Currently, the family consists of
three subfamilies Leptodactylinae, Paratelmatobiinae,
and Leiuperinae (Pyron and Wiens, 2011). Monophyly
of Leiuperinae remains questionable given the alterna-
tive relationships of Pseudopaludicola in previous works
(Frost et al., 2006; Faivovich et al., 2005, 2012; Grant
et al., 2006; Santos et al., 2009; Pyron and Wiens,
2011). The position of Paratelmatobiinae is also versatile
among previous studies; as the sister group to Leptodac-
tylinae (Frost et al., 2006; Grant et al., 2006) or as the
weakly supported sister group of Leiuperinae (Pyron
and Wiens, 2011). Interestingly, Leptodactylinae and
Leiuperinae build ‘‘foam nests’’ during breeding, except
the genus Pseudopaludicola (Leiuperidae) and Paratelma-
tobiinae, a character not discussed by Pyron and Wiens
(2011) in their support for a more inclusive definition
of Leptodactylidae. Consequently, the homology of
foam-nest building in Leptodactylidae is questionable
(Faivovich et al., 2012) especially considering that it
has evolved in many lineages unrelated to Leptodactyli-
dae (Duellman and Trueb, 1986; Wells, 2007; Faivovich
et al., 2012). Also, Paratelmatobiinae and Pseudopaludico-
la have fewer species and display more restricted ranges
than do the foam-nest-building Leuiperinae and Lepto-
dactylinae, suggesting that foam-nesting may be linked
to the evolutionary success of these groups. Lynch
(1971) suggested that foam-nesting in Leptodactylinae
evolved during a period of increasingly dry climate,
whereas Heyer (1975) argued that foam-nesting origi-
nated in wet forests and pre-adapted leptodactylines
for later invasion of drier savanna habitats. We therefore
need to investigate the relationships among the foam-
nest builders and timing of their diversification in order
to understand the evolution of this character.

Another important point concerning Leptodactylidae comes
from the synonymisation by Frost et al. (2006) of Adenomera, Litho-
dytes, and Leptodactylus based on Heyer (1998) and Kokubum and
Giaretta (2005), who suggested that Adenomera is phylogenetically
grouped with the Leptodactylus fuscus species group. However,
none of these publications was actually designed to investigate
monophyly of these genera. Paraphyly of Leptodactylus with re-
spect to Adenomera and Lithodytes was also suggested by Ponssa
(2008) and Ponssa et al. (2010) based on morphology. Subse-
quently, Giaretta et al. (2011) erected ‘‘the unranked taxon Spu-
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moranuncula (a name joining Latin words for foam/froth and tad-
pole) for the putative clade that includes those species of
Leptodactylus’’ i.e., Adenomera + Leptodactylus fuscus species group
that share at least the synapomorphy (sic.) of having tadpoles able
to generate foam by themselves. . .’’. However, Pyron and Wiens
(2011) and Fouquet et al. (2007,2012a) recovered Leptodactylus
and Adenomera as monophyletic genera. Nevertheless, proper sam-
pling within Leptodactylus and Adenomera as well as the integra-
tion of Hydrolaetare is still needed to test the monophyly of these
groups within Leptodactylinae.

In order to fill these gaps, we investigate the phylogenetic posi-
tion of Rupirana, Crossodactylodes, and the relationships among the
main Hyloidea lineages in particular within Leptodactylidae using
both (1) a complete matrix and (2) a supermatrix approach (de Que-
iroz and Gatesy, 2007). This allows investigating the evolution of
foam-nest building in an explicit time frame. Previous studies used
an incomplete character matrix and incomplete taxon sampling.
Such missing data can, depending on multiple factors, have conse-
quences for the resolution of the phylogeny (Lemmon et al., 2009;
Wiens and Morrill, 2011; Wiens, 1998, 2003; Simmons, 2012) espe-
cially when estimating divergence time (Lemmon et al., 2009;
Wiens and Morrill, 2011). Moreover, improving taxon sampling
can resolve deep relationships by breaking long branches and in-
crease accuracy of phylogenetic analyses (Graybeal, 1998; Heath
et al., 2008; Hillis, 1998; Hillis et al., 2003; Rannala et al., 1998; Pol-
lock et al., 2002; Zwickl and Hillis, 2002) notably the resolution for
short internodes (e.g., Zwickl and Hillis, 2002). Therefore, by com-
bining both approaches and improving both characters and taxon
sampling, we partly circumvent these problems.

2. Materials and methods

We follow the family-level taxonomy of Pyron and Wiens (2011).
The only modification regards the family allocation of Batrachyla
antartandica, B. taeniata, and Hylorina sylvatica, which were trans-
ferred from Alsodidae to Batrachylidae (see Blotto et al. (in press)
for a justification). We discuss and justify the most critical taxon
sampling with regard to the allocation of Crossodactylodes and Rupir-
ana; for the remaining selected taxa see Appendices S1 and S2.

2.1. Data matrix

2.1.1. Complete matrix
We targeted three mitochondrial loci [the H-strand transcription

unit 1 (H1, �2400 bp including 12S and 16S); cytochrome b (Cytb,
605 bp); cytochrome oxydase I (COI, 658 bp)] and four nuclear loci
[recombination activating gene exon 1 (RAG1; 1244 bp), pro-opiomel-
anocortin C (POMC; 588 bp); tyrosinase (TYR, 531 bp), and rhodopsin
(RHOD, 316 bp)] that were already partly available for main Hyloi-
dea lineages and five outgroups (Appendix S1).

