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a b s t r a c t

The frog Leptodactylus validus occurs in northern South America, Trinidad and Tobago, and the southern
Lesser Antilles (Grenada and St. Vincent). Mitochondrial DNA sequences were used to perform a nested
clade phylogeographic analysis (NCPA), to date colonization events, and to analyze colonization patterns
using on a relaxed molecular clock and coalescent simulations. L. validus originated on the mainland and
first colonized Trinidad with subsequent independent colonizations of Tobago and the Lesser Antilles
from Trinidad. The NCPA suggests a historical vicariant event between populations in Trinidad and
Tobago from those in the Lesser Antilles. The colonization of Trinidad occurred �1 million years ago
(mya) and the colonization of the Lesser Antillean islands occurred �0.4 mya. The coalescent approach
supported the scenario where L. validus dispersed from Trinidad to St. Vincent and from there to Grenada,
a dispersal event that could have been mediated by human introduction as recent as 1600 years ago.

� 2009 Elsevier Inc. All rights reserved.

1. Introduction

The West Indies is the group of islands comprising the Greater
Antilles (Cuba, Jamaica, Hispaniola, Puerto Rico), the Lesser Antil-
les, Bahamas, and other small islands in the Caribbean Sea. The
complex geological history of this archipelago with a unique bal-
ance between geographic isolation and size of the islands have pro-
vided an opportunity for colonization and adaptive radiation
(Ricklefs and Bermingham, 2007). Most West Indian terrestrial ver-
tebrates have their closest relatives in South America whereas fish
and volant tetrapods (birds and bats) have closer ties with North
and Central America (Hedges, 1996a). The accumulated evidence
from biogeographic patterns, fossil records, phylogenetic relation-
ships, molecular clock divergence estimates, and ocean currents
support the idea of over-water dispersal for the vast majority of
the terrestrial vertebrate taxa in the West Indies (Hedges, 1996a,
2006). The over-water dispersal hypothesis predicts that terrestrial
vertebrates arrived in the West Indies predominantly from main-
land South America (also from Central and North America) by ac-
tive or passive (rafting) means (Hedges, 2006). However, there
are two additional competing biogeographic hypotheses concern-
ing the origin of the terrestrial vertebrates in the West Indies: (a)

the proto-Antillean vicariance model and (b) the land-bridge mod-
el. The proto-Antillean vicariance model proposes that the West In-
dian fauna originated during the Cretaceous when the West Indies
were an island arc between North America and South America that
subsequently drifted eastward and fragmented until its current po-
sition (Hedges, 2006). Others have proposed that a land-bridge
connection between the Greater Antilles and northern South
America, called the Aves Ridge in the Caribbean Sea, occurred for
a relatively short-time interval during the mid-Tertiary between
33 and 35 mya (Iturralde-Vinent and MacPhee, 1999). Whereas
the vicariance hypothesis has been shown to represent a plausible
explanation for a few ancient lineages (e.g., Eleutherodactylus frogs,
Solenodon mammals, and Cricosaura lizards), the land-bridge
explanation has not been confirmed with either paleogeographical
or molecular divergence data (Hedges, 2006). The vicariant
hypothesis predicts pre-Cenozoic divergences (>65 mya) and the
land-bridge hypothesis predicts divergences that coincide with
the putative emergence of a stable land bridge (33–35 mya). The
available data for a number of lineages indicates divergences
spread throughout the Cenozoic as predicted by the dispersal
hypothesis (Hedges, 2006).

Except for Eleutherodactylus frogs, most amphibian lineages
support the over-water dispersal hypothesis (Hedges, 1996b). A
few frog genera radiated in the West Indies; however, others have
only occasionally dispersed into the West Indies whereas they are
very diversified on mainland. The latter is the case of the neotrop-
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ical genus Leptodactylus, which is represented in the West Indies by
a few species: the endemics L. albilabris and L. fallax (Hedges and
Heinicke, 2007; Frost, 2009), and the recently demonstrated non-
endemic L. validus (Yanek et al., 2006). Even though the divergence
times of L. albilabris and L. fallax from their South American rela-
tives (24–58 and 23–34 mya, respectively) overlap with the
hypothesized emergence of the land bridge (33–35 mya), Hedges
and Heinicke (2007) discarded this hypothesis due to the lack of
geological and biological evidence, and concluded that these spe-
cies dispersed over-water to their present locations during the
Cenozoic. However, there are a number of reasons to suspect that
time estimates from their study could be biased towards older
divergences and consequently, their data may in fact support ear-
lier divergence times (<33 mya) as predicted by the over-water
dispersal hypothesis. First, Hedges and Heinicke (2007) sampled
three of the four traditionally recognized ‘‘species groups” of Lepto-
dactylus and calibrated the root of their tree at 65 mya because
‘‘many interspecific divergences in Leptodactylus date to the early
Cenozoic”. Actually, the 65 mya estimate corresponds to the mini-
mum divergence of the four species groups of Leptodactylus based
on an immunological study of the genus by Maxson and Heyer
(1988). Because Hedges and Heinicke (2007) did not sample the
four species groups, we cannot discard the possibility that the root
in their tree actually represents a divergence event within Lepto-
dactylus more recent than 65 mya. Second, particularly in the case
of L. albilabris, Hedges and Heinicke (2007) acknowledged that the
closest relative to the West Indian species may not have been in-
cluded in their analyses given their limited sampling, which al-
lowed them only to set an upper boundary in their estimates.
Finally, L. albilabris occurs on the Puerto Rican bank and the
Dominican Republic, and L. fallax occurs only in the northern Lesser
Antilles, which makes it difficult to infer if these species dispersed
over-water to their present locations either directly from the main-
land or via sequential colonization of intermediate islands. In con-
trast, the wider distribution of Leptodactylus validus in northern
South America, Trinidad, Tobago, and the southern Lesser Antilles
offers an opportunity to reconstruct and to date a colonization his-
tory based on a sampling of all inhabited islands, the mainland as
well as closely related species.

