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Abstract

Software developers predict their product’s failure rate using reliability 

growth models that are typically based on nonhomogeneous Poisson (NHP) 

processes. In this paper, we extend that practice to a nonhomogeneous discrete-

compound Poisson process that allows for multiple faults of a system at the 

same time point. Along with traditional reliability metrics such as average 

number of failures in a time interval, we propose an alternative reliability in-

dex called Critical Fault-Detecting Time in order to provide more information 

for software managers making software quality evaluation and critical market 

policy decisions. We illustrate the significant potential for improved analysis 

using wireless failure data as well as simulated data.

Keywords: Goodness-of-Fit, Maximum Likelihood, l-fold Convolution, Nonho-

mogeneous Compound Poisson Process, Reliability Growth Model



1 Introduction

In software quality evaluation, a variety of software reliability growth (SRG) models

for software fault-failure (SF) processes have been developed to predict failure rate

for new software by assuming a failure event is concurrent with a single fault. Nonho-

mogeneous Poisson (NHP) processes are effective for many applications, but in some

modern software systems, each failure event may be induced by two or more faults

(Debroy and Wong (2009), Hamill and Goševa-Popstojanova (2009)). In such cases,

the SRG model of an NHP process becomes inadequate because it may not be able

to properly describe the number of faults that leads to the occurrence of a failure

event. This study proposes a more general modeling approach using a nonhomoge-

neous discrete-compound Poisson (NHDCP) model. The number of fault increments

is described by a discrete random quantity (for example, Bernoulli or Poisson ran-

dom variable) and the occurrences of failure events are described by an NHP process.

When the number of fault increments is a constant quantity, the NHDCP model will

simplify to an NHP process.

In the literature, there are several evaluation metrics that are commonly applied

to software reliability. Four primary examples (Musa (1998), Pham (2000), Zachariah

(2012), Zachariah (2015)) include: (1) The average number of failures experienced

at any point in time; (2) The average number of failures in a time interval; (3) The

failure intensity at any point in time; (4) The probability distribution of the time

interval between failures.

These metrics provide fundamental levels for software quality evaluation. Further-

more, in the testing phase of software development, the software manager may also

want to estimate the cost of testing time when a critical number of cumulative faults

has been reached. This cost estimation is needed for the development of each new

release version of the software. Our study proposes an alternative reliability index

called the critical fault-detecting time (CFDT) for software quality evaluation. CFDT

indicates the time when a certain critical fault-detected number (CFDN) is detected

or found in a software test. The CFDN will be determined by the software manager
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to indicate the quality level threshold of the released software. The setting of the

CFDN may also be referred to as the “quality level in the previous released version”

or as a “standard of similar software”. This approach supplies a rich complement to

the traditional metrics of software quality evaluation.

Because CFDT varies from system to system due to varying usage conditions,

it is a random quantity (its distribution is called the critical fault-detecting time

distribution). Using the test data, we seek to provide accurate estimates or predictions

of CFDTs for software testing. CFDT distribution evaluation will help software

managers more sensibly decide market policies. For example, insufficient testing of

software in the manufacturer’s test environment may lead to exorbitant costs when

the software is implemented in the field environment.

This research was motivated by the following wireless-network example. We do

not fully adopt the assumptions of the example, instead aiming at slightly more

pragmatic test schemes. Our specific model assumptions are explained at the end of

the example.

Example of the Wireless Software Failure (WSF) Data

Figure 1 shows an example of the software faults for a wireless network system

test given by Jeske et al. (2005). They performed a system test for the initial software

release and there was interest in being able to predict the field failure rate for the

software’s second release at various stages of testing. In that test, each failure is

induced by a single fault. The software runs on an element within a wireless network

switching center. Its main functions are routing voice channels and signaling messages

to relevant radio resource & processing entities within the switching center.

The initial release test data are observed during a test that combines feature

testing and load testing. Feature testing is designed to verify that the required features

have been properly implemented and is often done with extremely focused test cases as

opposed to test cases that would more naturally align with a user’s operational profile.

Load testing consists of test scenarios designed to stress the system for the purpose

of observing performance characteristics under peak or even overload conditions.
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Figure 1: 181 Software faults are observed in the wireless network system and are

aggregated by Jeske et al. (2005) The stopping time of the test is set at 1001 days

and the arrow points at the CFDT under the CFDN of 120 faults.

Four systems were used in parallel to test the software and the data are obtained

across multiple systems by aggregating the test time and the number of failures. That

is, the observed fault numbers for individual software were not recorded. As shown

in Figure 1, the cumulative total of days for the four systems is over 1,001 days and

a total of 181 failures are observed under the planned inspection times.

Jeske et al. (2005) assumed that faults found in any test system were reported

to all other test systems. As a result, a fault could be discovered and removed by

two different system managers. Because the software’s initial release had been used

in the field for different systems under different environments, and one purpose of

their test is to study the faults and failures in the field usage, our approach does

not directly follow the assumptions of the Jeske et al. (2005) model. Instead, we

consider the different test schemes that mimic the field-usage environment, where

system-to-system variability may be critical and the individual systems are monitored

separately.
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In this paper, we focus on test schemes based on multiple tested systems with

separate fault and failure information provided by individual systems (instead of

aggregated data). Specifically, we extend the NHP model by Jeske et al. (2005) to

a more flexible NHDCP model in order to capture the fault-failure structure in the

observed data. The process of analysis based on the NHDCP model is demonstrated

by a simulation study.

Brief Literature Review

Based on the NHP process, many SRG models have been developed in the litera-

ture. Yamada and Osaki (1983) survey several important SRG models for hardware

and software systems including the Duane, Weibull, exponential, and gamma models.

Kuo and Yang (1996) propose a unified approach to the NHP process in a SRG model

and use a Bayesian approach for the reliability inference. In Zhang and Pham (2000),

a SRG model incorporating imperfect debugging along with the learning process of

software developers is evaluated and compared with other existing NHP process mod-

els for both descriptive and predictive power. Huang and Kuo (2002) investigate a

SRG model with a logistic testing-effort function and show that the model has good

predictive capability.

