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Topology-Guided Roadmap Construction with

Dynamic Region Sampling

Read Sandström1 Diane Uwacu 1 Jory Denny2 Nancy M. Amato3

Abstract—Many types of planning problems require discovery
of multiple pathways through the environment, such as multi-
robot coordination or protein ligand binding. The Probabilistic
Roadmap algorithm (PRM) is a powerful tool for this case, but
often cannot efficiently connect the roadmap in the presence of
narrow passages. In this paper, we present a guidance mech-
anism that encourages the rapid construction of well-connected
roadmaps with PRM methods. We leverage a topological skeleton
of the workspace to track the algorithm’s progress in both
covering and connecting distinct neighborhoods, and employ this
information to focus computation on the uncovered and un-
connected regions. We demonstrate how this guidance improves
PRM’s efficiency in building a roadmap that can answer multiple
queries in both robotics and protein ligand binding applications.

Index Terms—Motion and Path Planning, Semantic Scene
Understanding

I. INTRODUCTION

PLANNING motions is a fundamental component of many

applications including physical robot operations within

buildings [1] or biological simulations of ligand binding [2]. In

these domains, Probabilistic Roadmap (PRM) [3] approaches

are attractive not only because of their ability to encode

multiple differing pathways between start and goal locations,

but also due to the inherent ability to solve for any number

of queries at time. Ultimately this approach can lead to added

benefits. For example, in robotics this can lead to robust long-

term autonomy [4], while in biological simulations faster and

more accurate convergence to a solution [5].

Despite the advantages to the PRM approach, their effi-

ciency quickly degrades as constraints are added to a system,

e.g., the need for a robot to navigate corridors with low

clearance or a ligand is in close proximity to its binding

site on a protein. The degradation in planning performance

in these scenarios is well documented and often referred to as

the narrow passage problem [6].
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Many potential solutions exist to solving the narrow passage

problem, but they often reason about localized information

during the planning process. For example, some approaches

attempt to build solution paths closer to obstacles or apply

denser sampling in difficult planning areas [7], [8]. Despite

this, there is not a cohesive approach to constructing PRMs

that efficiently promotes both coverage and connectivity.

We propose an approach that balances the benefits of

localized reasoning with tactical global exploration in order to

provide an efficient planning technique for constructing PRMs.

Our approach relies heavily on a connection to a minimal

representation of the topology of the workspace, called a

workspace skeleton. Essentially, this workspace guide provides

direct insight into the relevant portions of the planning space

that the roadmap currently covers and does not cover. Over

time, sampling is biased towards the frontier of this structure

which is succinctly encoded as workspace regions. Thus, the

approach exploits workspace regions to focus sampling in a

way that achieves quick coverage of a planning space. Our

contributions are as follows, we:

• present a novel algorithm that effectively exploits

workspace topology for constructing probabilistic

roadmaps,

• analyze various non-trivial implementation considera-

tions that affect performance of topologically-inspired

approaches, and

• experimentally show that our approach is more efficient

at constructing PRMs in a wide variety of scenarios.

In prior work [9], we have shown that a similar topological

guidance benefits the planning process for other sampling-

based motion planning paradigms, and in this work we extend

this methodology in a non-trivial way so that it can be applied

to PRM approaches. This approach is targeted at problems

where the workspace is closely tied to the planning space,

and takes that relationship as an inherent assumption. In our

experience, this holds true in many applications including our

motivating examples. This work represents a portion of the

author’s PhD dissertation [10].

II. RELATED WORK

In this paper, we discuss motion planning in the context

of holonomic robots, i.e., robots whose degrees of freedom

(DOFs) contain no velocity constraints. The DOFs for a robot

parameterize its pose in the 2-d or 3-d workspace. They

include, for example, object position, orientation, joint angles,

etc. A configuration is a single specification of the DOFs

q = 〈x1, x2, . . . , xn〉, where xi is the ith DOF and n is the
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total number of DOFs. The set of all possible parameterizations

is called the configuration space (Cspace) [11]. Cspace is

often partitioned into two subsets, free space (Cfree) and

obstacle space (Cobst). Given a start configuration and a goal

configuration or region, the motion planning problem is the

problem of finding a continuous trajectory in Cfree between

the start and goal. We define a query as a start and goal pair.