The aim of this study is to analyze the phylogeographic patterns
of Leptodactylus validus to: (1) reconstruct the sequence in which
islands were colonized and (2) infer colonization times of the Les-
ser Antilles, Trinidad, and Tobago islands. Previously, Yanek et al.
(2006) demonstrated that populations on the islands form a mono-
phyletic group relative to mainland populations. In addition to
sampling the entire distribution of L. validus for performing a
nested clade phylogeographic analysis (NCPA), multiple outgroup
species were included to represent the taxonomic diversity within
Leptodactylus and to reconstruct a key node for which a molecular
calibration is possible: the Leptodactylus root. This study combines
strategic taxon sampling with a relaxed-clock model in a Bayesian
framework to obtain estimates of colonization times that incorpo-
rate uncertainty in rate variation across the tree, and in tree topol-
ogy/branch lengths. We also employed a coalescent method in a
statistical phylogeographic approach to distinguish between alter-
native colonization routes that could not be resolved with a classi-
cal phylogeographic analysis. This coalescent method has the
unique feature of estimating the probability of mutations occurring
in different subpopulations (Kuhner, 2008), but this approach has
been rarely used in biogeographic studies despite its powerful abil-
ity to resolve alternative dispersal histories (see Milot et al., 2000,
for an example). In addition to testing the dispersal, vicariant, and
land-bridge biogeographic hypotheses, we also used the diver-
gence-time estimates to evaluate the plausibility of human-medi-
ated transportation of L. validus between the Lesser Antillean
islands (Murphy, 1997).

2. Materials and methods

2.1. Geographic sampling

Mitochondrial DNA sequences of the 12S and 16S ribosomal
genes (2286 bp) from 52 individuals from the mainland and sev-
eral islands where L. validus occurs were taken from GenBank.
These sequences were previously used in a phylogenetic study to
elucidate the taxonomic status of L. validus and L. pallidirostris (Ya-
nek et al., 2006; GenBank Accession Nos.: EF613120–EF613180,
EF632000–EF632060). Excluding indel positions, there are 13 hap-
lotypes in the combined 12S + 16S dataset of L. validus distributed
among the islands of Grenada (N = 20), St. Vincent (N = 13), Trini-
dad (N = 15), Tobago (N = 2), and the mainland (N = 2) (Table 1
and Fig. 1). This sampling was based on all available tissues at
hand, which is sufficient to determine the source of the popula-
tions that colonized the islands, although we acknowledge that
we might not have sampled all haplotypes on the mainland. In
addition, the directionality of dispersal events within L. validus re-
lied on the inclusion of both closely and distantly related out-
groups: two species from the melanonotus species group (L.
wagneri and L. podicipinus) and three members of other species
groups (L. chaquensis and L. knudseni of the ocellatus and penta-
dactylus groups, respectively). We also added the 12S and 16S se-
quences of L. fuscus to this dataset (GenBank Accession No.:
DQ283404) to complete the sampling of the taxonomic diversity,
i.e., the four traditionally recognized species groups within Lepto-
dactylus, and to apply an appropriate calibration to the root of
the tree (see below).

2.2. Relaxed-clock divergence estimates

The software program BEAST v1.4.8 (Drummond and Rambaut,
2007) was used to estimate time of divergence of clades under a
Bayesian inference framework. The sampling design concentrated
on L. validus but also included closely related species and represen-
tatives of the diversity within Leptodactylus to date divergences
using a more reliable calibration of the tree root. We used BEAUti
(provided in the BEAST package) to set the substitution model, pri-
ors, and MCMC conditions for estimating posterior distributions of
the time to the most recent common ancestor (TMRCA) of four
splitting events of interest. The analysis used the GTR+I+C model
of nucleotide substitution, which was the best-fitting model to
the data as found with Modeltest based on both likelihood-ratio
tests and Akaike information criterion (Posada and Crandall,
1998). The input file was modified by hand to partition analysis be-
tween genes via duplication of model parameters and MCMC oper-
ators. Maximum likelihood analyses in PAUP� (Swofford, 2002)
based on 10 independent searches with random addition of se-
quences and the GTR+I+ C model were run to compare the likeli-
hood of an unconstrained topology against an enforced molecular
clock using a likelihood-ratio test. This test rejected a strict molec-
ular clock (�ln L unconstrained = 7646.0; �ln L molecular
clock = 7680.6, v2 = 69.2, df = 21, P < 0.001) and therefore, we se-
lected a relaxed-clock model in BEAST with an uncorrelated, log-
normally distributed rate across branches (Drummond et al.,
2006). Default priors were used for all parameters except for the
tree and root-height priors. We used a coalescent tree prior with
constant population size for the L. validus clade (demographic
reconstructions showed constant population size in Bayesian Sky-
line plots, see Supplementary data) and an unspecified prior for
other branches of the Leptodactylus tree following a multi-demo-
graphic approach (Ho et al., 2008). The mean of the tree root height
was set to 65 mya (standard deviation 20 my) because this calibra-
tion corresponds to the presence of the four traditionally recog-
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nized Leptodactylus species groups (Maxson and Heyer, 1988).
Since the actual origin of Leptodactylus could in fact be older than
65 mya, we used a log–normal distribution for the tree root-height
prior that is skewed towards older times to accommodate uncer-
tainty in our calibration. No other calibrations are available for
Leptodactylus; we preferred not to use geological events such as is-

land ages because we would have to assume immediate coloniza-
tion after island emergence. Dates of four splitting events were
estimated in the analysis using TMRCA statistics: (1) insular clade
vs. mainland sample, (2) Lesser Antilles vs. Trinidad, (3) Tobago vs.
Trinidad, and (4) haplotype A vs. B. We used the auto-optimize op-
tion for the operators of the MCMC chain that was run for 20 mil-

Table 1
List of L. validus localities sampled in this study. Codes refer to the locality numbers in Fig. 1. Haplotype names are those used in the nesting clade design in Fig. 3 and N is the
sample size for each haplotype on each locality.