Huang et al. (2003) describe how several existing SRG models based on NHP

processes can be derived by applying weighted means (geometric, harmonic or arith-

metic). They show that these approaches cover a number of well-known models under

different conditions. Teng and Pham (2006) establish a SRG model for predicting soft-

ware reliability in random field environments. Lo and Huang (2006) propose a general

framework for modeling the software fault detection and correction processes that

cover a number of well-known SRG models. To build their SRG models, Zachariah

and Rattihalli (2007) assume that the intensity of failure detection is proportional

to the failure size. Wang et al. (2007) develop a moving average SRG model which

includes the benefits of both the time-domain approach and the structure-based ap-

proach. That method overcomes the deficiency of existing NHP process techniques

that fall short of addressing repair and internal system structures simultaneously.

5



Most SRG models assume that the fault removal time is negligible, and the fault

can be removed immediately, but Huang and Huang (2008) argue that such an as-

sumption is unrealistic for many industry problems. For this, they study how to

incorporate finite and infinite server queueing models into software reliability mod-

eling under both ideal and imperfect debugging conditions. Huang and Lin (2010)

consider the testing compression factor and the quantified ratio of faults to failures

and their effects on software reliability. Numerical examples based on recorded failure

data show that the proposed framework has adequate prediction capability. Chatter-

jee and Singh (2014) investigate the optimal release policy with logistic exponential

test coverage under imperfect debugging. Their software cost model incorporates

testing coverage and an optimal release policy based on the number of remaining

faults.

Besides these models, Sahinoglu (1992) discusses basic properties of compound dis-

tributions for Poisson-Geometric and Poisson-Logarithmic models. Goševa-Popstojanova

and Trivedi (2000) model the software process with a Markov renewal process. Dohi

and Yasui (2003) propose generalized binomial SRG models in both continuous and

discrete time, based on cumulative Bernoulli trials. Pfefferman and Cernuschi-Frias

(2002) propose a nonparametric and non-stationary procedure for software failure

prediction. Wilson and Samaniego (2007) discuss a nonparametric analysis of the

order statistic model in software reliability. Inoue and Yamada (2007) discuss a uni-

fied framework for discrete software reliability modeling with effect of program size in

which the software failure occurrence times follow a discrete-time probability distri-

bution. A more complete introduction of general theories and methods for this kind

of reliability assessment can be found in the books of Meeker and Escobar (1998),

Musa (1998), Pham (2000), Lawless (2003), and Yamada (2014).

Overview

Our study provides a general analysis for the evaluation of software reliability from

measurements of software failure processes at planned inspection times. Based on a

novel NHDCP model, we derive a critical fault detection time distribution and for-
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mulate the likelihood function for estimating the underlying model parameters. We

rely on three well known goodness-of-fit (GOF) tests (Anderson-Darling, Cramér-von

Mises, and Watson) based on the empirical distribution function (EDF) for assessing

the NHDCP model adequacy. The WSF example is well suited to illustrate the proce-

dure. Two random increment models, Bernoulli and Poisson, are used to describe the

number of fault increments. We apply the G-O (Goel and Okumoto, (1979)) model

to portray fault event occurrences and through the likelihood ratio test, we show the

proposed NHDCP model is preferred over the one used in Jeske et al. (2005).

The rest of this article is organized as follows. In Section 2, we derive a general-

ized model for estimating CFDT and set up the likelihood framework for statistical

inference, including confidence intervals and model fit assessment. In Section 3, we

apply the proposed methods to the WSF data, comparing our results to those of Jeske

et al. (2005). We provide model checking using the three mentioned GOF tests in

Section 4, and conclusions are discussed in Section 5.

2 Modeling and Analysis

In this section, we construct a generalized procedure for assessing software reliability

metrics. We first develop an NHDCP to model the fault-failure process, then we derive

the CFDT distribution under a specified CFDN based on the method of maximum

likelihood. Confidence intervals for CFDT distribution quantiles help demonstrate

the uncertainty of the CFDT estimate and the tests for GOF can effectively assess

model adequacy.

Nonhomogeneous Discrete-Compound Poisson Model

A stochastic process {Y (t) : t ≥ 0} is said to be an NHDCP process with cumu-

lative failure event rate m(t, θ2) =
∫ t

0
λ(s; θ2)ds for a non-decreasing non-negative
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intensity function λ(t; θ2) (Ross, 2003) if

Y (t) =

 X1 + · · ·+XN(t) if N(t) ≥ 1,

0 if N(t) = 0,

where N(t) is a Poisson random variable with intensity λ(t; θ2) which indicates the

number of failure events up to time t and Xk represents the number of faults at the

kth occurrence of failure event. {Xk, k ≥ 1} are discrete i.i.d. random variables with

distribution PX(x;θ1) and independent of N(t). When λ(s; θ2) is a constant, this

is a homogeneous Poisson model. Typical nonhomogeneous models, such as, Duane

(1964), Cox and Lewis (1966), Musa and Okumuto (1984), and Goel and Okumoto

(1979), are listed in Examples 3 and 4 below.

Zacks (2005) derived key properties of stopping times for a homogeneous discrete-

compound Poisson (HDCP) process. We extend those results to a general NHDCP

model as follows. Let {Xk} be the positive increments with a probability mass func-

tion (PMF) pX(x;θ1). Then the PMF of Y (t) on {0 , 1, · · · ∞} is

pY (t)(y;θ) =

 exp
[
−m(t;θ2)

]
, y = 0,∑∞

l=1 p
(l)
X (y;θ1) · p

(
l; m(t;θ2)

)
, y ∈ {1, · · · ∞},

(1)

where p
(l)
X (y;θ1) is the l -fold convolution of pX(x;θ1), and

p
(
l;m(t;θ2)

)
= exp[−m(t;θ2)]

m(t; θ2)l

l!

is the Poisson PMF, with parameters θ = (θ1,θ2), θ1 = (θ10, θ11, · · · , θ1p), and θ2

= (θ20, θ21, · · · , θ2q).

Zacks (2005) showed (1) for the special case when m(t;θ2) = λt. The derivation

of (1) for the more general case of m(t;θ2) has a similar proof. The corresponding

cumulative distribution function (CDF) is

PY (t)(y;θ) = exp
[
−m(t;θ2)

]
+

y∑
s=1

pY (t)(s;θ),
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We offer two primary examples for obtaining the means and variances of ∆Y (tij)

and Y (tij) at time tij, where ∆Y (tij) = Y (tij)− Y (tij−1), the index i represents the

ith test system, and the index j represents the jth inspection time point. The num-

bers of fault increment are generated with Poisson and Bernoulli random variables.