In general, it is infeasible to explicitly compute a represen-

tation of Cobst [12], but we can often determine the validity

of a configuration q efficiently with a workspace collision test

between the robot placed at q and the environment. If the robot

placed at q does not collide with itself or the environment, then

q ∈ Cfree and is said to be valid.

Regions. We define a region as any bounded volume in the

workspace, e.g., axis-aligned bounding boxes (AABBs) and

bounding spheres (BSs). Each point p of a region R maps to

a possibly infinite number of configurations in Cspace, e.g., by

placing the center of mass of the robot at p and randomizing

the remaining DOFs. The regions will share dimension with

the workspace (i.e. spheres for 3D or circles for 2D).

Homotopy. Two paths are defined to be homotopy equiv-

alent if and only if one path can be continuously deformed

to the other without transitioning through an obstacle region.

A homotopy class is a set of paths such that any two are

homotopy equivalent.

A. Sampling-based Planning

Due to the high complexity of motion planning [12], re-

search methodologies tended toward randomized, sampling-

based approaches which attempt to construct a graph, called

a roadmap, that is an approximate model of Cfree. While

there are many general sampling-based paradigms in the realm

of motion planning, we focus our study on Probabilistic

RoadMaps (PRMs) [3].

Generally, PRMs iterate between sampling configurations

from Cfree and connecting nearby configurations together

to form the pathways encoded by a roadmap. Due to the

randomized sampling, the performance of PRMs degrade as

the problem becomes less expansive [6], commonly referred

to as the narrow passage problem.

There have been many approaches to addressing the narrow

passage problem, both in terms of altering the sampling

process and the connection process [7], [8], [13]–[15] (to cite a

few). Generally, these fall into two categories: those attempting

to plan close to obstacles, e.g., OBPRM [7], and those plan-

ning away from obstacles, e.g., MAPRM [14]. However, these

approaches altogether use heuristic localized reasoning to

improve planning. There is no globalized exploration strategy

by which overly sampling one portion of the space is reduced.

1) Workspace-biased Planners: One class of planners use

workspace information to aid in the planning process, as a

partial step to allowing a global view to constructing a PRM.

Here we describe a few.

Feature Sensitive Motion Planning [16] recursively subdi-

vides the space into “homogeneous” regions (regions of the

environment containing similar properties, e.g., free or clutter),

individually constructs a roadmap in each region, and merges

them together to solve the aggregate problem. This framework

adaptively decides the specific planning mechanism to map to

each homogeneous region.

Other approaches utilize workspace decompositions to find

narrow or difficult areas of the workspace to bias Cspace
sampling [17]–[20]. These methods begin by decomposing

the workspace using an adaptive cell decomposition [18] or a

tetrahedralization [17], [19], and then they weight the decom-

position to bias sampling. However, static determination of

sampling regions often leads to oversampling in fully covered

regions. Workspace Connectivity Oracle [19] mitigates this by

preferring regions that bridge separate connected components.

SyCLoP [20] employs a graph-search over the cell de-

composition to lead a search and samples regions near the

frontier of the resulting cell path. While similar in spirit to

the method presented in this paper, it is applicable only to

rapidly-exploring tree (RRT) approaches.

One planning approach proposed allowing a user to define

and manipulate regions of the workspace to bias probabilistic

roadmap construction [21]. In this work, we utilize a similar

concept of workspace regions, but do not rely on a human

operator to direct region manipulation.

Despite these advances, no approach cohesively combines

and balances a local exploitation strategy with a globalized

reasoning for efficiency.