Code Locality Latitude Longitude Haplotype(N): Voucher

1 Grenada: St. Andrew; Spring Gardens Estate 12 06 00N 61 41 00W A(1): BWMC 06881
2 Grenada: St. Andrew; Birch Grove 12 06 00N 61 40 00W A(2): BWMC 06882–06883
3 Grenada: St. George; Beausejour 12 06 00N 61 44 00W A(1): BWMC 06939
4 Grenada: St. George; Grand Anse Bay 12 01 16N 61 46 00W A(1): USNM 314794

B(4): USNM 314793, 314795, 314796, 314798
5 Grenada: St. George; inland from Grand Anse Bay 12 00 58N 61 46 00W A(4): USNM 314813, 314819, 314820, 314831

B(7): USNM 314814–314818, 314821, 314822
6 St. Vincent: St. Andrew; near Vermont 13 12 00N 61 14 00W A(1): USNM 314512
7 St. Vincent: St. George; Arnos Vale 13 08 37N 61 13 20W A(5): USNM 314513–314515, 314719, 314722

B(5): USNM 314720, 314721, 314723, 314724, 314718
8 St. Vincent: St. George; Rose Cottage 13 08 00N 61 12 00W A(2): USNM 314516, 314517
9 Tobago: St. Paul; Delaford, Louis d’Or River 11 16 00N 60 34 00W C(2): USNM 523940, 523941
10 Trinidad: St. Patrick; near Chatham Beach 10 07 33N 61 44 40W D(7): USNM 314627, 314628, 314631–314635

E(1): USNM 314629
F(1): USNM 314630
K(1): USNM 314636

11 Trinidad: St. George; west of Carapo 10 35 21N 61 17 27W D(1): USNM 314672
12 Trinidad: St. George; north of Simla Research Station 10 42 00N 61 18 00W G(1): USNM 286959
13 Trinidad: St. George; Carapo 10 35 27N 61 18 41W H(1): USNM 314671
14 Trinidad: St. George; Simla Research Station 10 41 00N 61 17 00W I(1): USNM 286948
15 Trinidad: St. George; near Brasso Seco Village 10 45 00N 61 16 00W J(1): USNM 306105
Guyana Guyana: Northwest District; Baramita 07 21 00N 60 29 00W L(1): USNM 535774
Brazil Brazil: Roraima, Igarapé Cocal 03 45 00N 61 44 00W M(1): USNM 302408

Museum abbreviations: BWMC = Bobby Witcher Memorial Collection, Avila University; USNM = National Museum of Natural History, Smithsonian Institution.

Fig. 1. Map of South America showing sampled L. validus localities. Locality numbers correspond to the code used in Table 1.
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lion states, sampled every 1000 generations, and a burn-in of 2
million states. The analysis was run 5 times to test for stability
and convergence of MCMC chains in plots of posterior log likeli-
hoods in Tracer v1.4 (Rambaut and Drummond, 2007). Posterior
samples from all runs were combined and analyzed in Tracer
v1.4 to obtain mean estimates and 95% highest posterior densities
(HPD) of TMRCAs.

2.3. Nested clade analysis

To assess evidence for colonization or vicariance, a statistical
parsimony network of L. validus haplotypes (Templeton et al.,
1992) was constructed using the program TCS v1.21 (Clement
et al., 2000) considering indels as a fifth state and enforcing a
95%-confidence limit for connecting haplotypes. The loops in the
haplotype network were resolved based on expectations of coales-
cence theory and haplotypes were nested in groups to perform a
nested clade phylogeographic analysis (NCPA) (Templeton et al.,
1995; Templeton, 2004). The NCPA was used to test for non-ran-
dom associations of haplotype groups and geography and therefore
to test for geographic breaks in haplotype distributions. The nested
design and geographic coordinates of sampled localities were input
in GeoDis v2.5 (Posada et al., 2000) to infer historical and demo-
graphic population histories based on the latest inference key (up-
dated on December 15, 2008).

2.4. Coalescent-based analysis

Following a statistical phylogeographic approach (Knowles and
Maddison, 2002), we also applied a coalescent-based method that
obtains the probabilities of specific mutations originating in sepa-
rate geographic populations (=islands) as implemented in the pro-
gram Genetree 9.0 (Griffiths, 1994; Bahlo and Griffiths, 2000). The
method uses coalescent simulations for obtaining joint-likelihood
estimates of the temporal and spatial distribution of mutations
and most recent common ancestors (MRCAs) assuming a neutral
coalescent process and an infinite-sites model (ISM) (Griffiths
and Tavaré, 1994, 1997). We evaluated the fit of our sequence data
from Grenada, St. Vincent, and Trinidad to the assumptions of the
ISM with the program seq2tr, which is included in the Genetree
package. First, we removed all sites incompatible with ISM (base
positions 12, 464, 631, 891, and 950), but we had to exclude four
rare haplotypes from Trinidad to retain eight polymorphic sites
(base positions 191, 903, 582, 1336, 1546, 1581, 1968, and 2089)
that distinguish between the haplotypes occurring in Grenada, St.
Vincent, and four representative haplotypes from Trinidad (F, G,
H, and I). The program seq2tr was also used to estimate a gene tree
from the empirical sequence data that serves as an input file for
Genetree. All individuals from each of the three islands were used
to estimate genetic diversity (hw = Nel) and the migration rates be-
tween islands (M = Nem) using Migrate-n 3.0.3 (Beerli and Felsen-
stein, 2001) based on two replicate MCMC-maximum likelihood
analyses consisting of 10 short and 6 long runs, each of them with
four incrementally heated chains. We input genetic diversity val-
ues and migration rates together with the pruned dataset to esti-
mate distributions of mutations among subpopulations, using 10
million replications and assuming constant population sizes since
demographic reconstructions demonstrate stable population sizes
through time in all three islands (see Supplementary data). Analy-
ses were run 10 times with different random seeds to estimate
mean and standard deviations of probabilities and as a procedure
for validation of the analyses (see Kuhner, 2008). A gene tree with
the ages of mutations and scaled with the TMRCA of all haplotypes
was produced with treepic (provided with the Genetree package).
The TMRCA of all haplotypes and the mutation ages estimated in
coalescent units (T) were transformed to time in years (t) using

the equation t = 2NeT described in the Genetree manual, where
Ne (inbreeding effective population size) was calculated using hw

and l was estimated with a relaxed molecular clock (see below).
A mean generation length of 3 years was assumed based on the
available estimates for Leptodactylus species (L. bufonius, Reading
and Jofré, 2003; L. pentadactylus, Galatti, 1992) to transform the
time units of the mutation rate from generations to years, and this
rate was multiplied by the number of base pairs (2286) to trans-
form the rate from substitutions per nucleotide to substitutions
per gene.