In order to fill data gaps we concatenated data from different
species or even genera when monophyly of the group involved
was unambiguous from literature. In only two cases, to represent
the clades Australobatrachia (Calyptocephalellidae + Myobatrachi-
dae) and Sooglossus/Nasikabatrachus (outgroups), we concatenated
sequence data from different families (Appendix S1). The only
early-diverging lineages within Hyloidea that were not repre-
sented were Ceuthomantidae and Rhinodermatidae (Rhinoderma,
Insuetophrynus) considering that available data were too limited
(RAG1, POMC, TYR missing) to include these terminals. Neverthe-
less, the former being supported as belonging to the Terrarana
clade (Heinicke et al., 2009; Pyron and Wiens, 2011) and the sec-
ond being unambiguously embedded, yet with undetermined posi-
tion, within a clade gathering most former Cycloramphidae (sensu
Frost et al. (2006)) (Blotto et al., in press; Pyron and Wiens, 2011),

such omissions do not impede the analyses. Moreover, these termi-
nals were included in the supermatrix (see below). Within Lepto-
dactylidae we also omitted two genera for which available
sequence data were considered too limited i.e. Scythrophrys and
Edalorhina. Nevertheless, Scythrophrys is supported as the sister
group of Paratelmatobius (Frost et al., 2006; Lourenço et al., 2008;
Pyron and Wiens, 2011; Verdade, 2005) and Edalorhina as the sister
group of Engystomops + Physalaemus (Faivovich et al., 2012; Frost
et al., 2006; Pyron and Wiens, 2011); therefore, such omissions
do not impede the analyses, and these terminals were also in-
cluded in the supermatrix (see below). For Adenomera we included
nine nominal and one undescribed species (seven are included
here for the first time in a molecular phylogeny) and for Lepto-
dactylus we collated sequences for six species groups for which
monophyly was unambiguous. We used Blastn on each selected se-
quence and performed preliminary phylogenetic reconstructions
for each locus to double-check potential errors in building the ma-
trix or for erroneous sequences. Individually, each locus provided
poor resolution for the deepest nodes (Hyloidea). Therefore, we fo-
cused our analyses on the concatenated dataset. Rupirana cardosoi
and Crossodactylodes sp. (a newly discovered species being cur-
rently described M. Teixeira Jr. com. pers.) are also included, for
the first time in any phylogenetic reconstruction. The final matrix
comprised 61 terminals (Appendix S1).

We completed the molecular data directly from new biological
material. For 46 terminals genomic DNA was extracted using Pro-
mega Wizard� Genomic DNA purification kit. Fragments were
amplified by standard PCR techniques; detailed information is avail-
able in Appendix S3. Sequencing was performed using the BigDye�

Terminator v3.1 Cycle Sequencing kit and resolved on an automated
sequencer at IQUSP and Genomic Engenharia corp. (São Paulo, Bra-
zil). Sequences were edited and aligned with CodonCode Aligner
v.3.5.2. Novel sequences were deposited in Genbank (Appendix S1).

We generated 172 new sequences and obtained an almost com-
plete matrix. Missing data were limited to two complete loci for
one terminal (Allophryne COI and RAG1a) and one locus for four ter-
minals (Hemiphractus TYR, Stefania COI, Melanophryniscus TYR, and
Sooglossus/Nasikabatrachus POMC). A 345 bp long portion of the
Cytb fragment was also missing for four terminals (Gastrotheca,
Hemiphractus, Stefania, Allophryne); �600 bp of the 12S–16S for
one terminal (for Leptodactylus mystaceus group) and �500 pb of
RAG1a for Craugastor.

2.1.2. Supermatrix
We subsequently gathered most nominal species within Lepto-

dactylidae available in GenBank for most shared loci available. This
included many taxa previously omitted such as Scythrophrys, Eda-
lorhina, and new terminals (e.g. Rupirana, Crossodactylodes sp. 2)
for which we generated additional sequence data for some of them
(see Appendix S2 for the specific terminals and sequence data in-
cluded and Appendix S3 for primers used). In addition to the loci se-
lected previously for the complete matrix, we included the
following genes: C-X-C chemokine receptor type 4 (CXCR) the nuclear,
histone 3a (H3A), sodium–calcium exchanger (NCX1), seven in absentia
homolog 1 (SIA), and solute-carrier family 8 (SLC8A3) (Appendix S2).

The matrix includes 162 terminals (160 species since two sam-
ples of Crossodactylodes sp. 2 and Rupirana were included). It con-
tains data from 160 species for 12S (100% of the species included),
160 for 16S (100%), 97 for Cytb (60%), 94 for RAG1 (59%), 74 for TYR
(46%), 91 for RHOD1 (57%), 66 for SIA (41%), 70 for POMC (44%), 39
for H3A (24%), 39 for CXCR4 (24%), 31 for NCX1 (19%), 23 for SLC8A3
(14%), 64 for ND1 (40%), 119 for tRNAval (74%), 40 for tRNAile (25%),
58 for tRNAleu (36%). The mean sequence length (based on the sta-
tic matrix) per terminal is 5,376-bp (ca. 44% of the matrix length,
12,259 bp), with a range from 1104 bp (Batrachyla antartandica)
to 11,630 bp (Thoropa). See Appendix S2 for GenBank numbers.
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2.2. Data analyses

2.2.1. Complete matrix
2.2.1.1. Alignment. Most data consisted of coding regions and thus
alignment was unambiguous. We observed the insertion of one co-
don in the RAG1a fragment for Hyloidea and several codon inser-
tion/deletion in POMC but none of them led to ambiguous
alignment after checking the reading frames.