B. Dynamic Region-biased RRT

The predecessor of this work is Dynamic Region-biased

RRT [9], which employs a skeleton of the free workspace as

a guide for RRT growth. The core idea is to focus sampling

in regions or volumes of workspace that move along the

skeleton edges just ahead of the roadmap frontier. Sampling

growth targets within these regions directs the RRT to expand

along the paths through the workspace that are defined by the

skeleton, leading to fast feasibility planning through intricate

workspaces. We refer to this strategy for biasing sampling as

dynamic region sampling.

Dynamic Region sampling aids planning in narrow passages

by focusing sampling in locations the roadmap may need to

cover to generate a solution. This significantly reduces the

subset of Cspace that the sampler must search to discover im-

portant narrow passages and thereby expedites their discovery.

As an RRT method, Dynamic Region-biased RRT does not

produce highly connected roadmaps. Each vertex has a single

path to the root, and paths lying in disjoint regions of Cfree
will not be discovered at all. To tackle problems requiring

good coverage and connectivity of Cfree such as multi-

query planning, we generalize the dynamic region sampling

technique to account for the separate evolution of multiple

connected components in the roadmap.

III. METHOD

The method begins by constructing a skeleton of the en-

vironment, termed a workspace skeleton. This skeleton is

deformation retract of the free workspace, i.e., each point

in workspace can be smoothly collapsed to the skeleton in

a continuous way [22]. Some examples include the medial
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(a) (b) (c) (d)

Fig. 1. An illustration of Dynamic Region sampling with PRM. Obstacles are shown in gray. The workspace skeleton is shown in purple. (a) The algorithm
samples initial connected components (blue) in regions (green) around each skeleton vertex. (b) Sampling regions expand outward along the skeleton edges.
We depict the regions in the location where samples were generated for clarity; in the actual algorithm the regions advance past the newly generated samples.
(c) An illustration of two edge segments. The red-shaded segment has a single local component which is also a bridge. The orange-shaded segment has two
distinct local components. (d) The components in the middle tunnels successfully connect to form bridges, and their regions are released. The outer passages
are still expanding.

axis skeleton [23] in 2D environments and the mean curvature

skeleton [24] in 3D environments.

We use the PRM method as the basis for presentation,

but the concepts can be employed with any sampling-based

planner that can be cast in terms of expanding and connecting

components of the roadmap. The high-level concept for PRM

with dynamic region sampling is to view the workspace

skeleton as a rough map of the important regions of Cfree that

we must cover. The skeleton edges describe simple contiguous

volumes such as rooms or tunnels, while the skeleton vertices

describe junctions of such volumes. We will refer to the

volume of workspace described by a skeleton edge as an

edge segment, which reflects the concept of a skeleton-induced

segmentation of the workspace [25].

Our goal will be to cover each edge segment with a set

of vertices that connect the roadmap from the region near

the source vertex to the region near the target vertex. We

describe a roadmap with this property as locally connected.

Such a roadmap has good coverage of all distinct regions

of workspace, and should be able to quickly answer a wide

variety of queries with a path of reasonable cost.

To aid in describing the method, we define a local connected

component for an edge segment as a set of roadmap vertices

which are mutually connected without considering vertices

outside of the segment volume (Fig. 1(c)). For any two vertices

va, vb in a local connected component C, there must be a

path from va to vb through some set of vertices V ⊆ C.

This concept describes a portion of a roadmap that is locally

connected within a particular volume of workspace. A local

connected component with vertices near both the source and

target of the corresponding skeleton edge will be termed a

bridge. Bridges represent a connected path that traverses the

edge segment volume.

The key idea of the method is to generate local connected

components near skeleton vertices and extend them across

their edge segments with dynamic sampling regions. Local

connected components form bridges by either extending all

the way across their edge segment or by merging with a local

component inbound from the opposite direction.