Calculations are straightforward, so details are omitted.

Example 1: Bernoulli increment model. Suppose that the fault number in-

crement X1 has the probability Pr(X1 = 1) = 1 − θ10 and Pr(X1 = 2) = θ10, and

θ10 ∈ [0, 1]. This model indicates that one or two faults induce a failure event. Then

E[∆Y (tij)| ∆N(tij) = nij] = nij(1 + θ10) and Var[∆Y (tij)|∆N(tij) = nij] = nij(θ10 −

θ2
10). Hence, E[∆Y (tij)] = ∆m(tij; θ2)(1 + θ10) and Var[∆Y (tij)]=Var[E[∆Y (tij)|

∆N(tij)]] + E[Var[∆Y (tij)|∆N(tij)]] = ∆m(tij; θ2)(1 + 3θ10), where ∆N(tij) =

N(tij) − N(tij−1) and ∆m(tij; θ2) = m(tij; θ2) − m(tij−1; θ2). The mean and

variance for the accumulated number of faults are E[Y (tij)] = m(tij; θ2)(1 + θ10) and

Var[Y (tij)] = m(tij; θ2)(1 + 3θ10).

For this example, the l -fold convolution of pX(x;θ1), p
(l)
X (y;θ1) is

p
(l)
X (y;θ1) =

(
l

y − l

)
θy−l10 · (1− θ10)2l−y, l ≤ y ≤ 2l.

The details of the derivations are relegated to Appendix A. Following expression (1),

the probabilities of Y (t) on {0 , 1, · · · ∞} become

pY (t)(y;θ) =


exp

[
−m(t;θ2)

]
, y = 0,

y∑
l=y∗

(
l
y−l

)
θy−l10 · (1− θ10)2l−y · p

(
l;m(t; θ2)

)
, y ∈ {1, · · · ∞},

where y∗ is the smallest positive integer greater than or equal to y/2.

Example 2: Poisson increment model. Suppose that the the fault number

increment X1 = X∗1 + 1, where X∗1 has a Poisson distribution with parameter θ10 ∈

(0,∞), so the number of faults ranges over {1,∞}. This indicates that each failure

event may be induced by one or more faults. As a result, E[∆Y (tij)| ∆N(tij) = nij] =

nij(1 + θ10) and Var[∆Y (tij)|∆N(tij) = nij] = nijθ10. From this, we have E[∆Y (tij)]
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= ∆m(tij; θ2)(1 + θ10) and Var[∆Y (tij)] = ∆m(tij; θ2)(θ2
10 + 3θ10 + 1). Moreover,

E[Y (tij)] = m(tij; θ2)(1 + θ10) and Var[Y (tij)] = m(tij; θ2)(θ2
10 + 3θ10 + 1).

The l-fold convolution p
(l)
X (y;θ1) of pX(x;θ1) for the Poisson increment model is

p
(l)
X (y;θ1) =

exp(−lθ10) · (lθ10)y−l

(y − l)!
, y = l, l + 1, · · · ,∞.

Appendix A displays details of the derivations. The probabilities of Y (t) on {0 , 1, · · · ∞}

are

pY (t)(y;θ) =


exp

[
−m(t;θ2)

]
, y = 0,

y∑
l=1

[
exp(−lθ10)·(lθ10)y−l

(y−l)!

]
· p
(
l;m(t;θ2)

)
, y ∈ {1, · · · ∞}.

Critical Fault-Detecting Time Distribution

The distribution time of when the CFDN will reach a critical level is an important

index of the software quality. The information can also help managers determine the

optimal release time of the software in order to achieve maximum profit. A critical

number ξ ∈ N is used to denote the CFDN, where N is the set of positive integers.

The critical fault-detecting time (denoted by Tξ) is defined as the time when the

actual path of the number of cumulative faults Y (t) first reaches the CFDN of ξ, i.e.,

Tξ = inf{t : Y (t) ≥ ξ}.

Let FTξ and fTξ denote the CDF and probability density function (PDF) of Tξ. Using

1− PY (t)(ξ;θ), FTξ and fTξ can be expressed as

FTξ(t; θ) = Pr(Y (t) ≥ ξ; θ, ξ > 0) = 1− exp
[
−m(t; θ2)

]
−

ξ−1∑
y=1

∞∑
l=1

[
p

(l)
X (y;θ1)

]
· p(l ;m(t;θ2)), (2)

fTξ(t;θ) = m′(t;θ2) exp
[
−m(t;θ2)

]
+m′(t;θ2)·

ξ−1∑
y=1

∞∑
l=1

[
p

(l)
X (y;θ1)

]
· dp
(
l;m(t;θ2)

)
,

where m′(t;θ2) = dm(t;θ2)/dt is the intensity function at time t, i.e., m′(t;θ2) =

λ(t;θ2). p
(l)
X (y;θ1) is defined in the previous subsection, and dp

(
l;m(t;θ2)

)
is the
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difference of Poisson probability at l and l−1 with rate m(t;θ2), i.e., p
(
l;m(t;θ2)

)
−

p
(
l − 1;m(t;θ2)

)
.

The pth quantile (tp) of the CFDT distribution can be obtained by solving the

equation p = FTξ(tp;θ) = 1− FY (tp)(ξ;θ) using (2). In applications, under a specific

CFDN, tp is a helpful guide for determining software release dates. For example,

t0.5 denotes the median time needed to detect the CFDN. Because debugging costs

during field use are usually higher than costs incurred during the test phase (Inoue

and Yamada 2007), time-schedule plans for future detecting processes in the field

phase are crucial.

Let M = lim
t→∞

m(t;θ2), which is not assumed to be finite. The derivations of E(Tξ)

and Var(Tξ), computed using the proposition below, will depend on this limit value.

Proposition 1: If M is infinite, then

E[m(Tξ; θ2)] = 1 +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1),

and

E[m2(Tξ; θ2)] = 2
[
1 +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) · l

]
.