We searched for the best alignment for the H1 (12S–16S) frag-
ment using the total concatenated dataset with MAFFT v6 (Katoh
et al., 2009) and using default parameter except the use of the L-
INS-i strategy, which is adapted to sequences with one conserved
domain and long gaps. We obtained a final 6656 bp alignment
(Appendix S4).

We used Bayesian analysis (BA) and Maximum Likelihood (ML)
to investigate phylogenetic relationships among terminals.

2.2.1.2. Bayesian analyses. Bayesian analyses were conducted with
Beast 1.6.2 (Drummond and Rambaut, 2007) using relaxed Bayesian
molecular clock with uncorrelated lognormal rates. We divided the
dataset into seven partitions: one for each codon position of the
mtDNA and nuDNA coding genes and one for H1, with unlinked
HKY+I+G substitution model and unlinked clock model but linked
trees. This partitioning was chosen considering the coding nature
of mtDNA (Cytb, COI) and nuDNA (RAG1, POMC, TYR and RHOD) loci
and comparable magnitude of the rates of evolution (Fouquet et al.,
2012c; Hoegg et al., 2004; Mueller, 2006; and also from preliminary
analyses – results not shown). A more inclusive partitioning would
have to join very different patterns of molecular evolution and more
partitions would likely cause overparametrisation (Marshall, 2010).
An alternative partitioning (10 partitions) inferred via PartitionFind-
er (Lanfear et al., 2012) was also used in a BA analysis that led to very
similar topology and resolution as well as similar time estimates.

Previous large datasets studies using fossil or biogeographic cal-
ibrations to infer timing of diversification within anurans provided
a good estimation of the crown age of some major groups. For the
root of the tree (Neobatrachia) we used a uniform distribution
bounded between 100 and 200 Ma whereas for Hyloidea we con-
sidered a uniform distribution bounded between 65 and 100 Ma
based on the different estimates from Marjanovic and Laurin
(2007). These two ranges fit all other studies (Igawa et al., 2008;
Pramuk et al., 2007; Roelants et al., 2007; San Mauro et al., 2005;
Wiens et al., 2005). We also bounded the TMRCA between Phyllo-
medusinae and Pelodryadinae between 35 and 65 Ma based on the
evidence that the last connection between Australia and Antarctica
was 35 Ma and previous molecular dating showing that maximum
age cannot reasonably be older than 65 Ma. Finally, Bufonidae is a
thoroughly investigated group whose origin can be reasonably
bounded between 65 and 40 Ma.

The tree prior used the Birth and Death Process, with a randomly
generated starting tree and default values were used with the ‘‘Auto
Optimize’’ option. We computed 108 generations, sampled every
1000 generations. We examined convergence on stationarity using
Tracer 1.5. The maximum clade credibility tree was computed with
Tree Annotator 1.6.2. We considered relationships strongly sup-
ported when posterior probabilities were equal to or higher than
0.95 (Fig. 1). The convergence of the BA was quickly reached. Thus,
initial burning step was set as 10% of the samples. All ESS were >500.

2.2.1.3. Maximum likelihood. We used GARLI 2.0 (Zwickl, 2006) to
search for optimal phylogenetic tree on likelihood criteria, apply-
ing a HKY+I+G model (for consistency with BA the same evolution-
ary model i.e. 7 partitions and HKY is used for ML). The analysis
consisted of 350 replicates, each starting with a random tree
initially optimized with maximum parsimony criteria and full
SPR tree search.

Supports for the recovered ML topology were estimated via
PhyML 3.0.1-beta (Guindon et al., 2010; Anisimova et al., 2011)
considering parametric aBAYES, aLRT and non-parametric SH-
aLRT. We also estimated parametric aLRT and non-parametric
SH-aLRT in addition to posterior probability for BA recovered tree
on PhyML 3.0.1-beta (supports values were generated with the
same analytic conditions as in ML topology search, except that
PhyML 3.0.1-beta do not implement partitioned models). Values
above 0.90 for parametric values and >0.8 for non-parametric val-
ues (Anisimova et al., 2011) were considered strongly supporting
the node. Non-parametric support is sensitive to false negative val-
ues and parametric support to false positive values. We therefore
combined the results from the different support methods in an ex-
plicit decision rule about the robustness of the nodes considering
as (1) strongly supported, nodes having all values above the
threshold, (2) moderately supported, nodes with one value below
the thresholds (potential false negative and positive) and (3)
weakly supported when more than one value was below the
thresholds.

2.2.2. Supermatrix
The phylogenetic analyses using Direct Optimization were per-

formed with POY4.1.1 (Varón et al., 2009, 2010), using equal
weights for all transformations (substitutions and insertion/dele-
tion events). Sequences of H1 were preliminarily delimited in sec-
tions of putative homology (Wheeler et al., 2006), and protein-
coding genes were considered as static alignments to accelerate
the searches. For the protein coding-genes we employed the align-
ment provided by Pyron and Wiens (2011) with minor modifica-
tions. Searches with POY were performed using the command
‘‘Search’’, which implements a driven search composed of random
addition sequence Wagner builds (RAS), Tree Bisection and Recon-
nection (TBR) branch swapping, Parsimony Ratcheting (Nixon,
1999), and Tree Fusing (Goloboff, 1999), storing the shortest trees
of each independent run and performing a final round of Tree Fus-
ing on the pooled trees. Two 96-h runs of Search were imple-
mented in parallel at the American Museum of Natural History
Cluster using 28 processors. The resulting trees were submitted
to a final round of swapping using iterative pass optimization
(Wheeler, 2003). We also performed a multiple alignment with
MAFFT (Katoh et al., 2009). We then analyzed the competing align-
ment by performing searches with T.N.T Willi Hennig Society Edi-
tion v1.1 (Goloboff et al., 2008), keeping the alignments that
yielded the lower tree length. For the regions of 12S and 16S we
employed the alignments generated with Q-INS-i strategy (second-
ary structure of RNA is considered), while the alignments for the
remaining fragments (tRNAval, tRNAleu, tRNAile, ND1) were gener-
ated with G-INS-i (global homology considered).