3. Results

3.1. Colonization patterns

The Bayesian phylogeny of haplotypes shows that mainland
haplotypes (L and M) are basal within L. validus (Fig. 2). The main-
land lineage gave rise to haplotype F in Trinidad, which gave rise to
the Tobago haplotype (C) and to haplotype D also found in Trinidad
as shown in the haplotype network (Fig. 3). Haplotype D is ances-
tral to haplotype B, currently found in Grenada and St. Vincent, and
haplotype A, which is present on both islands, is derived from hap-
lotype B (Fig. 3). Thus, based on the data and the underlying
assumption of parsimony, both Grenada and St. Vincent were col-
onized from a single lineage, i.e., a single wave of colonization from
Trinidad, but which island was colonized first is unresolved based
on the geographic distribution of haplotypes A and B. In addition, it
is unclear if haplotypes A and B originated on the same island and
dispersed in the same direction to the other island or if each hap-
lotype originated on different islands and coexist today in both is-
lands due to dispersal in opposite directions. The NCPA detected
significant association of groups with geographic distances in three
nesting groups: group 2-2, group 3-1, and the total cladogram (see
nested design in Fig. 3). The inference for group 2-2 in Trinidad was
inadequate geographic sampling. For group 3-1 that compares
group 2-1 in Grenada and St. Vincent with group 2-2 in Trinidad,
allopatric fragmentation was inferred. At the level of the total clad-
ogram, the sampling design is inadequate to discriminate between
isolation by distance vs. long distance dispersal (Table 2). Although
results show significant geographic association of mainland vs.
insular groups at the highest nesting level, additional mainland
sampling is needed to clarify historical or demographic processes
among mainland and insular populations.

3.2. Timing of colonization events

The Bayesian analysis in BEAST showed convergence of poster-
ior likelihoods between runs. For all parameters of interest, the
effective sample sizes were higher than 200, suggesting stabiliza-
tion and good mixing of the MCMC chains. Therefore, samples from
the five independent runs were combined for obtaining summary
statistics. The estimated mean substitution rate was 1.79 � 10�3

substitutions/site/million years with a 95% HPD between 1.27
and 2.35 � 10�3. The colonization of Trinidad that corresponds to
the TMRCA of all insular samples and the mainland sample from
Guyana (haplotype L) occurred 1.025 mya (95% HPD: 0.333–
1.894) (Fig. 4). The colonization of Grenada and St. Vincent islands,
estimated as the TMRCA of Lesser Antillean haplotypes A and B,
and the Trinidad’s haplotypes D, E, K, J, and I, occurred 399 kya
(95% HPD: 117–761). The colonization of Tobago, represented by
the splitting event between haplotype C from Tobago and haplo-
type F from Trinidad, was dated to 219 kya (95% HPD: 15–761). Fi-
nally, the split between haplotypes A and B present in Grenada and
St. Vincent occurred 85,250 years ago (95% HPD: 1677–220,000)
(Fig. 4).
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3.3. Coalescent-based analysis

The average genetic diversity among Trinidad, Grenada, and St.
Vincent was hw = 5.05, and for each island separately these were:

hw = 8.94 (Trinidad), hw = 4.92 (Grenada), and hw = 1.30 (St. Vin-
cent). Average migration rates based on two replicate runs in Mi-
grate-n, and measured as the number of migrants per generation
going one way, was zero between all pair-wise comparisons except

Fig. 2. Maximum credibility tree from Bayesian analysis with Beast based on 36,000 sampled trees from the posterior distribution. Shaded bars on nodes represent 95%
highest posterior density and numbers next to the nodes are mean age estimates in million of years. Outgroup taxa used in the analysis were excluded from the tree to show
divergence times within L. validus. Names of terminal taxa indicate the population(s)-haplotype: Bra, Brazil; Guy, Guyana; Tri, Trinidad; Tob, Tobago; Gre, Grenada; and StV,
St. Vincent. Haplotype names match those used in Table 1. The scale bar represents 1 million years.
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Fig. 3. Nested group design of L. validus haplotype network. Haplotype names match those used in Table 1. Dots represent missing haplotypes. Nested group are shown in
boxes with darker shades corresponding to higher nesting levels. Numbers identify nested groups: the number before the dash indicates the nesting level and the number
after the dash is the group number.
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for the migration from St. Vincent to Grenada which was M = 32.2.
After pruning the dataset to meet the assumption of the ISM, eight
base positions (191, 582, 903, 1336, 1546, 1581, 1968, and 2089)
representing six haplotypes (A, B, D, E, J, and K) were analyzed to
estimate the geographic origin of mutations. Three mutations
(1546, 1581, and 2089) in the gene tree support a sister-lineage
relationship between haplotypes A and B, which are present in
Grenada and St. Vincent, whereas the relationships with other hap-
lotypes from Trinidad were unresolved (Fig. 5). Across the 10 inde-
pendent runs in Genetree with different seeds, the mutation in
position 2089, which produced haplotype B (present today in both
Grenada and St. Vincent), and the mutation in position 191, which
defines haplotype A (also present in both islands), had a probability
>0.95 of having occurred in St. Vincent (Table 3).

The mutation rate was 1.23 � 10�5 substitutions per gene per
generation after transforming the BEAST estimate expressed in
substitutions per site per million years and assuming a generation
length of 3 years. Based on this mutation rate, the genetic diversity
estimated in DnaSP (hw = 5.05) corresponds to an inbreeding effec-
tive population size (Ne) of 410,569. The average TMRCA of all
samples from Grenada, St. Vincent, and Trinidad, which dates back
to the colonization of Trinidad, was T = 1.735 (±0.167), which is
equivalent to t = 1.425 (±0.137) million years. The age of mutation
2089, which dates back to the MRCA of haplotypes A and B, was
T = 0.941 (±0.184) coalescent units, which equals t = 772,691
(±151,089) years. Based on the same parameters, the age of muta-
tion 191 exclusive of haplotype A was T = 0.458 (±0.052), which is
equal to t = 371,959 (±42,700) years (Table 3 and Fig. 5).