If M is finite, then

E[m(Tξ; θ2)] = 1− (1 +M) · e−M +

ξ−1∑
y=1

∞∑
l=1

{
p

(l)
X (y; θ1)·[

1− e−M ·M l+1

l!
− e−M · el(M)

]}
, (3)

E[m2(Tξ; θ2)] = 2− e−M ·
[
1 + (1 +M)2

]
+

ξ−1∑
y=1

∞∑
l=1

{
p

(l)
X (y; θ1)·[

2(l + 1)− e−M ·M l

l!
·
[
(1 +M)2 + l − 1

]
− 2(l + 1) · e−M · el(M)

]}
, (4)

where el(M) is the exponential sum function, i.e., el(M) =
∑l

k=0 M
k/k!. The deriva-

tions for the Proposition 1 are given in Appendix B.
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Example 3: Suppose the occurrence of failure events follow a homogenous Pois-

son process with cumulative rate λt, i.e., m(t; θ2) = λt → ∞ as t → ∞. Then

E(m(Tξ; θ2)) =E(λTξ) = 1 +
∑ξ−1

y=1

∑∞
l=1 p

(l)
X (y; θ1), and

E(Tξ) =
E[m(Tξ; θ2)]

λ
, Var(Tξ) =

Var[m(Tξ; θ2)]

λ2
.

The other cases of M = ∞ for the NHP process are the Duane (1964) process with

λ(t; θ2) = θ20θ21t
θ21−1, the Cox and Lewis (1966) process with λ(t; θ2) = exp(θ20 +

θ21t), and the Musa and Okumuto (1984) process with λ(t; θ2) = θ20/(t+ θ21).

The complex form of m(t; θ2) inhibits our ability to find the mean and variance of

E(Tξ) directly, so we rely on numerical approximation. If m′(µTξ ; θ2) and m−1(·; θ2)

exist, then a first-order Taylor expansion of m(t; θ2) about t = µTξ is given by

m(t; θ2) ≈ m(µTξ ; θ2) +m′(µTξ ; θ2)(t− µTξ). (5)

Replacing t by Tξ and taking expectation on both sides, we have E[m(Tξ; θ2)] ≈

m(µTξ ; θ2), so that µTξ ≈ m−1[E[m(Tξ; θ2)]; θ2]. Next, modify the expression of (5)

to a square form as[
m(t; θ2)−m(µTξ ; θ2)

]2

≈ m′(µTξ ; θ2)2(t− µTξ)2,

and

E

[[
m(Tξ; θ2)−m(µTξ ; θ2)

]2
]
≈ m′(µTξ ; θ2)2E

[
(Tξ − µTξ)2

]
, i.e.,

Var
[
m(Tξ; θ2)

]
≈ m′(µTξ ; θ2)2Var(Tξ).

Hence,

σ2
Tξ
≈

Var
[
m(Tξ; θ2)

]
m′(µTξ ; θ2)2

.

Example 4: Supposem(t;θ2) follows the form of the G-O model as θ20

(
1−exp[−θ21t]

)
.

As t→∞, m(t;θ2)→ θ20, i.e., M = θ20. Moreover, m′(t;θ2) = θ20θ21 exp[−θ21t] and

12



m−1(t;θ2) = −1/θ21 log(1− t/θ20). Then,

µTξ ≈
−1

θ21

log
[
1− E[m(Tξ;θ2)]

θ20

]
, and σ2

Tξ
≈

Var
[
m(Tξ;θ2)

]
[
θ2

20 · θ2
21 · exp(−2θ21 · µTξ)

] .
Replacing M by θ20 in the expressions of (3) and (4), we evaluate Var[m(Tξ;θ2)]. We

note that the G-O model of m(t;θ2) for an NHP process will be used in Section 3.

When m(t;θ2) is far from linear, we calculate µTξ and σ2
Tξ

via numerical integration,

which can be computationally challenging.

For the other models of m(t;θ2) with finite M , one can refer to the Pareto,

Weibull and extreme value NHP processes (stated in Kuo and Yang, 1996) and the

gamma NHP process (Yamada et al., 1983). The basic structure of these models is

m(t;θ2) = θ20F (t;θ2) where F (t;θ2) is the specified CDF (Musa et al., 1987). For

the G-O model, F (t;θ2) = 1− exp[−θ21 · t] so it is also an exponential NHP process.

Likelihood Function of Model Parameters

In this section, the likelihood function is constructed for estimating the underlying

model parameters θ with the data observed at planned inspection times. Following

the likelihood function for the NHCP model from Hsieh et al. (2009), we extend

their approach to the NHDCP model as follows. Let {Yij} denote the observed data

and let tj represent the inspection times , i = 1, · · · , I, and j = 1, · · · , L. I and

L represent the number of test systems and the number of measurements of a test

system, respectively. tL denotes the stopping time of the test. All software systems

are recorded separately at the inspection times (tj, j = 1, · · · , L) and the data

Yi1, · · · , YiL, i = 1, · · · , I, are observed. (Yi0 = 0 at t0 = 0).

Suppose the number of fault increments of system i between the time intervals

j − 1 and j is positive (∆Yij > 0) at u intervals of inspected times and ∆Yij = 0 are

observed at the remaining v intervals (for convenience, we suppress further indexing

of u and v within system i):

1 ≤ k1 < k2 < · · · < ku ≤ L, Y (tk1)− Y (tk1−1) > 0, · · · , Y (tku)− Y (tku−1) > 0 and

1 ≤ l1 < l2 < · · · < lv ≤ L, Y (tl1)− Y (tl1−1) = 0, · · · , Y (tlv)− Y (tlv−1) = 0,
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where kr 6= lj, r = 1, · · · , u, j = 1, · · · , v, and u+ v = L.

Based on the observed time-point data, the likelihood for test system i is the

product of the probability mass functions:

L(θ, yi) =

{
u∏
r=1

[
∞∑

∆sikr=1

p
(∆sikr )
X (∆yikr ;θ1)· exp[−∆m(tkr ;θ2)] ·∆m(tkr ;θ2)∆sikr

∆sikr !

]}
·[

v∏
j=1

exp
(
−∆m(tlj ;θ2)

)]
, (6)

where p
(∆sikj )

X is the ∆sikj -fold convolution of pX .