For the phylogenetic analysis we employed T.N.T v1.1, perform-
ing 1000 random addition sequences followed by a round of TBR
swapping, and saving 10 trees per replicate. Two analyses were
conducted, considering alternatively gaps as a fifth state and as
missing data. Support estimation was done with New Technology
search (which implements Sectorial Searches and Tree Fusing) hit-
ting the minimum length two times per replicate, for a total of
1000 replicates of Parsimony Jackknife, with 0.36 of removal prob-
ability (Farris et al., 1996).

3. Results

3.1. Complete matrix

The topologies recovered across analyses are very similar; dif-
ferences mostly lay with poorly sustained relationships among
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families within Hyloidea, most notably due to alternative position-
ing of Hylidae and Dendrobatidae.

A clade comprising Rupirana, Crossodactylodes, and Paratelmato-
bius is strongly supported in all analyses (Fig. 1) and is unambig-
uously nested within Leptodactylidae. In agreement with previous
works, Hyloidea is strongly supported as monophyletic, as well as
major clades (Terrarana) and families. Leptodactylidae and the
clade formed by Allophrynidae and Centrolenidae are also recov-
ered as sister groups from BA and ML. However, some relation-
ships have never been recovered with strong supports before:
(1) Cycloramphidae + Alsodidae + Batrachylidae + Odontophryni-

dae + Hylodidae form a strongly supported clade mostly corre-
sponding to a former definition of Cycloramphidae (sensu Frost
et al., 2006) with BA and ML; (3) Ceratophryidae and
Telmatobiidae form a strongly supported clade with BA and ML,
furthermore (4) the latter two families are strongly supported
forming a clade with most former Cycloramphidae (sensu Frost
et al., 2006) with BA and ML.

Leptodactylinae is unambiguously recovered monophyletic and
strongly supported in all analyses. The clades formed by Rupirana,
Crossodactylodes, Paratelmatobius and by Leptodactylinae are
recovered as sister groups. This clade is recovered in all methods

(a)

(b)

Fig. 1. (a) Bayesian time-calibrated, maximum clade-credibility tree using relaxed clock and selected terminals. Calibration points (see Text) are indicated with yellow circles.
Posterior probabilities/aLRT/SH-aLRT are indicated near the nodes; 95% credibility intervals are indicated with blue bars. (b) Phylogenetic tree based on maximum likelihood
method. Supports aBAYES/aLRT/SH-aLRT are indicated near the nodes. (For interpretation of the references to color in this figure legend, the reader is referred to the web
version of this article.)
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with strong supports except in SH-aLRT and aLRT with BA and SH-
aLRT with ML where their relationship is moderately supported.
Similarly, Leiuperinae is recovered monophyletic having Pseudopa-
ludicola as the sister taxon of the other Leiuperinae in BA and ML,
both with strong support, except aLRT with BA (moderate support).
Within Leptodactylinae, Adenomera is strongly supported as mono-
phyletic as well as Leptodactylus, having respectively as sister
groups Lithodytes and Hydrolaetare.

Diversification of Leptodactylidae began about 68 Ma, with
Rupirana diverging very early, about 58 Ma (Paleocene), from the
clade formed by Scythrophrys, Crossodactylodes and Paratelmatobi-
us. Crossodactylodes also displays an early divergence, some
34 Ma (Eocene/Oligocene boundary), from Paratelmatobius (and
Scythrophrys by implication). Leptodactylinae started to diversify
about 55 Ma (Paleocene/Eocene boundary) and Leptodactylus some
35 Ma while Adenomera diversified more recently, about 25 Ma
(Oligocene/Miocene boundary).

A few discrepancies and diagnostic points should also be high-
lighted. Posterior probabilities from BA are P0.95 with 11 excep-
tions (Fig. 1a). These ambiguous relationships are: (1) the position
of Hyloidea + Australobatrachia + Ranoidea; (2) the base of Hyloi-
dea excluding Terrarana; (3) relationships among Leptodactylus
main species groups, (4) within Hemiphractidae, and (5) between
Brachycephalus and Craugastor, and (6) between Alsodidae and
Cycloramphidae. Posterior probabilities >0.95 are generally
accompanied by aLRT P 0.90 and/or SH-aLRT P 0.8 with a few
exceptions, such as among the main clades within Leptodactyli-
dae and basal relationships in Adenomera. These may represent
potential false negative support values, given that similar topolo-
gies were found from ML. Other additional nodes displayed pp
slightly < 0.95 but aLRT P 0.90 and SH-aLRT P 0.8, such as
Brachycephalus + Craugastor, that we also considered to be poten-
tially false negative supports. Other potentially false negatives
display pp > 0.95 and either aLRT or SH-aLRT slightly below the
threshold.

The topology obtained using ML is very similar to the one from
BA with one sustained exception (Fig. 1b): Hylidae is recovered as
the sister group to all the other Hyloidea with strong support and
Terrarana to Hemiphractidae. In total 14 nodes (out of 59) are
poorly or moderately supported and mostly match the ones poorly
supported using BA. Among them three have support values inter-
preted as potential false negatives.