Table 2
NCPA results and inferences based on latest inference key.

Nesting clade Test of I vs. T Nested clades Geographic distance Inference chain

Dc Dn Dc Dn

2-2 31.8(L)* 12.5 1-3(I) 35.6(L)* 34.9(L)* 1. yes, 19. yes, 20. no: IGS
1-4(T) 3.8 22.5

3-1 �33.2 69.8(L)** 2-1(T) 61.8(S)** 76.7(S)** 1. yes, 19. no: AF
2-2(I) 28.6(S)** 146.5(L)**

Total cladogram 54.9 �5.6 3-1(T) 99.1(S)** 132.9(S)* 1. no, 2. yes, 3. yes, 5. no, 6. no, 7. no, 8. no: IBD/LDD
3-2(I) 151.8 141.8
3-3(T) 0 799.1(L)*

Abbreviations: Dc, within group distance; Dn, nested group distance; (I), interior group; (T), tip group; (S), significantly smaller distance than expected; (L), significantly larger
distance than expected; IGS, inadequate geographic sampling; AF, allopatric fragmentation; IBD/LDD, isolation by distance or long distance dispersal.
* P < 0.05.
** P < 0.01.

Fig. 4. Geographic distribution of the L. validus haplotype network. Mutational steps between haplotypes are shown in Fig. 3. Dotted lines represent dispersal events carrying
haplotypes between islands. Haplotype names match those used in Table 1. Insets B, C, and D show alternative colonization scenarios for Grenada and St. Vincent (see text).
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4. Discussion

4.1. Colonization patterns

Because all divergences within Leptodactylus validus occurred in
the Pleistocene, ruling out the vicariance and land-bridge hypoth-
eses, we spend the rest of the discussion in deciphering the se-
quence of colonization events and the timing of these events that

took place via over-water dispersal. The pattern of exclusive haplo-
types in Trinidad, Tobago, and the southern Lesser Antilles allowed
the reconstruction of a partially resolved history of island coloniza-
tions using a statistical parsimony network. Except for showing
that haplotypes from Grenada and St. Vincent form a clade, previ-
ous phylogenetic analyses were unable to resolve relationships
among L. validus haplotypes (Yanek et al., 2006). The phylogenetic
tree rooted with several Leptodactylus species shows that the Trin-
idad populations of L. validus are derived from the mainland (Fig. 2)
and the statistical parsimony network shows that the Lesser Antil-
lean islands and Tobago were colonized in separate events from
different lineages in Trinidad (Fig. 3).

The NCPA inferences suggest a significant allopatric fragmenta-
tion event between the Lesser Antilles and Trinidad. Available data
on advertisement call, a common indicator of species boundaries in
frogs, show no differences among islands, but there is slight differ-
entiation in adult morphology between Trinidad and the Lesser
Antillean islands (Heyer, 1994). The exclusive haplotypes in Gre-
nada and St. Vincent and the morphological differentiation suggest
that Lesser Antillean populations could represent a different evolu-
tionary lineage from the one found in Trinidad. Species limits
involving the Lesser Antillean populations should be tested with
additional data; ideally nuclear DNA markers with high rates of
variation could confirm or refute the distinctness of the Lesser
Antillean populations. The presumed occurrence of a distinct spe-
cies restricted to Grenada and St. Vincent [and probably in the
Grenadines where L. validus also occurs (Daudin and de Silva,
2007)] would fit typical biogeographic patterns in the region
(Heyer, 1994) and support the interpretation that the Lesser Antil-
les have functioned as a selective barrier (‘biogeographic filter’) for
some mainland species that have dispersed to the West Indies
(Hedges, 1996a, 2006). In the case of L. validus, a lineage was able
to colonize Grenada, St. Vincent and the Grenadines, and differen-
tiate from ancestral lineages in Trinidad. The Grenada/St. Vincent/
Grenadines lineage has not been able to disperse further north
along the chain of islands in the Lesser Antilles.

The colonization(s) of the Lesser Antilles from Trinidad is con-
sistent with the expected dispersal patterns through rafting based
on the direction of the Guiana current (Hedges, 2006). Rafts formed
of natural vegetation originating from the mouth of major South
American rivers have been proposed as a mechanism to explain
the scattered pattern of divergences of West Indian taxa from their
South American ancestors throughout the Tertiary. Similar coloni-
zation patterns, probably also mediated by rafting, have been
found in other vertebrates, e.g., the snakes Corallus hortulanus
(Henderson, 1997) and Liophis melanotus (Dixon and Michaud,
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Table 3
Probability of mutations in each of three subpopulations and ages of these mutations and mRCA derived from coalescent simulations in Genetree. Results from 10 runs each with
different starting random seeds are shown. Mean and standard deviation (SD) of probabilities across the 10 runs for each subpopulation (Grenada = Gre, St. Vincent = StV, and
Trinidad = Tri) are shown. Ages of mutations and mRCA for each run and mean and SD values averaged across runs are shown.

Mutations Probability Time

191 2089 mRCA 191 2089

Runs Gre StV Tri Gre StV Tri

1 0.000 1.000 0.000 0.000 0.947 0.053 1.745 0.464 0.919
2 0.000 1.000 0.000 0.000 0.943 0.057 1.917 0.571 1.190
3 0.000 1.000 0.000 0.000 0.999 0.001 1.462 0.430 0.523
4 0.000 1.000 0.000 0.000 0.988 0.012 1.522 0.425 0.969
5 0.000 1.000 0.000 0.000 0.982 0.018 1.778 0.438 0.853
6 0.000 1.000 0.000 0.000 0.985 0.015 1.826 0.405 0.918
7 0.000 1.000 0.000 0.000 0.995 0.005 2.007 0.454 1.170
8 0.000 1.000 0.000 0.000 0.991 0.009 1.701 0.455 0.914
9 0.000 1.000 0.000 0.000 0.985 0.015 1.622 0.524 1.020

10 0.000 1.000 0.000 0.000 0.825 0.175 1.766 0.414 0.938

Mean 0.000 1.000 0.000 0.000 0.964 0.036 1.735 0.458 0.941
SD 0.000 0.000 0.000 0.000 0.052 0.052 0.167 0.052 0.184
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1992), and the parthenogenetic lizards Gymnophthalmus under-
woodi (Kizirian and Cole, 1999) and Kentropyx borckiana (Cole
et al., 1995).