Initialization: We begin by initializing sampling regions at

each skeleton vertex v ∈ SV and sampling a number of config-

urations within (Alg. 1). Next, we attempt to form connections

within each group of samples to form one or more connected

components at each skeleton vertex. For each such component

C, we initialize a sampling region on each outbound edge e

from v and track each tuple (C, e.source, e.target) as local

connected components. This seeds the roadmap with at least

a pair of local connected components for each edge e, with

an equal number rooted on either end (Fig. 1(a)). Note that

vertices sampled near a skeleton vertex will be present in more

than one local component because they are partially respon-

sible for covering each adjacent skeleton edge segment. We

initialize sampling regions for each local connected component

on the first point in its edge segment to lead extension through

the appropriate edge segment.

Expansion: The sampling regions guide expansion of the

local connected components they lead. On each iteration of the

algorithm, we select a sampling region r and generate one or

more configurations Q within its boundary. We then attempt to

connect each valid configuration q ∈ Q to its nearest neighbors

in the local connected component C that r is expanding: on

failure, q is discarded. Successful connections are retained and

added to C (Fig. 1(b), Alg. 2). We then advance r along

its skeleton edge path until it no longer touches any of the

newly added samples (Alg. 3). In this way, the sampling region

r tracks the component C’s progress in covering the edge

segment.

If r successfully expands C, we additionally attempt to

connect the retained samples in Q to any local components

inbound on this edge segment from the opposite direction.

This is to make the algorithm aggressively attempt to form

bridges at the earliest opportunity. On forming a bridge, we

merge the newly connected local components and release their

sampling regions, which are no longer needed (Fig. 1(d)).

If r advances to the end of its edge without C connecting to

a local component rooted at the target skeleton vertex st, then

C has formed a bridge but not yet connected to the roadmap

locally near st. In this case, we generate local components with

the new vertices Q on the edges outbound from st to continue

searching for a connection to the local components already



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JUNE, 2020

rooted at st (Fig. 2(b), 2(c)). This ensures that the algorithm

continues to explore until the roadmap is locally connected or

disjoint global connected components cover the skeleton. The

latter can happen in problems with disjoint regions of Cfree.

Connection: To ensure that disjoint local components within

an edge segment are connected, we apply an additional con-

nection stage after each expansion step. We pick a random

point p along r’s skeleton edge path and sample a set of

valid configurations Q. For each q ∈ Q, we attempt to form

connections between at least two local connected components

within this edge segment. Any configurations that form the

necessary connections will be added to the roadmap and

will trigger a merge of the corresponding local connected

components (Alg. 2).

As in the expansion step, a merge of two components

coming from opposite directions forms a bridge and releases

their sampling regions. Similarly, a merge with an existing

bridge absorbs all affected vertices into the bridge. When two

components from the same side merge, we retain the sampling

region which has advanced the farthest along the edge path.

Biased Region Selection: The set of initial regions will

expand their corresponding components outward from their

root skeleton vertex in a similar fashion as in Dynamic Region-

biased RRT possibly extending to the end of the skeleton.

When selecting a region to expand on each iteration, we can

employ a weighted random choice to favor regions which

have been more successful in expanding the roadmap. The

weight for each region is initialized to one and updated by the

success rate of extending into samples generated in that region.

To ensure that region weights represent the recent history of

performance, we can apply a discount factor ǫ ∈ [0, 1] to the

prior weight before updates:

w ← ǫw + s

where s is one if the roadmap connected to the sample and

zero otherwise. A weighting based on success rate ensures

that the algorithm will explore the edge segments which have

proved to be traversable before expending effort on segments

which are difficult to connect or even not path-connected in

Cfree.

A. Local Connectivity

A straight-forward application of the dynamic region sam-

pling paradigm for RRT methods is very likely to produce

disconnected roadmaps because there is no mechanism ensur-

ing that the samples produced within a region r will connect to

other vertices within r’s edge segment. This is implied in RRT

methods due to tree extension, but not guaranteed for PRM

methods which form local plans rather than growing towards a

new sample. This motivates our choice of requiring sampling

regions to expand a particular local connected component.

Even with this consideration, it is quite possible that local

components may grow past each other along a skeleton edge

and fail to connect when a connection is feasible (Fig. 2(a)).