Note that if u = 0, (6) is equivalent to the likelihood with Yi = 0 in which no

fault event occurs over the test period: L(θ, yi) = exp[−m(tiL;θ2)]. If u = L, then

∆Yi > 0 where fault events occur during each inspection interval, i.e.,

L(θ, yi) =

{
L∏
r=1

[
∞∑

∆sikr=1

p
(∆sikr )
X (∆yikr ;θ1)·exp[−∆m(tkr ;θ2)] ·∆m(tkr ;θ2)∆sikr

∆sikr !

]}
.

Then the overall joint likelihood function of θ for the data with I independent test

systems is

L(θ|data) =
I∏
i=1

L(θ, yi). (7)

Interval Estimation of CFDT

In order to quantify the uncertainty of the point estimate of quantile tp, we con-

struct an approximate confidence interval for tp using the bias-corrected bootstrap

method. We implement the parametric bootstrap method using the following steps

outlined by Meeker and Escobar (1998).

1. Use the observed data from the I sample paths to compute the estimate θ̂ by

ML approach based on the likelihood given in (7) (By the optim function in the

software R).

2. Numerically solve the estimates t̂p by p = FTξ(t̂p; θ̂) = 1− FY (t̂p)(ξ; θ̂).
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3. Generate a large number B of bootstrap samples that mimic the original sample

and compute the corresponding bootstrap estimates for tp according to the

following steps:

(a) Generate fault-count paths with size I from θ̂.

(b) Use the I simulated paths to estimate model parameters in order to pro-

duce the bootstrap estimates θ̂∗.

(c) Use the expression p = FTξ(tp; θ) = 1−FY (tp)(ξ; θ) to solve the bootstrap

estimates t̂∗p using the bootstrap estimates θ̂∗.

4. The bootstrap confidence interval for tp is computed using the following steps:

(a) Sort the B bootstrap estimates t̂∗p,1, · · · , t̂∗p,B in increasing order giving

t̂∗p,(b), b = 1, · · · , B.

(b) Following Efron and Tibshirani (1993), lower and upper bounds of the

pointwise approximate 100(1−α)% bias-corrected confidence intervals for

tp are [
tp, tp

]
=
[
t̂∗p,(l), t̂∗p,(u)

]
,

where

l = B · Φ[2Φ−1(q) + Φ−1(α/2)],

u = B · Φ[2Φ−1(q) + Φ−1(1− α/2)],

and q is the proportion of the B values of t̂∗p that are less than t̂p (q = 0.5

is the percentile bootstrap method), and Φ is the CDF of the standard

normal distribution.

Goodness-of-Fit (GOF) Test

Checking model adequacy is a crucial step in software evaluation. Here we ex-

plore the application of three popular GOF tests under the assumed NHDCP model:
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the Anderson-Darling statistic (A2), the Cramér-von Mises statistic (W 2), and the

Watson statistic (U2). The Anderson-Darling test generally reveals greater power for

continuous and discrete data among these quadratic empirical distribution function

(EDF) statistics (Kvam and Vidakovic, 1998). These GOF procedures are based on

assuming the software failure process follows an NHDCP model with the expected

cumulative fault number m(t;θ2)µX , which essentially represents a null hypothesis

we are testing.

The corresponding estimates of the three statistics for the ith system are

A2
i =

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X ]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]

m(tj; θ̂2)(R̂−m(tj; θ̂2)µ̂X)
, (8)

W 2
i =

1

R̂2
·

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X ]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]µ̂X , (9)

U2
i =

1

R̂2
·

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X −
L∑
j=1

[Yij −m(tj; θ̂2)µ̂X ]/L]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]µ̂X .

(10)

where R is the long-term expected number of cumulative faults for a software system

(Jeske et al., 2008), i.e., R̂ = lim
t→∞

m(t; θ̂2)) · µ̂X . For example, if m(t;θ2)) has the

form in the G-O model, R = θ20 · µX . The derivations of the formulas of the three

statistics are given in Appendix C.

The statistics in (8), (9), and (10) represent a single sample path. Since the

I test systems are independent, it is reasonable to aggregate those statistics, i.e.,

A2
I =

∑I
i=1A

2
i , W

2
I =

∑I
i=1 W

2
i , and U2

I =
∑I

i=1 U
2
i . Large values of the statistics A2

I ,

W 2
I , and U2

I provide evidence against the hypothesized model. The critical values of

A2
I , W

2
I , and U2

I with the significance level may be obtained by Monte Carlo technique.

Implementation details are given in Section 4.
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3 Analysis of Wireless Software Failure

To illustrate our proposed methodology, we return to the WSF data illustrated in

Figure 1. This section is divided into two subsections (for the probability model and

for the statistical inference). Since we are not able to emulate the software test, we

treat the aggregated data in Jeske et al. (2005) as if they were collected from a test

of an individual system, and model these data directly. The simulation study for

multiple systems in Section 4 is conducted based on the data generated from the best

fitted model.

Modeling of the WSF Data

Jeske et al. (2005) considered a reliability growth model in an NHP process, where

the number of fault increments was assumed with a constant quantity (∆=1, referred

to as a constant increment). To extend the procedure to applications that include

multiple faults, we use the two discrete models featured in Examples 1 and 2.

The Bernoulli model (Example 1) assumes that either one or two faults occur per

failure event: X1 = X∗1 + 1, where X∗1 has a Bernoulli distribution with probability

θ10. Using this model, Zacks (2005) discussed the properties of the HDCP process.

In this article, we extend the model to the nonhomogeneous (NHDCP) model.

In practice, a software system consists of many elements (program codes), and

each occurrence of a failure event may be caused by a variety of faults. In this case,

the Poisson model is appropriate (Example 2). Assume X1 is the number of faults in

a failure event where X1 = X∗1 + 1 and X∗1 follows a Poisson distribution with rate

θ10. The mean and variance of the cumulative number of faults are given in Example

2. When θ10 = 0, the Poisson fault increment model will reduce to the constant one.

For the cumulative fault event rate m(t; θ2) of an NHP process, Jeske et al.

(2005) used the G-O model, which is popular for assessing software reliability (Goel

and Okumoto (1979), Kuo and Yang (1996), Pham (2000), and Huang et al. (2003)).

In our analysis, it is also used to describe the occurrences of failure events. The

expressions of the cumulative failure event rate m(t; θ2) and the intensity function
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λ(t; θ2) for the G-O model are given respectively by

m(t; θ2) = θ20 ·
(

1− exp[−θ21 · t]
)

and λ(t; θ2) = θ20 · θ21 · exp[−θ21 · t], θ20, θ21 > 0,

where θ20 is the expected total number of failure events to be eventually detected and

θ21 represents the occurrence rate of the failure events. The expected total number

of events is bounded by θ20 as t → ∞ and the intensity function decreases in t and

has a limit of zero.