4.2. Timing of colonization events

The Pleistocene colonization of Trinidad, Tobago, and the Lesser
Antilles are consistent with over-water dispersal and do not sup-
port the hypotheses of proto-Antillean vicariance or land-bridge
dispersal that predict much older divergences than those found
in this study. Therefore, this study corroborates earlier results that
L. validus originated in northern South America and invaded Trini-
dad �1 mya and then Tobago �220 kya, suggesting these popula-
tions could have maintained genetic contact with the mainland
during any of their intermittent connections during the Pleistocene
glacial cycles. Trinidad and Tobago are continental islands with a
maximum depth of 91 m between them and 38 m between Trini-
dad and the mainland (Murphy, 1997). Therefore, repeated epi-
sodes of connection and isolation between Trinidad and Tobago
and the mainland occurred during the glacial cycles up to the Last
Glacial Maximum (LGM, �21 kya), when the sea level was 120–
135 below current sea levels (Clark and Mix, 2002) and the islands
were contiguous with the mainland of South America for the last
time (Murphy, 1997).

The Lesser Antillean islands were colonized �400 kya (not ear-
lier than 117 kya), which is also consistent with previous estimates
that L. validus colonized the southern Lesser Antilles in the Pleisto-
cene (Heyer, 1994; Hedges, 1996b; Murphy, 1997). The 117 kya
lower bound for this event does preclude the possibility of human
transportation between Trinidad and the Lesser Antilles since hu-
mans reached Trinidad only �8 kya from the Orinoco river delta
in Venezuela (Wilson, 2007). In addition, the dispersal event that
carried haplotype A between the Lesser Antillean islands occurred
�85 kya, and as recently as �1.6 kya, suggesting that L. validus
could have been transported by humans between these islands
as suggested in previous studies (Murphy, 1997). Archaeological
evidence indicates that the first human populations arrived in Gre-
nada by canoeing from Trinidad �5 kya (Wilson, 2007), meaning
that humans could have occupied the Lesser Antilles when haplo-
type B appeared in St. Vincent and migrated to Grenada (as sug-
gested by Genetree analyses). On the other hand, the intervening
Grenadines islet chain between Grenada and St. Vincent could also
have facilitated natural dispersal when lower sea levels formed lar-
ger stepping-stones between Grenada and St. Vincent in the late
Pleistocene (Pregill and Olson, 1981). Bathymetric maps show that
maximum sea depths in the Grenadines archipelago are 200 m
(Maury et al., 1990), and therefore these islands could have been
larger, closer to each other and even forming contiguous landmas-
ses at the LGM when sea levels were 120–135 m lower than today
(Clark and Mix, 2002). The almost contemporaneous occurrence of
this event and the wide confidence intervals associated with re-
laxed-clock estimates make human transportation conceivable.

4.3. Resolution of alternative colonization hypotheses

The unresolved colonization history of Grenada and St. Vincent
based on the haplotype network yield four possible dispersal sce-
narios that account for the current haplotype distributions in the
Lesser Antilles (Fig. 4). First, haplotype D could have colonized Gre-
nada and given rise in situ to haplotype B, followed by dispersal of
haplotype B to St. Vincent. Haplotype B could have given rise on St.
Vincent to haplotype A, which subsequently dispersed to Grenada
(Fig. 4A). Alternatively, haplotype A could have originated in Gre-
nada and both haplotypes A and B dispersed to St. Vincent
(Fig. 4B). Two additional dispersal scenarios are possible if haplo-
type B differentiated first in St. Vincent instead of Grenada

(Fig. 4C and D). Taking into account geographic distances and a
more parsimonious explanation of the data, we can conclude that
dispersal scenarios A and B are more likely because Grenada is geo-
graphically closer to Trinidad than to St. Vincent. In this study, we
used a coalescent-based simulation approach to discriminate be-
tween these alternative dispersal scenarios that cannot be resolved
with a haplotype network alone. The results from Genetree unam-
biguously indicate that haplotypes A and B, derived from haplotype
D in Trinidad, have a significantly higher probability of origin in St.
Vincent and subsequently they dispersed to Grenada, supporting
the colonization history shown in Fig. 4D. Although dispersal from
St. Vincent to Grenada is not consistent with the more general pat-
terns of natural over-water dispersal in other taxa driven by ocean
currents (Hedges, 2006), because it was a very recent event (as re-
cent as 1600 years ago), human introduction could have mediated
this dispersal event as discussed above. Another possibility is that
haplotype A might have evolved twice, once in Grenada and once
in St. Vincent, since this haplotype is only one mutational step
from haplotype B.

4.4. Integration of phylogeographic approaches

The pattern and timing of historical events are of primary inter-
est in phylogeographic studies. A single approach cannot provide
inferences for all these questions simultaneously, and every ap-
proach has its assumptions and limitations (Nielsen and Beaumont,
2009). It is of fundamental importance for phylogeographic infer-
ence first to identify a plausible set of alternative hypotheses about
historical events and secondly, to use methods based on different
assumptions that ideally can discriminate among the alternative
hypotheses (Knowles and Maddison, 2002; Knowles, 2004). More-
over, the same historical events should ideally also be cross-vali-
dated using different methods that enable robust inferences not
sensitive to the assumptions of any particular inferential proce-
dure. In this study, we utilized two independent approaches, hap-
lotype networks/NCPA and a coalescent-based method for
discriminating between alternative colonization patterns in the
Lesser Antillean islands. Despite recent criticisms about the useful-
ness of NCPA because of its high false positive rate (Petit, 2008;
Knowles, 2008; but see Garrick et al., 2008; Templeton, 2008,
2009a,b), NCPA is still a useful method for formulating hypotheses
about historical events and demographic processes to be tested
with coalescent-simulation approaches. Because Grenada and St.
Vincent share the same two haplotypes, phylogenetic analyses
and haplotype networks are unable to resolve colonization events,
but the Genetree results suggest that St. Vincent was colonized
first. In addition, a Bayesian relaxed-clock method and Genetree
cross-validated the timing of these colonization events, even
though the latter method uses only a subset of the data and both
methods are based on different assumptions: Beast is a Bayesian
method based on correlated sampling of genealogies but Genetree
is a likelihood approach that draws independent samples of
parameter values. As Kuhner (2008) recently noted, coalescent
genealogy samplers like Genetree are statistically powerful and ro-
bust but, due to their assumptions about the population model,
their agreement with unrelated methods greatly strengthens the
inferences made.