This motivates the need for a separate connection step to

provide a guidance mechanism for completing the connections

to achieve local connectivity.

(a) (b) (c)

Fig. 2. (a) An example of a missed connection. The robot is a car-like
vehicle with mechanum wheels, with an arrow indicating its orientation.
Two connected components of the roadmap are shown in red and blue. The
components are connectable because the mechanum wheels permit the robot
to turn in place. (b-c) An example of a missed bridge. Two local components
(red, blue) fail to merge as the blue component approaches the end of its
skeleton edge. The blue component forms a bridge on its own, and new regions
continue outward from the previous target vertex.

However, we note that a locally connected roadmap does

not necessarily express a complete coverage of Cfree because

Cfree can have locally disjoint components within a particular

edge segment. Consider an example where a car-like robot

must traverse a tunnel that is too narrow to turn around.

Within the tunnel, there are two disjoint regions of Cfree:

one for each direction of travel. In more complex examples

with three-dimensional environments or mobile manipulators,

there could be many more locally disjoint components that are

only connected in some specific areas of the environment. The

algorithm attempts to account for this by creating new local

components when a sampling region completes a skeleton

edge without connecting to the other side. This encourages

construction of a roadmap that presents some level of coverage

for locally disjoint regions of Cfree.

B. Sampling Regions and Clearance Awareness

We assume topological skeleton of the workspace S =
(SV , SE) as an input element. Throughout the algorithm, we

define sampling regions at vertices and points on the edge

paths. These regions may be given some fixed size as in [9],

but we observe that an alternate strategy can be employed to

leverage the known clearance in workspace.

At any point p in workspace, we can define a spherical

sampling region r with clearance awareness by considering

the available space to place the robot. Let the center be p

and radius be defined as the clearance at p minus the robot’s

minimum radius from the reference point pr defining its

translational DOFs. Define r such that any samples generated

will place pr within the sphere. Such a region r circumscribes

the maximum region of workspace around p where a sample

could be placed for p on the medial-axis.

In practice, few skeletons truly lie on the medial axis,

and this sizing mechanism may preclude the generation of

configurations at points where the skeleton’s clearance is poor.

To avoid this problem, a minimum radius should be considered

to account for the fact that the clearance is not uniform around

the skeleton components.
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When working with a skeleton on the medial-axis, we can

employ pure clearance-based sizing to filter out regions of

workspace that cannot accept the robot. This enables the

planner to avoid obstructions with small holes such as chain-

link fences without wasting effort on an unfruitful exploration.

In this case, the skeleton can be pruned of low-clearance points

as a pre-processing step. We note that for skeletons not aligned

with the medial-axis, biasing region selection by success rate

still gives a strong preference for avoiding regions which are

stuck at impassible regions of workspace.

Algorithm 1 Roadmap construction with Dynamic Region

PRM

Require: Skeleton S = (SV , SE), Roadmap G = (GV , GE)
1: function BUILDROADMAP( )
2: ***Initialize components at each skeleton vertex***
3: for all v ∈ SV

4: r ← GETREGIONRADIUS(v.point)
5: Q← SAMPLEVALIDCONFIGURATIONS(βr(v))
6: E ← ∅

7: for all q ∈ Q
8: N ← NEARESTNEIGHBORS(q, Q)
9: E ← E ∪ ATTEMPTCONNECTIONS(q, N )

10: for all Connected Componet cc ∈ (Q,E)
11: INITIALIZEREGIONS(cc.vertices, v)

12: GV ← GV ∪Q
13: GE ← GE ∪ E

14: ***PRM Loop***
15: while ¬done ⊲ either node limit or S covered
16: r ← SELECTREGION()
17: if r 6= ∅

18: Q← EXPANDLOCALCOMPONENT(r)
19: while ∃q ∈ Q | r.CONTAINS(q)
20: ADVANCEREGION(r, Q)