3.2. Supermatrix

The analysis using direct optimization with POY yielded three
most parsimonious trees of length 60,329 (Fig. 2). The topology rel-
evant for Leptodactylidae is overall similar to the one obtained
from the complete matrix. Crossodactylodes is recovered as the sis-
ter taxon of Paratelmatobius with high support, while Rupirana is
the sister taxon of Scythrophrys + Crossodactylodes + Paratelmatobi-
us (with 100% jackknife support). Leiuperinae and Leptodactylinae
are recovered monophyletic but the relationship among the main
leptodactylid clades is different from the results obtained using
the complete matrix, with the clade formed by Rupirana + Scythr-
ophrys + Crossodactylodes + Paratelmatobius being the sister group
to all other leptodactylids but with <50% jackknife support.

Cycloramphus was recovered paraphyletic with respect to
Zachaenus parvulus, this species being the sister taxon to C. boracei-
ensis (with very low support), while the group composed of Cyclo-
ramphus + Z. parvulus is highly supported (0.99).

The analyses of the static matrix with TNT considering gaps as a
fifth state or as missing data (results not shown) yielded identical
results with respect to the above-mentioned relationships of
Leptodactylidae and Zachaenus parvulus.

4. Discussion

4.1. An improved resolution among main Hyloidea lineages

The relationships inferred among main Hyloidea lineages (fam-
ilies and higher) from the complete matrix and the supermatrix are
largely similar, particularly between BA of the complete matrix and
the MP analysis of the supermatrix. The relative positions of Alsod-
idae, Batrachylidae, Odontophrynidae, Hylodidae, Cycloramphidae,
Telmatobiidae and Ceratophryidae are notably similar across anal-
yses (see later) but the deepest relationships between families re-
main weakly supported. Within Leptodactylidae, the inferred
relationships are also similar across analyses. Even though the rel-
ative positions among subfamilies actually differ, the topology ob-
tained via the supermatrix is weakly supported. The degree of node
supports is in fact generally lower for the supermatrix, which is
likely inherent to the use of MP.

Our results are also strikingly similar to those of Pyron and
Wiens (2011), whose analysis was based on ML (GTR model) and
provided only non-parametric bootstrap supports. However, they
differ in some aspects particularly among genera previously
embedded into Cycloramphidae and among Leptodactylidae sub-
families. Nevertheless, these few areas of disagreement were
weakly supported in Pyron and Wiens (2011), whereas most are
well supported herein. This is likely inherent to bootstrap calcula-
tion, which can be very sensitive to short internal branches, pro-
ducing false negative values (Alfaro et al., 2003; Anisimova et al.,
2011). The completeness of our matrix and the inclusion of addi-
tional taxa likely compensate our smaller matrix. Furthermore,
the use of different analytical methods and different support esti-
mates allow us better to evaluate the robustness of the inferred
relationships.

It is also worth noticing that the estimated divergence times ap-
pear reliable given that they agree with most of the previous at-
tempts to investigate timing of diversification among main
lineages of Hyloidea. For example, we estimate the basal split with-
in Dendrobatidae at about 45 Ma (as in Santos et al., 2009) and the
basal split in Bufonidae at about 60 Ma (as in Van Bocxlaer et al.,
2010). However, the different phylogenetic position found for Ter-
rarana compared to Heinicke et al. (2007, 2009) implies an older
divergence time for this clade (see below).

4.2. Leptodactylidae

The monophyly of this family including Rupirana and Crossodac-
tylodes and the position of Pseudopaludicola as sister group to Leiu-
perinae, are highly supported from the complete matrix and
moderately supported from the supermatrix. Phylogenetic meth-
ods based on morphological characters have not yet been em-
ployed to assess relationships among these groups; nevertheless,
some characters support our results. Lynch (1971) stated that
members of this family (as subfamily Leptodactylinae) share a
bony style or an osseous plate in the sternum in opposition to
the cartilaginous sterna of other Hyloidea frogs, that the frontopa-
rietals are in medial contact and lack or present a reduced postero-
lateral process, and that the nasal bones are not in contact medially
and are separated from the frontoparietals (Lynch, 1971; Trueb,
1973; Verdade, 2005). Burton’s pattern 2 of the superficial throat
musculature, shared by Leptodactylus, Physalaemus, Pseudopaludi-
cola, Paratelmatobius, Rupirana, Crossodactylodes and Scythrophrys,
is also a putative synapomorphy for Leptodactylidae (Burton,
1998; Verdade, 2005; VKV pers. obs.). Pseudopaludicola was tradi-
tionally considered closely related to Leiuperinae based on overall
morphology (Cei, 1980). The genus shares with some species of
Physalaemus a gap in the posterior row of marginal papillae of their
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tadpoles (Giaretta and Facure, 2009). The monophyly of Leiuperi-
nae is also supported by: (1) a double origin of m. geniohyoideus
lateralis (1) from the anterior tip of the maxillae and (2) from the
fascia covering the m. submentalis in Physalaemus, while this struc-
ture is restricted to the anterior tip of maxillae in Crossodactylodes,
Leptodactylus, Rupirana, Paratelmatobius, and Scythrophrys (VKV,
pers. obs.).