Estimated divergence times in Genetree are somewhat higher
than those obtained with Beast but ranges overlap for the two old-
er events: the dispersal from the mainland to Trinidad (BEAST
�1.025 mya, Genetree 1.425 mya) and the colonization of the Les-
ser Antilles (BEAST �400 kya, Genetree �772 kya). On the other
hand, the divergence of haplotype A from B is definitively lower
for the BEAST estimate (�85 kya) than for Genetree (�372 kya).
It should be noted that these time estimates from Genetree are
only approximate since they are based on Ne calculations that as-
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sumed panmixis among the three island populations but popula-
tion substructure could have biased upwards the coalescence
times (Jesus et al., 2006). In addition, we also assumed that our
point estimate of the mutation rate based on the Beast analysis
of Leptodactylus is conserved and applies to the divergences within
L. validus, and finally, the assumption about generation length is
based on limited data for other species of Leptodactylus. The
roughly similar time estimates from two separate methods lends
further confidence to the probabilities of mutations found in Gene-
tree that were used to distinguish between alternative colonization
histories. This study highlights that descriptive and statistical phy-
logeographic methods can complement and/or cross-validate each
other, whereas using them separately only provides a partial pic-
ture of the spatial and temporal patterns of intraspecific genetic
structure.

Acknowledgments

R.O. de Sá and W.R. Heyer acknowledge funding support for this
study through National Science Foundation award # 0342918. We
thank two anonymous reviewers whose comments and sugges-
tions improved an earlier version of the manuscript.

Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ympev.2009.07.004.

References

Bahlo, M., Griffiths, R.C., 2000. Inference from gene trees in a subdivided population.
Theor. Popul. Biol. 57, 79–95.

Beerli, P., Felsenstein, J., 2001. Maximum likelihood estimation of a migration
matrix and effective population sizes in n subpopulations by using a coalescent
approach. Proc. Natl. Acad. Sci. USA 98, 4563–4568.

Clark, P.U., Mix, A.C., 2002. Ice sheets and sea level of the Last Glacial Maximum.
Quaternary Sci. Rev. 21, 1–7.

Clement, M., Posada, D., Crandall, K., 2000. TCS: a computer program to estimate
gene genealogies. Mol. Ecol. 9, 1657–1660.

Cole, C.J., Dessauer, H.C., Townsend, C.R., Arnold, M.G., 1995. Kentropyx borckiana
(Squamata: Teiidae): a unisexual lizard of hybrid origin in the Guiana Region,
South America. Am. Mus. Novit. 3145, 1–23.

Daudin, J., de Silva, M., 2007. An annotated checklist of the amphibians and
terrestrial reptiles of the Grenadines with notes on their local natural history
and conservation. Appl. Herpetol. 4, 163–175.

Dixon, J.R., Michaud, E.J., 1992. Shaw’s black-backed snake (Liophis melanotus)
(Serpentes: Colubridae) of Northern South America. J. Herpetol. 26, 250–259.

Drummond, A.J., Rambaut, A., 2007. BEAST: Bayesian evolutionary analysis by
sampling trees. BMC Evol. Biol. 7, 214.

Drummond, A.J., Ho, S.Y.W., Phillips, M.J., Rambaut, A., 2006. Relaxed phylogenetics
and dating with confidence. PLoS Biol. 4, e88.

Frost, D.R., 2009. Amphibian species of the world: an online reference. V. 5.3.
American Museum of Natural History, New York, USA. <http://
research.amnh.org/herpetology/amphibia/> (accessed 12.02.09).

Galatti, U., 1992. Population biology of the frog Leptodactylus pentadactylus in a
Central Amazonian rainforest. J. Herpetol. 26, 23–31.

Garrick, R.C., Dyer, R.J., Beheregaray, L.B., Sunnucks, P., 2008. Babies and bathwater:
a comment on the premature obituary for nested clade phylogeographical
analysis. Mol. Ecol. 17, 1401–1403.

Griffiths, R.C., 1994. Genetree v. 9.0. Available from: <http://www.stats.ox.ac.uk/
griff/software.html>.

Griffiths, R.C., Tavaré, S., 1994. Simulating probability distributions in the
coalescent. Theor. Popul. Biol. 46, 131–159.

Griffiths, R.C., Tavaré, S., 1997. Computational methods for the coalescent. In:
Donnelly, P., Tavaré, S. (Eds.), Progress in Population Genetics and Human
Evolution. Springer-Verlag, New York, pp. 165–182.

Hedges, S.B., 1996a. Historical biogeography of West Indian vertebrates. Annu. Rev.
Ecol. Syst. 27, 163–196.

Hedges, S.B., 1996b. The origin of West Indian amphibians and reptiles. In: Powell,
R., Henderson, R.W. (Eds.), Contributions to West Indian Herpetology: A Tribute

to Albert Schwartz Contributions to Herpetology, vol. 12. Society for the Study
of Amphibians and Reptiles, Ithaca, pp. 95–128.

Hedges, S.B., 2006. Paleogeography of the Antilles and origin of West Indian
terrestrial vertebrates. Ann. Mo. Bot. Gard. 93, 231–244.

Hedges, S.B., Heinicke, M.P., 2007. Molecular phylogeny and biogeography of West
Indian frogs of the genus Leptodactylus (Anura: Leptodactylidae). Mol.
Phylogenet. Evol. 44, 308–314.