21: CONNECTLOCALCOMPONENTS(r.edge)
22: else
23: e← RANDOMUNCONNECTEDSEGMENT( )
24: CONNECTLOCALCOMPONENTS(e)

C. Answering Queries

When presented with a query consisting of a start and

a goal configuration qstart, qgoal ∈ Cfree, it is possible

that either start or goal is not connectable to the current

roadmap. This represents a case where either the skeleton

missed the corresponding parts of workspace (resulting in no

configurations nearby) or the nearby configurations lie in a

region of Cfree that is locally disconnected from q. The repair

strategy is to expand rapidly outward from q in search of either

the roadmap (thus completing the connection) or the skeleton

(thus allowing the use of dynamic region guidance to complete

the connection). An RRT is ideal for this purpose as it handles

both cases elegantly: it will rapidly find a nearby skeleton

point, either leading to a connection or arrival at a region

near a skeleton vertex where dynamic region guidance can be

employed. This is analogous to the Spark PRM strategy [26]

where an RRT is locally employed to bridge narrow passages

for a PRM planner.

Algorithm 2 Component expansion and connection

Require: Roadmap G = (GV , GE)
1: ***Expand a local component***
2: function EXPANDLOCALCOMPONENT(Region r)
3: Cr ← GETLOCALCOMPONENT(r)
4: Q← SAMPLEVALIDCONFIGURATIONS(r)
5: for all q ∈ Q
6: N ← NEARESTNEIGHBORS(q, Cr)
7: E ← ATTEMPTCONNECTIONS(q, N )
8: if E = ∅

9: Q← Q \ {q}
10: continue ⊲ couldn’t connect
11: GV ← GV ∪ q
12: GE ← GE ∪ E

13: r.UPDATESUCCESSRATE(|Q|, K)
14: return Q

15: ***Connect local components in a segment***
16: function CONNECTLOCALCOMPONENTS(SkeletonEdge e)
17: ***Sample at a random point on the edge***
18: p← RANDOMPOINT(e.path)
19: r ← GETREGIONRADIUS(p)
20: Q← SAMPLEVALIDCONFIGURATIONS(βr(p))
21: ***Attempt to merge components***
22: C ← GETLOCALCOMPONENTS(e)
23: for all q ∈ Q
24: E ← ATTEMPTCONNECTIONS(q, C)
25: if E has edges to more than one c ∈ C
26: merge all c ∈ C connected by E

Algorithm 3 Dynamic Region operations

1: ***Initialize regions and local components***
2: function INITIALIZEREGIONS(Configurations Q, SkeletonVer-

tex v)
3: for all e ∈ v.GETOUTBOUNDEDGES( )
4: C ← MAKELOCALCOMPONENT(e, v, Q)
5: CREATEREGION(C)

6: ***Advance an expansion region one step***
7: function ADVANCEREGION(Region r, Configurations Q)
8: if r.ATEDGEEND( )
9: ***Attempt to merge components***

10: C ← GETLOCALCOMPONENTS(r.edge.target)
11: for all q ∈ Q
12: E ← ATTEMPTCONNECTIONS(q, C)
13: if E 6= ∅

14: merge all c ∈ C connected by E

15: if not merged
16: INITIALIZEREGIONS(Q, r.edge.target)

17: DELETEREGION(r)
18: else
19: ***Move to the next position***
20: r.center← r.GETNEXTSKELETONEDGEPOINT( )
21: r.radius← GETREGIONRADIUS(r.center)

IV. THEORETICAL PROPERTIES

The algorithm can be expected to work well when the union

of all sampling regions covering the skeleton points contains

a path-connected volume in Cfree.

Formally, define the metric space MC = (Cspace, D) where

D is some metric and MW = (W,T ) where W is the

workspace and T is translational distance. Let βC
r (q) be a

ball in MC of radius r centered at q ∈ Cspace, and let
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βC
r (p) be a ball in W of radius r centered at p ∈ W .