4.3. Taxonomical account

Rupirana and Crossodactylodes (for the first time included in any
phylogenetic analysis) are unambiguously recovered nested within
Leptodactylidae, and their association to Paratelmatobius is
strongly supported in all analyses (Figs. 1 and 2b) as well as with
Scythrophrys with the supermatrix (Fig. 2b). Paratelmatobiinae

Fig. 2. Strict consensus from the super matrix approach of the three most parsimonious trees found (length 60,329) using direct optimization, under equal weights for all
transformations (substitutions and insertion/deletion events). Numbers on nodes from left to right and separated by ‘‘/’’ indicate (i) parsimony jackknife absolute frequency
estimated for the static alignment analyzed with parsimony in TNT with gap as fifth state; (ii) parsimony jackknife absolute frequency estimated for the static alignment
analyzed with parsimony in TNT with gap as missing data. Asterisks indicate groups with P99% of parsimony jackknife frequencies; ‘‘–’’ denotes groups not recovered in the
analysis with the static alignment on TNT or with jackknife values <50%.
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was erected by Pyron and Wiens (2011) to accommodate Paratel-
matobius and Scythrophrys. However, Paratelmatobiinae, Pyron
and Wiens, 2011, is a nomen nudum following the article 13.1 of
ICZN (1999), since no description or definition is provided. To re-
solve the issue and considering the anteriority of Crossodactylodes
over Paratelmatobius, we propose a new name for this subfamily
as follows:

Crossodactylodinae subfam. nov.: Paratelmatobiinae, Pyron and
Wiens, 2011 (nomen nudum).
Type genus: Crossodactylodes Cochran, 1938

Diagnosis: This subfamily is diagnosed by 73 transformations in
nuclear and mitochondrial protein and ribosomal genes from
the supermatrix. See Appendix S5 for a complete list of these
molecular synapomorphies. We are not aware of any unambig-
uous morphological synapomorphy. Nevertheless, we discuss
below some characters from morphology and reproductive biol-
ogy, and discuss its taxonomic distribution, in order to establish
potential synapomorphies and/or interesting characters to be
evaluated more thoroughly in future studies. These are the
presence/absence of columella and vomerine teeth, the mor-
phology of the nuptial pads of males, and the oviposition site.

Fig. 2. (continued)
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The diversity of reproductive modes is particularly striking in
this subfamily as well as its range, which is fragmented along
the Atlantic Forest domain (see below).

Content: Crossodactylodes, Cochran, 1938; Paratelmatobius Lutz
and Carvalho, 1958; Rupirana, Heyer, 1999; Scythrophrys, Lynch,
1971.

The columella was reported absent in the three species of
Crossodactylodes (Lynch, 1971; Gomes, 1988), and in Paratelmatobi-
us lutzii (Lynch, 1971) but present in P. cardosoi (Verdade, 2005)
and Scythrophrys (Verdade, 2005) as well as in Rupirana and other
leptodactylids (e.g., Lynch, 1971; Heyer, 1999). Therefore, it may
prove to be a putative synapomorphy of Crossodactylodes. The
other character is the presence of vomerine teeth, which may be
present or absent within Crossodactylodinae. It was reported as
absent only in Crossodactylodes izecksohni and C. pintoi, while it is
present in C. bokermanni, Scythrophrys, Paratelmatobius and Rupir-
ana (Gomes, 1988; Heyer, 1999; Lynch, 1971; Peixoto, 1983
‘‘1982’’; Verdade, 2005). A phylogeny of Crossodactylodes would
permit testing whether absence of vomerine teeth is a synapomor-
phy of C. izecksohni + C. pintoi.

Finally, the nature of the nuptial pads asperities and the ovipo-
sition site are putative synapomorphies of Crossodactylodes. Spe-
cies of this genus present few well developed spines (3–4 in C.
bokermanni, 9–12 in C. izecksohni, unreported in C. pintoi; Peixoto,
1983 ‘‘1982’’). In the other genera of Crossodactylodinae, the pads
are formed by numerous smaller spines, as in Paratelmatobius (Car-
doso and Haddad, 1990; Garcia et al., 2009; Giaretta and Castanho,
1990; Pombal and Haddad, 1999; Verdade, 2005; Zaher et al.,
2005), Rupirana (Heyer, 1999), and Scythrophrys (B. Blotto, pers.
obs. on specimen CFBH 9369). Crossodactylodes is a phytotelmata
breeder; it lays a few large eggs in bromeliads, and the tadpoles de-
velop there (Lynch, 1971; Peixoto, 1983 ‘‘1982’’; Peixoto, 1995).
Rupirana and some Paratelmatobius lay their eggs in puddles in
the bed of streams and ponds respectively (Garcia et al., 2009;
Juncá and Lugli, 2009; Pombal and Haddad, 1999), while the clutch
of P. poecilogaster is terrestrial, being deposited hanging on humid
rocks above the water (Pombal and Haddad, 1999). Scythrophrys
breeds, as do most Paratelmatobius, in forest temporary ponds
(Garcia, 1996). The oviposition in bromeliads is therefore a puta-
tive synapomorphy of Crossodactylodes.

Crossodactylodinae and Leptodactylinae form a moderately
supported clade using the complete matrix. This topology was also
found by Frost et al. (2006) and Grant et al. (2006). However,
Crossodactylodinae was recovered, with low support, as the sister
group to Leiuperinae by Pyron and Wiens (2011) and as the sister
group of other leptodactylids from the supermatrix approach but
with low support. Compared to previous studies, breaking the
Crossodactylodinae long-branches by the inclusion of Rupirana
and Crossodactylodes and the completion of the matrix likely im-
proved the accuracy of the analyses. Even though interrelation-
ships among these three subfamilies remain ambiguous we argue
that supports obtained from the complete matrix lead us to favor
Leiuperinae (Crossodacylodinae + Leptodactylinae).