Henderson, R.W., 1997. A taxonomic review of the Corallus hortulanus complex of
neotropical tree boas. Caribb. J. Sci. 33, 198–221.

Heyer, W.R., 1994. Variation within the Leptodactylus podicipinus–wagneri complex
of frogs (Amphibia: Leptodactylidae). Smithsonian Contrib. Zool. 301, 1–43.

Ho, S.Y.W., Larson, G., Edwards, C.J., Heupink, T.H., Lakin, K.E., Holland, P.W.H.,
Shapiro, B., 2008. Correlating Bayesian date estimates with climatic events and
domestication using a bovine case study. Biol. Lett. 4, 370–374.

Iturralde-Vinent, M., MacPhee, R.D.E., 1999. Paleogeography of the Caribbean region:
implications for Cenozoic biogeography. Bull. Am. Mus. Nat. Hist. 238, 1–95.

Jesus, F.F., Wilkins, J.F., Solferini, V.N., Wakeley, J., 2006. Expected coalescence times
and segregating sites in a model of glacial cycles. Genet. Mol. Res. 5, 466–474.

Kizirian, D.A., Cole, C.J., 1999. The origin of the unisexual lizard Gymnophthalmus
underwoodi (Gymnophthalmidae) inferred from mitochondrial DNA nucleotide
sequences. Mol. Phylogenet. Evol. 11, 394–400.

Knowles, L.L., 2004. The burgeoning field of statistical phylogeography. J. Evol. Biol.
17, 1–10.

Knowles, L.L., 2008. Why does a method that fails continue to be used? Evolution
62, 2713–2717.

Knowles, L.L., Maddison, W.P., 2002. Statistical phylogeography. Mol. Ecol. 11,
2623–2635.

Kuhner, M.K., 2008. Coalescent genealogy samplers: windows into population
history. Trends Ecol. Evol. 24, 86–93.

Maury, R.C., Westbook, G.K., Baker, P.E., Bouysse, Ph., Westercamp, D., 1990.
Geology of the Lesser Antilles. In: Dengo, G., Case, J.E. (Eds.), The Geology of
North America, The Caribbean Region, vol. H. The Geological Society of America,
Boulder, pp. 141–166.

Maxson, L.R., Heyer, W.R., 1988. Molecular systematics of the frog genus
Leptodactylus (Amphibia: Leptodactylidae). Fieldiana (Zool.) 41, 1–13.

Milot, E., Gibbs, H.L., Hobson, K.A., 2000. Phylogeography and genetic structure of
northern populations of the yellow warbler (Dendroica petechia). Mol. Ecol. 9,
677–681.

Murphy, J.C.E., 1997. Amphibians and Reptiles of Trinidad and Tobago. Krieger
Publishing Co., Malabar, Florida.

Nielsen, R., Beaumont, M.A., 2009. Statistical inferences in phylogeography. Mol.
Ecol. 18, 1034–1047.

Petit, R.J., 2008. The coup de grace for the nested clade phylogeographic analysis?
Mol. Ecol. 17, 516–518.

Posada, D., Crandall, K.A., 1998. Modeltest: testing the model of DNA substitution.
Bioinformatics 14, 817–818.

Posada, D., Crandall, K.A., Templeton, A.R., 2000. GeoDis: a program for the cladistic
nested analysis of the geographical distribution of genetic haplotypes. Mol. Ecol.
9, 487–488.

Pregill, G.K., Olson, S.L., 1981. Zoogeography of West Indian vertebrates in relation
to Pleistocene climatic cycles. Annu. Rev. Ecol. Syst. 12, 75–98.

Rambaut, A., Drummond, A.J., 2007. Tracer v1.4. Available from: <http://
beast.bio.ed.ac.uk/Tracer>.

Reading, C.J., Jofré, G.M., 2003. Reproduction in the nest building vizcacheras frog
Leptodactylus bufonius in central Argentina. Amphibia–Reptilia 24, 415–427.

Ricklefs, R., Bermingham, E., 2007. West Indies as a laboratory of biogeography and
evolution. Philos. Trans. R. Soc. B 363, 2393–2413.

Swofford, D.L., 2002. PAUP�: Phylogenetic Analysis using Parsimony (� and other
methods). Version 4.0b10. Sinauer Associates, Sunderland, Massachusetts.

Templeton, A.R., 2004. Statistical phylogeography: methods of evaluating and
minimizing inference errors. Mol. Ecol. 13, 789–809.

Templeton, A.R., 2008. Nested clade analysis: an extensively validated method for
strong phylogeographic inference. Mol. Ecol. 17, 1877–1880.

Templeton, A.R., 2009a. Why does a method that fails continue to be used? The
answer. Evolution 63, 807–812.

Templeton, A.R., 2009b. Statistical hypothesis testing in intraspecific
phylogeography: nested clade phylogeographical analysis vs. approximate
Bayesian computation. Mol. Ecol. 18, 319–331.

Templeton, A.R., Crandall, K.A., Sing, C.F., 1992. A cladistic analysis of phenotypic
associations with haplotypes inferred from restriction endonuclease mapping
and DNA sequence data: III. Cladogram estimation. Genetics 132, 619–633.

Templeton, A.R., Routman, E., Phillips, C.R., 1995. Separating population structure
from population history: a cladistic analysis of the geographical distribution of
mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum.
Genetics 140, 767–782.

Wilson, S.M., 2007. The Archaeology of the Caribbean. Cambridge University Press,
New York.

Yanek, K., Heyer, W.R., de Sá, R.O., 2006. Genetic resolution of the enigmatic Lesser
Antillean distribution of the frog Leptodactylus validus (Anura: Leptodactylidae).
S. Am. J. Herpetol. 1, 192–201.

A. Camargo et al. / Molecular Phylogenetics and Evolution 53 (2009) 571–579 579


	Phylogeography of the frog Leptodactylus validus (Amphibia: Anura): Patterns and timing of colonization events in the Lesser Antilles
	Recommended Citation

	tmp.1643130757.pdf._y9t8