Table 1: NHP process and NHDCP models.

Model Fault increment model Cumulative failure event rate of NHP Process

ModelC Constant increments G-O model

ModelB Bernoulli model G-O model

ModelP Poisson model G-O model

Table 1 lists the three models we are comparing. ModelC represents the usual

NHP process model and ModelB and ModelP belong to the class of NHDCP models.

Note that the CFDT distribution and likelihood function for ModelC can be obtained

as a special case of ModelB. For the WSF data, ModelB and ModelP will be used to

compare with the results of ModelC .

Critical Fault-Detecting Time Inference

The WSF data were aggregated from a multiple software systems. For our pur-

poses of creating more broadly applicable results, we consider multiple (independent)

systems without allowing for data aggregation. In this case, the system was inspected

through the planned time points until 1001 days (see Figure 1). The MLEs of model

parameters θ = (θ10, θ20, θ21) are obtained as (0.268, 189.271, 1.402 ·10−3) for ModelB

and (0.300, 185.519, 1.387 · 10−3) for ModelP . ModelC is a special case of ModelB

when the probability of 2 faults of each failure event is set to 0, (i.e. one fault of each

failure event). In ModelB, the MLE of the probability of 2 faults of each failure event
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Figure 2: The plot of the estimated expected numbers of cumulative faults (ModelB

and ModelP , dotted lines) and the observed WSF data (squares).

is 0.268 which is not close to 0. This is an indication that ModelC is not adequate for

this data set.

Based on Examples 1 and 2, the estimated expected number of cumulative faults

under the NHDCP models of ModelB and ModelP at time t = 1001 days is 181 which

equals to the observed number. As t → ∞, the expected numbers are estimated as

240 and 241 faults respectively for ModelB and ModelP . Moreover, Figure 2 presents

a visual comparison between the (estimated) expected and the observed cumulative

numbers of faults. In this plot, the dotted lines denote the expected cumulative

numbers of faults for ModelB and ModelP and the solid line represents the observed

numbers. Figure 2 reveals that both NHDCP models fit the WSF data adequately.

Table 2 shows the log-likelihood values of ModelC , ModelB, and ModelP . The

log-likelihood value of ModelC is slightly smaller compared to those from ModelB

and ModelP . Moreover, ModelB and ModelP have similar log-likelihood values. The

likelihood ratio test based on comparing the nested models between ModelC and

ModelB produces a (chi-square) test statistic of X2 = 5.08. If Y (t) follows an NHP
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Table 2: Log-likelihood values of ModelC , ModelB, and ModelP and the likelihood

ratio test between ModelC and ModelB (ModelC is a sub-model of ModelB) for the

WSF data.

model log-likelihood Comparison – 2log-likelihood ratio p-value

ModelC -88.98 – – –

ModelB -86.44 C vs B 5.08 0.02

ModelP -86.09 – – –

process of ModelC , the test statistic has a chi-square distribution with one degree

of freedom (χ2
1), and P (X2 > 5.08) ≈ 0.02. This p-value provides strong evidence

against the assumption that Y (t) follows an NHP Process of ModelC ; ModelB provides

a better description for the WSF data compared to ModelC . In other words, the

more general NHDCP model represents a significant improvement on the WSF model

provided by Jeske et al. (2005).

In a competitive market, it is essential for software producers to understand the

most informative product characteristics related to its performance reliability. In

this study, we focus on the evaluation of CFDT, which is defined as the time when

the cumulative faults reach a critical threshold. Correspondingly, the fault detected

efficiency (FDE) is defined as

FDE =
Expected detected number of faults

Expected total number of faults
× 100%.

For the wireless software systems, we consider the critical CFDNs as 120, 192, and

216 faults. These numbers come from the estimated FDE, respectively, at 50%, 80%,

and 90%. For example, at the threshold of 216 faults, 90% (216/240) of the software

faults have been detected and removed.

For ModelB and ModelP , Figure 3 shows the estimates of the 0.10 and 0.50 quan-

tiles of the CFDT distribution and their corresponding 95% bootstrap confidence

intervals under the CFDNs of 120, 192, and 216 faults. The confidence intervals are

obtained via 2,000 bootstrap simulations to quantify the variability of CFDT esti-
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Figure 3: Estimates of p-th quantiles (t̂p) of the CFDT distribution and their corre-

sponding 95% bootstrap confidence intervals with ModelB (Black) and ModelP (Gray)

at the CFDNs of 120, 192, and 216 faults for the WSF data.

mates. Using the two NHDCP models (ModelB in gray and ModelP in black), we can

see there is no significant difference between the models for the WSF data. At the

CFDN of 120 faults, the estimated median of CFDT is about 500 days, i.e., 120 faults

can be detected within 500 days in 50% of the tested software systems. To predict

the CFDT in the field phase, 80% faults are detected at the time of about 1,145 days

(i.e., after 144 days of the stopping time of 1001 days) in 50% of the tested software

systems and 90% faults are detected at the time of about 1,630 days (i.e., after 629

days of the stopping time) in 50% of the tested software systems. The variability at

the higher CFDN is relatively larger compared with that at the lower one. Because

of small sample size, Figure 3 shows large variation between the CFDT estimates.
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Figure 4: Plots of GOF test with sizes of 1, 5, 25, and 50 software systems under the

WSFs of Section 3.

4 Model Checking

ModelP is as effective as ModelB for fitting the WSF data, and ModelP is more flexible

in fitting the data with a larger number of faults of each failure. We illustrate the

procedure of model checking for ModelB. The procedure is the same for the other

two models. The fitted plots and formal statistical tests are typical tools for model

checking. We demonstrate the model checking procedure using the simulations based

on the previous parameter estimates θ =(0.300, 46.380, 5.548 ·10−3) and the stopping

time tL, 238 days (34 weeks). The parameter values are the MLEs of ModelP on the
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WSF data. Four sets of data which are corresponding to the software tests of single

and multiple (size 5, 25 and 50) systems are simulated.