4.4. Crossodactylodinae biogeography and evolution

Crossodactylodinae, as defined in this paper, includes Paratel-
matobius, Scythrophrys, Rupirana and Crossodactylodes. This reveals
a striking biogeographic pattern, the clade being endemic to the
Atlantic forest domain and the four genera having an allopatric dis-
tribution on a North–South gradient. Such pattern mirrors the one
found in Dendrophryniscus (Fouquet et al., 2012b) with the earliest
split separating Rupirana in the northern part of the Atlantic forest
(Bahia) from all others and then the most recently diverging
lineages (Scythrophrys, Crossodactylodes and Paratelmatobius)

occurring in the southern part of the distribution of the clade. Such
pattern matches the climatically stable areas previously suggested,
the Bahia and São Paulo refugia (Carnaval et al., 2009). However,
the inferred divergence time is older in Crossodactylodinae than
in those previous studies. The comparison with Dendrophryniscus
is also striking when examining reproductive behaviors. The
early-diverging Rupirana and D. proboscideus breed in mountainous
streams of Bahia, while Crossodactylodes and most Dendrophrynis-
cus spp. occurring in the central and southern region are phytotel-
mic (Fouquet et al., 2012b). The use of phytotelmata as breeding
sites and semi-arboreal habits by some Dendrophryniscus and
Crossodactylodes may have been driven by the abundance of bro-
meliads and the rarity of lentic-water ponds in the steep Atlantic
rainforest. Evolutionary shifts to bromeliad-breeding occurred
recurrently and independently in several lineages of Atlantic Forest
frogs (e.g., Bokermannohyla astartea, Fritziana spp., Frostius spp.,
Phyllodytes spp., Scinax spp. gr. perpusillus; Haddad and Prado,
2005), supporting that this strategy may be advantageous in coast-
al rainforest environments.

The occurrence of narrow endemic species in the Atlantic For-
est, diverging some �35 Ma (Crossodactylodes), is a testimony that
some of these forest fragments remained relatively stable during
most of the Tertiary and Quaternary, a much longer time period
than that modeled by Carnaval and Moritz (2008). A similar pat-
tern may be found in other Atlantic forest endemic frogs like
Brachycephalus, Holoaden, Ischnocnema, Phyllodytes, Fritziana, Aplas-
todiscus, Bokermanohyla, Scinax gr. catharinae that remain to be ex-
plored. This understanding stresses the emergency of conservation
efforts toward the amphibians of the Atlantic Forest, particularly
on its northern range where too few areas are under protection.
As a matter of fact, despite being flagged as a priority area some
15 years ago (Mittermeier et al., 1998) among the famous ‘‘biodi-
versity hotspots’’, the Atlantic forest of Brazil is still highly threa-
tened, particularly in its northern area (Ribeiro et al., 2009).

4.5. Evolution of foam-nest building

Our results unambiguously support monophyly for Adenomera
and Leptodactylus and imply the paraphyly of Spumoranuncula
(Giaretta et al., 2011) and thus the homoplasic nature of endotro-
phy and tadpole foam-nest tissue structure in Adenomera and the
Leptodactylus fuscus group. The genus Adenomera started to diver-
sify some 25 Ma, while Leptodactylus about 35 Ma. Even though
the actual diversity within each of these two groups and particu-
larly within Adenomera (Angulo et al., 2003) and the L. podicipinus
group (Fouquet et al., 2007) is largely underestimated, we argue
that in these groups diversification has been particularly fast or
less subject to extinction compared to other Leptodactylidae, espe-
cially those that do not build foam-nests, i.e., Crossodactylodinae
and Pseudopaludicola.

Differences among clades in the probability of diversifying are
the result of a combination of contingent historical events and
clade intrinsic properties (Moore and Donoghue, 2007). Intrinsic
characteristics (Moore and Donoghue, 2007; Phillimore et al.,
2006) or a combination of life-history traits (Isaac et al., 2005)
may constitute potential key innovations (reviewed by Heard and
Hauser (1995)) associated with species richness. Hence, extrinsic
factors may provide the opportunity for diversification, whereas
intrinsic species characteristics may determine whether such
opportunities lead to moderate or explosive diversifications,
extinction, or evolutionary stasis. The relationships among foam-
nest and nonfoam-nest builders within Leptodactylidae imply
either independent origin of this trait in Leptodactylinae and
Leiuperinae (70–50 Ma) or a unique origin (75–65 Ma) with subse-
quent independent loss in Crossodactylodinae and Pseudopaludico-
la (or only in Pseudopaludicola if Crossodactylodinae is in fact the
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sister group to other leptodactylids). Giaretta and Facure (2009) as
well as Faivovich et al. (2012) suggested that foam nest building in
Leiuperidae is derived, i.e., Pseudopaludicola displays a plesiomor-
phic reproductive mode.

Interestingly, despite that Crossodactylodinae has an older
crown age than foam nesting Leiuperinae (excluding Pseudopaludi-
cola) and Leptodactylinae, it has fewer species and is restricted to
highlands of the Atlantic forest domain with each species having
a very restricted range (Fig. 3). However, foam-nesting Leiuperinae
and Leptodactylinae have both many species and are widespread
throughout the Neotropics. This striking opposition within Lepto-
dactylidae strongly suggests that foam-nest building may have
been advantageous for foam-nesting Leiuperinae and Leptodactyli-
nae to adapt to a larger diversity of habitats and to disperse
throughout the continent and therefore diversify.