Let τ(q) : Cspace → W represent the mapping between the

translational subspace of Cspace and the robot’s reference point

in W . Let τ(q) = p so that the image of {τ(x)|x ∈ βC
r (q)} =

βW
r (τ(q)) ⊆ W . Since τ is a many-to-one function, the

inverse image Q = {τ−1(x)|x ∈ βW
r (p)} ⊆ Cspace describes

a hypercylinder of maximum height in Cspace centered on

τ−1(p) such that βC
r (q) ⊆ Q. This implies that a ball of radius

r in MW encompasses a superset of the corresponding ball of

radius r in MC . The union of all possible sampling regions

along the skeleton U thus represent a union of hypercylinders

in X ⊆ Cspace; in the case where U is path-connected, X will

be also.

To ensure that U contains a path-connected volume in Cfree,

it remains to show that the intersection Y = X ∩ Cfree is

path-connected. A general argument for this is not possible

due to the wide variety of choices for the skeleton, robot, and

environment. For example the workspace and skeleton may be

disjoint (in which case no planner can succeed in completely

connecting the space), the skeleton may be badly positioned

(resulting in disjoint components for Y ), or the robot may

be too large to traverse into certain regions of workspace

(again resulting in disjoint components for Y ). As such, this

description serves as a characterization of when the method

can produce a good coverage of W and Cfree rather than a

statement that it will always do so.

There are at least two cases where one can be assured that

Y is path-connected. The first is when the robot is a free-

body with maximum radius less than or equal to some value

ρ and the skeleton has clearance greater than or equal to ρ

everywhere. This holds for some common cases where floor-

dwelling robots must perform tasks in large but reasonably

uncluttered spaces. A second case is where there is a valid

configuration at each skeleton point and a valid local plan

between them: this represents the case where one knows that

the robot has a valid maneuver for all localities, and shows a

similar flavor to human intuition in collaborative planning [21].

In cases where Y is path-connected, the algorithm is prob-

abilistically complete if the skeleton meets the definition of a

deformation retract. This is true because a retract skeleton is

visible to the entire Cfree, and a path between any two points

can be formed by connecting each point to its nearest visible

point on the skeleton.

V. VALIDATION

To evaluate Dynamic Region sampling with PRM, we tested

the method on two problems with multiple path homotopy

classes and compared against PRM (baseline), PRM with

Workspace Importance Sampling (WIS-PRM) [17], and Dy-

namic Region-biased RRT (DRB-RRT).

The environments include a Garage problem with a quad-

copter robot, a DhaA protein with a ligand probe, and a

cramped three-dimensional GridMaze. Each environment

exhibits winding tunnels which increase the difficulty of

connecting configurations. In each problem, the PRM planners

build an initial roadmap with a fixed number of vertices

before being presented with a series of queries. They then

search for a solution for each query in sequence, starting

from the current roadmap and expanding it if necessary. This

exercises the multi-query intention of PRM and shows how

well the constructed roadmaps generalize over several planning

requests. The Dynamic Region-biased RRT method is included

to contrast the performance of a guided single-query method.

Fig. 3. Garage environment and experiment results. Time is reported in
seconds. DRB-RRT failed to solve queries six and ten at all within an 80
second time limit, and occasionally failed queries one (four fails), eight (ten
fails), and nine (three fails).

A. Experiment Setup

All methods were implemented in a C++ motion planning

library developed in the Parasol Lab at Texas A&M University.

All experiments were executed on a desktop computer running

CentOS 7 with an Intel® Core™ i7-3770 CPU at 3.4 GHz, 16

GB of RAM, and the GNU g++ compiler version 4.8.5. Skele-

tonization for the dynamic region methods was performed with

a Mean Curvature Skeleton [24] implemented in the CGAL

library [27]. Workspace tetrahedralization for WIS-PRM was

performed with a combination of the TetGen [28] and CGAL

libraries. Time to build these models was considered pre-

processing and not included in the result plots.

Each experiment ran until all queries solved. We performed

35 trials for each experiment and report the initial roadmap

construction time, time to solve each query, and cost of the

produced paths. Construction and Query time are reported in

seconds, while path cost is in euclidean distance in Cspace.