Figure 4 provides the fitted plots for ModelP via the plotted averages of the ob-

served (simulated) cumulative numbers of faults and the estimated expected cumula-

tive numbers of faults with single and multiple (size 5, 25 and 50) software systems.

In Figure 4, the solid lines denote averages of the observed (simulated) cumulative

numbers of faults (i.e., Ȳj =
∑I

i=1 Yij/I) which are calculated at weekly inspection

times. The dashed line (centered) represents the estimated expected cumulative num-

ber of faults, m(tj; θ̂2) · (1 + θ̂10), which is given in Example 2. The dotted lines in

the cases of 5, 25 and 50 software systems show the variability of the sample average

for the cumulative number of faults based on two standard errors.

Table 3: GOF test: p-values using the EDF statistics of A2
I , W

2
I , and U2

I for checking

the assumed NHDCP model.

Number of Systems

Statistic 1 5 25 50

A2
I 0.254 0.471 0.685 0.805

W 2
I 0.230 0.427 0.734 0.837

U2
I 0.371 0.482 0.865 0.921

Now we illustrate the application of the formal statistical tests. Here the null

hypothesis states that the SF process Y (t) follows an NHDCP model (ModelP ), where

the values of the parameters are set to the MLEs. The EDF-based statistics of A2
I ,

W 2
I , and U2

I (from equations (8), (9) and (10), respectively) are calculated for the

four simulated data sets corresponding to the four different number of systems (1,

5, 25, 50) and used as the the critical values for the GOF tests. The approximate

distributions of these three statistics are obtained by another 10,000 simulations under

the null hypothesis. Table 3 shows the corresponding p-values (calculated from the

proportion of the simulated statistics which are larger than the critical values) for
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Figure 5: Plot of expected cumulative number of faults for the seven hypotheses.

the goodness of fit test using various system sizes. In all cases, there is no reasonable

evidence against the null hypothesis; all p-values are greater than significance level α

= 0.20.

Next, we examine statistical power for the three GOF tests. Data are simulated

according to the corresponding seven hypotheses where H0 assumes ModelP with

parameters θa11 = θ = (0.300, 46.380, 5.548 · 10−3), while six alternative hypotheses

(Haij , i, j = 1, 2) are specified as:

Ha11 : ModelP with θa11 = θ × (1.2, 1.1, 0.6), Ha21 : ModelP with θa21 = θ × (1.2, 1.4, 0.6),

Ha12 : ModelP with θa12 = θ × (1.2, 1.1, 0.7), Ha22 : ModelP with θa22 = θ × (1.2, 1.4, 0.7),

Ha13 : ModelP with θa13 = θ × (1.2, 1.1, 0.8), Ha23 : ModelP with θa23 = θ × (1.2, 1.4, 0.8).

(11)

Figure 5 shows plots of the expected number of faults for these various hypotheses.

Note that the number of faults of Ha13 and Ha21 are closer to H0 compared to that

of the numbers of Ha11 , Ha12 , Ha22 , and Ha23 .

Figure 6 shows the power graphs for the three different goodness of fit tests. The
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data are generated from the alternative hypotheses and sample size varies from one

to 100 test systems. Through 2,000 simulations, the power is obtained by counting

the proportion of the tests which reject the null hypothesis under the significant level

0.05. This procedure is repeated 5 times and the average of power is determined.

The results show that test power is similar between A2
I and W 2

I tests. However, the

power of U2
I test is significantly different from A2

I and W 2
I tests. When the expected

cumulative number of faults under the the alternative hypothesis is lower than what

is expected under H0 (i.e., Ha11 and Ha12 in Figure 5), the power for U2
I test is smaller

than A2
I and W 2

I tests, otherwise, U2
I test has greater power (Ha13 , Ha21 , Ha22 and

Ha23). There is no clear preference among these three tests. If a tolerance of testing

power can be given, Figure 6 serves as a useful guideline for the selection of sample

size.

5 Conclusion and Discussion

For software fault-failure processes, we have developed a more applicable nonhomoge-

neous discrete-compound Poisson model to resolve the issue of a failure event induced

by two or more faults. This procedure improves measurably on the NHP process mod-

els in this domain of failure event problems. Critical fault-detecting times under a

specific critical fault number proposed in this study have great potential to aid in

policy decisions with test data or field data. This is currently an important challenge

in software reliability that has yet to be adequately addressed in the literature.

The study was motivated, in part, by the wireless software data given by Jeske, et

al. (2005), and we featured this data in order to illustrate our new methods, includ-

ing the estimation, confidence statements and goodness of fit procedure. Through

the likelihood ratio test, our proposed NHDCP models based on the Goel-Okumoto

model with Binomial and Poisson fault increments can provide better descriptions for

the fault-failure characteristics compared to the common use model based on NHP

processes by Jeske, et al. (2005). We provide further insight into the effectiveness of
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the models by looking at scenarios with a varying number of systems under test.

There are some limitations to our model that we may characterize in three different

issues. First, it is likely that not all the faults at a failure event are detected if it is

dependent on the troubleshooting time and the resource level. In this case, we are

inhibited in estimating the total number of cumulative faults. This problem can be

avoided if the software managers focus on a prespecified number of detected faults

as suggested by this paper. For the second issue, the rate of occurrence of failure

events and the compounding random variable may be statistically dependent. As the

rate decreases over time, the number of faults is likely to decrease too. However,

there are cases in which this concern about dependence may be alleviated with our

consideration of approximate models. For example, the cumulative number of faults

is strictly increasing but still not very close to the bound when the test is stopped

(this is the case in our study). Finally, the testing procedure might also have an

effect because there will be more faults detected if the time gaps between sample

points are too large. The time gaps between observations are modeled by the NHP

process, and the sampling scheme or the inspection scheme is not treated separately

in the NHDCP model. Along with the first two issues, the theoretical development for

different sampling schemes may be of interest for future research, but will inevitably

contain numerous modeling challenges.

Appendix A: l - Fold Convolution

Example 1: For the l-fold convolution p
(l)
X (y; θ10) of pX(x; θ10) of the Bernoulli incre-

ment model, let Xi = X∗+ 1, where X∗ has a binomial distribution with parameters

(β, θ10). Using the additive property of the binomial,

p
(l)
X (y; θ10) = Pr(X1 +X2 + · · ·+Xl = y) = Pr(X1 − 1 +X2 − 1 + · · ·+Xl − 1 = y − l)

=

(
βl

y − l

)
θy−l10 (1− θ10)βl−(y−l), y = l, l + 1, · · · , (β + 1)l.