Nevertheless, foam-nest building alone cannot explain the suc-
cess of these groups considering: (1) its origin is likely to be
much older (70–50 Ma) than the 35–25 Ma that have seen the
bulk of the diversification of Leptodactylus and Physalaemus, (2)
some genera like Lithodytes (1 spp.), Hydrolaetare (3 spp.), Engy-
stomops (9 spp.), and Edalorhina (2 spp.) have more restricted dis-
tributions and fewer species than Leptodactylus (>90 spp.) and
Physalaemus (>46 spp.) despite being foam-nest builders. There-
fore, foam-nest building may not be equally related to the evolu-
tionary success of these three genera. Instead, it is striking to note
that all genera with many species are widespread throughout
Amazonia, Cerrado, Chaco, and Atlantic Forest, whereas others
foam-nest building genera are either restricted to one or the
other. Therefore, propensity to disperse through the continent
and thus the extent of the area and variety of climate, latitude,

elevation, etc. may simply be the very reason for their diversity.
This corresponds to the long-standing hypothesis that species
richness increases with area (e.g., MacArthur and Wilson, 1967;
Rosenzweig, 1995). Such propensity to disperse may be linked,
but not exclusively, to foam-nest building.

The origination of the foam-nest building in Leptodactylinae
and Leiuperinae can be estimated between 60 and 45 Ma if it is
the result of independent origins and about 70 Ma if it has a less-
probable single origin (i.e., secondarily lost in Pseudopaludicola
and/or Crossodactylodinae). This time frame matches the Eocene
thermal maximum. However, the 35–25 Ma window that corre-
sponds to the Adenomera, Leptodactylus, and likely Physalaemus
crown ages coincides with the Oligocene/Miocene transition. This
transitional period corresponds to a cooling and mountain building
that matches the diversification of the first modern Andean genera
of plants and animals (Hoorn et al., 2010), such as the origin of the
bufonid ‘‘range expansion phenotype’’, as coined by Van Bocxlaer
et al. (2010), and the burst of diversification of bufonids. This
mountain build-up had major impacts on Amazonia’s hydrological
system (Hoorn et al., 2010) and probably drove the spread of open
vegetation at the expense of the rainforest that previously domi-
nated the Southern continent (Roig Juñent et al., 2006; Romero,
1986). Therefore, it is intriguing that foam-nest building in lepto-
dactylids may have originated during a warm period while their
rapid diversification occurred during a cold and dry period. This
scenario matches quite well the hypothesis formulated some
40 years ago by Heyer (1975). Nevertheless, an alternative hypoth-
esis is that foam-nest building may have originated as a strategy to
avoid predation in aquatic environments (Magnusson and Hero,
1991).

Fig. 3. Map of Crossodactylodinae distribution based on IUCN red lists including one additional record for Crossodactylodes sp. 1 extending the distribution northward.
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4.6. Hyloidea higher clades

Only a few relationships among families were recurrently
recovered across our analyses and in previous phylogenetic recon-
structions, e.g., affinity between Allophynidae + Centrolenidae
with Leptodactylidae (Frost et al., 2006; Guayasamin et al., 2009;
Heinicke et al., 2009; Pyron and Wiens, 2011). The relationships
among the other families remain virtually unknown. For example,
relationships within Cycloramphidae and Ceratophryidae (sensu
Frost et al., 2006) remained very unstable in previous works
including Pyron and Wiens (2011). In order to stabilize the situa-
tion, Pyron and Wiens (2011) divided these groups into eight fam-
ilies corresponding to well-supported clades (except Alsodidae).
Relationships among these families previously embedded within
Cycloramphidae (sensu Frost et al., 2006) are relatively well re-
solved herein (with most of the internal relationships displaying
high values of parametric and non-parametric supports). Addition-
ally, Zachaenus was left incertae sedis in Hyloidea by Pyron and
Wiens (2011). As noted earlier, they ignored previous results by
Lourenço et al. (2008), where Zachaenus parvulus is recovered as
the sister taxon of Cycloramphus boraceiensis (the only species of
Cycloramphus included in that paper), with high bootstrap support.
The results of Lourenço et al. (2008) are in accordance with ours
from the supermatrix, where Zachaenus parvulus is nested within
Cycloramphus. Although Cycloramphus is recovered here as para-
phyletic with respect to Zachaenus parvulus, we prefer not to syn-
onymize Zachaenus with Cycloramphus until a better sampling of
Cycloramphus becomes available, including the other species cur-
rently allocated in Zachaenus. With these findings about the phylo-
genetic relationships of Zachaenus, in addition to the allocation of
Crossodactylodes and Rupirana, the relationships of the three genera
considered incertae sedis by Pyron and Wiens (2011) are resolved.

The support is relatively weak for the position of Terrarana as
the sister group of the other Hyloidea given such placement is
recovered with low support using BA (complete matrix) and ML
(supermatrix) and not using ML (complete matrix). Such place-
ment is in contradiction with most of the previous phylogenetic
reconstructions except Pyron and Wiens (2011). The ambiguously
positioned lineages are also Hylidae, Dendrobatidae, and Hemiphr-
actidae considering the differences and lack of support from our re-
sults and in previous ML, BA and MP studies. We expect that
additional sequence data for these lineages will hardly allow
reaching more stable positions among the alternative phylogenetic
positions as Heinicke et al. (2009) stated: ‘‘Most of the other basal
branches in Nobleobatrachia are characterized by very short inter-
nodes which may confound efforts to resolve these early diver-
gences even with increased gene sampling (Rokas and Carroll,
2006; Wiens, 2008)’’. Resolution and further stability of these
branches is crucial to understand the processes of emergence of
the most successful amphibian groups within Nobleobatrachia like
Bufonidae, Dendrobatoidea, Leptodactylidae or Hylidae. However,
given each locus provides independently very few information
for these ancient internodes, unraveling the intricate gene histories
to understand the genealogy of these groups remains a nut to be
cracked. Actually, the primordial question may be more to put a
precise time interval on the split of an ancestral lineage into multi-
ple descendants simultaneously.
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