Each trial is plotted as a scatter dot to illustrate the spread of

behavior.
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PRM and WIS-PRM sample ten configurations per itera-

tion in all environments. Dynamic Region PRM uses five in

Garage and Gridmaze because it generates all samples for

an iteration within the same locality and additionally attempts

a second set of samples during the connection phase. In DhaA

it uses ten samples to reflect the greater difficulty of sampling

a valid configuration for the ligand probe. All PRM methods

use eight nearest-neighbors.

B. Analysis

The Garage problem (Fig. 3) presents a series of ten

queries scattered across the levels of the structure. The space

is relatively open compared to the robot size, and the primary

sources of difficulty are thin walls and large scale. We ob-

serve that Dynamic Region PRM consistently takes longer to

construct an initial map than PRM or WIS-PRM, and takes

longer to solve the second query. However, it consistently

produces very low path costs with little variance. This occurs

because the region guidance forces the planner to cover a

regular volume around the skeleton edges, which provides a

roadmap with paths that roughly map to paths through the

skeleton (plus any distance needed to reach the skeleton if the

query is far away). WIS-PRM produces better paths than PRM

by taking greater care to sample in less accessible regions of

workspace, thus providing coverage that is better but not as

consistent as Dynamic Region PRM. Dynamic Region-biased

RRT can sometimes match its PRM counterpart’s path cost,

but always takes longer to do so and frequently fails to find a

path within a reasonable time limit (80 seconds here).

The DhaA problem (Fig. 4) presents a sequence of four

queries representing ligand binding sites. The first three

queries have start and goal positions close to the skeleton,

while the fourth is farther away. We see that Dynamic Region

PRM has the fastest build time, although the advantage is

not highly significant over WIS-PRM. Its query time however

is consistently low, whereas the other methods exhibit a

significant spread of times. Path cost is better than PRM but

not as low as WIS-PRM; this occurs because the Dynamic

Region paths follow the skeleton closely, while the WIS-PRM

paths hug the boundary relatively closely. The path for the

fourth query is longer for Dynamic Region PRM because it

lies farther from the skeleton. Here the nearest nodes are con-

centrated around the skeleton, so the path effectively ‘snaps’

to the skeleton’s topology. This case illustrates a possible

negative side-effect of skeleton guidance. Dynamic Region-

biased RRT exhibits a similar issue with lower intensity due

to constant-sized regions. However, its query time is subject

to long-running outliers when the algorithm gets stuck trying

to break through a low-clearance area.

The Gridmaze problem (Fig. 5) presents a sequence of

four queries dispersed in the maze. The maze is fairly tight,

making the entire workspace relatively close to the skeleton.

In this setting Dynamic Region PRM excels with rapid build

and query times compared with the other methods. Its path

cost is also consistent and minimal, which is expected given

the close matching between the workspace and its skeleton.

This is an ideal case for Dynamic Region PRM, even over its

Fig. 4. DhaA environment and experiment results. Time is reported in
seconds.

RRT counterpart which fails to discover the cheapest path for

the first query.

VI. CONCLUSION

We present dynamic region sampling for sampling-based

planners which create multiple connected components such as

PRM, and show that it provides effective solutions in both

robotics and ligand-binding applications. The method draws

on a relationship between a workspace skeleton and paths in

Cfree, and can be expected to perform well in problems where

this relationship holds.

The most important future work is to demonstrate that

dynamic region sampling can be applied to parallel PRM.

This is especially important for protein folding applications

where feasibility planning is very time consuming, and in

applications such as binding-site evaluation where the goal is

to discover as many valid paths as possible. These problems

require large roadmaps in difficult spaces, yet the dynamic re-

gion PRM approach could be used to parallelize this process in

a theoretically novel way. The skeleton edge segments imply a

topology-induced partitioning of the problem, and the method

presented here for bridging local connected components would

be useful in combining solutions to partitioned sub-problems.
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