If β = 1, this reduces to the Bernoulli model.
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Example 2: For the l-fold convolution p
(l)
X (y; θ10) of pX(x; θ10) of the Poisson increment

model, let Xi = X∗ + 1, where X∗ has a Poisson distribution with rate θ10. Then,

using the additive property of the Poisson distribution,

p
(l)
X (y; θ10) = Pr(X1 +X2 + · · ·+Xl = y) = Pr(X1 − 1 +X2 − 1 + · · ·+Xl − 1 = y − l)

=
exp(−lθ10) · (lθ10)y−l

(y − l)!
, y = l, l + 1, · · ·

Appendix B: Proof of the Proposition 1

Let f ∗(z;θ) define the transform of fTξ(t; θ) as

f ∗(z;θ) =

∫ ∞
0

exp[−z ·m(t; θ2)] · fTξ(t; θ) dt.

With m(0; θ2) = 0 and m(t; θ2) approaching the value M (finite or infinite) as

t→∞, we have

f ∗(z;θ) =

∫ M

0

e−m(t; θ2)(1+z) dm(t; θ2) +

ξ−1∑
y=1

∞∑
l=1

[
p

(l)
X (y; θ1)

]
·

∫ M

0

[
e−m(t; θ2)(1+z) ·m(t; θ2)l

l!
− e−m(t; θ2)(1+z) ·m(t; θ2)l−1

(l − 1)!

]
dm(t; θ2).

(12)

If M is an infinite value, the expression (12) implies that

f ∗(z;θ) =
1

1 + z
+

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) ·

[
Γ(l + 1)/(1 + z)l+1

l!
− Γ(l)/(1 + z)l

(l − 1)!

]

=
1

1 + z
− z

1 + z

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) ·

( 1

1 + z

)l
,

where Γ(l, α) is the (upper) incomplete gamma function, i.e., Γ(l, α) =
∫∞
α
tl−1e−t dt.

If M is a finite value, the expression (12) becomes

f ∗(z;θ) =
1

1 + z

[
1− e−M(1+z)

]
− z

1 + z

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) ·

( 1

1 + z

)l
·[

1− e−M(1+z) · el−1(M(1 + z)) + e−M(1+z) · [M(1 + z)]l

l!z

]
,
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where el(α) is the exponential sum function, i.e., el(α) =
∑l

k=0 α
k/k!. Under standard

regularity conditions, equations − ∂
∂z
f ∗(z;θ)|z=0 and ∂2

∂z2
f ∗(z;θ)|z=0 lead to solutions

for E[m(Tξ; θ2)] and E[m2(Tξ; θ2)], respectively. In the case of infinite M ,

E[m(Tξ; θ2)] = 1 +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1),

and

E[m2(Tξ; θ2)] = 2
[
1 +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) · l

]
,

so that the variance of m(Tξ; θ2) is

Var[m(Tξ; θ2)] = 1 + 2

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) · l −

( ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1)

)2

.

For the case of finite M ,

E[m(Tξ; θ2)] = 1− e−M(1 +M) +

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1) ·

[
1− e−MM l+1

l!
− e−Mel(M)

]
.

and

E[m2(Tξ; θ2)] =2− e−M
[
1 + (1 +M)2

]
+

ξ−1∑
y=1

∞∑
l=1

p
(l)
X (y; θ1)·[

2(l + 1)− e−MM l

l!
·
[
(1 +M)2 + l − 1

]
− 2(l + 1)e−Mel(M)

]
,

and the variance of m(Tξ;θ2) is derived from Var(X) = E(X2)− [E(X)]2.

Appendix C: Derivations of the GOF test statistics

Choulakian et al. (1994) gave the formulas of Anderson-Darling statistic (A2),

Cramer-von Mises statistic (W 2), and Waston statistic (U2) for testing discrete dis-

tributions. The given forms are quite general, we extent them to the NHDCP model.

For a discrete distribution with L cells, each with cell (frequency) probability

pj, j ∈ {1, 2, · · · , L}, suppose we have R independent observations. Let oj be the
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observed number of outcomes in cell j, and let R · pj = ej be the expected number

in cell j. Define Sj =
∑j

k=1 ok, Vj =
∑j

k=1 ek, Zj = Sj − Vj, Z̄ =
∑L

j=1 Zj/L, and

Hj = Vj/R. Then Sj/R and Vj/R correspond to the EDF FR(x) and the CDF F (x) in

the continuous case. For discrete distributions, the test statistics given by Choulakian

et al. (1994) are

A2 =
1

R
·

L∑
j=1

Z2
j pj

Hj(1−Hj)
, W 2 =

1

R
·

L∑
j=1

Z2
j pj, U

2 =
1

R
·

L∑
j=1

(Zj − Z̄)2pj. (13)

In the setting of the fault-detection test, notice that Sj is the cumulative number

of observed faults, Vj is the expected number of cumulative faults at time tj, and R is

the long-term expected number of cumulative faults for a software system (see Jeske

et al. (2008)), i.e., R = lim
t→∞

m(t;θ2) · µX . For the NHDCP model, (Sj, Vj, R) in (13)

are correspoinding to (Yij,m(tj; θ̂2)µ̂X , R̂) and pj is replaced by ej/R̂ = [m(tj; θ̂2)−

m(tj−1; θ̂2)]µ̂X/R̂.

Using these notations, (13) becomes

A2
i =

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X ]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]

m(tj; θ̂2)(R̂−m(tj; θ̂2)µ̂X)

W 2
i =

1

R̂2
·

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X ]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]µ̂X

U2
i =

1

R̂2
·

L∑
j=1

[Yij −m(tj; θ̂2)µ̂X − Z̄i]2 · [m(tj; θ̂2)−m(tj−1; θ̂2)]µ̂X ,

where Z̄i =
∑L

j=1[Yij −m(tj; θ̂2)µ̂X ]/L.
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Figure 6: Testing Power for six alternative hypotheses in (11) using three GOF tests:

Anderson-Darling (solid line), Cramér von-Mises (dashed line) and Watson (dotted

line).
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