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Osteological Analysis of the Killifish Genus Cynolebias
(Cyprinodontiformes: Rivulidae)

MARCELO LOUREIRO* AND RAFAEL O. DE SÁ
Department of Biology, University of Richmond, Richmond, Virginia

ABSTRACT Relationships among the species of the annual fish Cynolebias
are unclear. An analysis of the variation and utility of osteological characters
for phylogenetic analysis was done using cleared and double-stained speci-
mens representing 21 species of Cynolebias. This analysis showed that some
of the characters previously used to diagnose this genus and some of the
species are polymorphic. Osteologically, Cynolebias can be diagnosed by the
following synapomorphies: (1) triangular-shaped parietal, (2) vomer posi-
tioned ventral to the parasphenoid, (3) long ventral process of the dentary, (4)
teeth on fourth ceratobranchial, and (5) teeth on first epibranchial. In addi-
tion, characters that help define some of the currently recognized species
complexes were identified. Species in the ‘‘antenori complex’’ share at least
five synapomorphies, such as ossified medial radials of dorsal and anal fins,
four pectoral radials, ventral process of the maxillae enlarged, mesopterygoid
long relative to the autopalatine, and proportion of cartilage in the basihyal.
The ‘‘bellottii complex’’ is characterized by having a reduce basihyal and a deep
urohyal, whereas species in the ‘‘elongatus complex’’possess a caudal fin supported
by four vertebrae and have unique modifications of jaw bones. The following
osteological features are useful as diagnostic characters at the specific level: (1) Two
vertebrae supporting the caudal fin (C. nigripinnis); (2) cartilaginous pelvic bones
(C. notatus); (3) short third postcleithrum and broad lateral process of the sphen-
otic (C. wolterstorffi); (4) thick third postcleithrum (C. gymnoventris); (5) crest on
the parietal and reduced in the upper portion of the lacrimal (C. whitei); (6)
anteriorly curved lacrimal (C. cheradophilus); (7) second dermosphenotic (C. bellot-
tii); and (8) expansion of the ventral tip of the maxillae and long basyhial
(C. constanciae). J. Morphol. 238:245–262, 1998. r 1998 Wiley-Liss, Inc.

KEY WORDS: Cynolebias; synapomorphies; species complexes

The genus Cynolebias belongs to the fam-
ily Rivulidae (Order Cyprinodontiformes)
and possesses a characteristic annual life
cycle. This life cycle is shared by most of the
species in the family Rivulidae and with
some species of the African family Aplochei-
lidae. This unique life cycle for vertebrates
includes drought-resistant eggs laid by the
adults in the substrate of the temporary
ponds they inhabit. Embryos develop and
survive dry periods between wet seasons by
undergoing diapause (Wourms, ’72). Subse-
quently, larvae will complete development
and hatch after the ponds are filled by heavy
rains. Juveniles can reach maturity as early
as 2 months after hatching.

The first phylogenetic and biogeographic
analysis of the order Cyprinodontiformes was

done by Parenti (’81), who provided uniquely
derived characters to define the family Rivu-
lidae. In addition, she provided two synapo-
morphies for Cynolebias: (1) caudal fin not
scaled, and (2) preopercular canal closed.
Furthermore, she included Cynopoecilus,
Leptolebias, Simpsonichthys, Campellole-
bias, and Terranatos in the synonymy of
Cynolebias. A more comprehensive study of
the family Rivulidae was done by Costa (’90),
who recognized Cynopoecilus, Leptolebias,
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Campellolebias, Terranatos, ’’Cynolebias’’ (5
Plesiolebias, Costa ’91), and Cynolebias as
monophyletic lineages and grouped them
into a monophyletic subfamily, Cynolebiati-
nae. In the analysis of Cynolebias, Costa
(’90) proposed five generic synapomorphies:
(1) males with more rays in the dorsal fin
than females; (2) juveniles with a dark spot
on each side in the middle of the body; (3) at
least 16 neuromast in the supraorbital se-
ries; (4) preanal length representing 55% of
the standard length; and (5) postero-lower
process of dentary elongated. A phylogenetic
analysis of the subfamily was done by Costa
(’95), in which he proposed three autapomor-
phies for Cynolebias: (1) male with more
dorsal fin rays than female; (2) female with
black blotch on center of body sides; and (3)
anal fin base of males enlarged. Species of
Cynolebias have been clustered in ‘‘species
groups’’ by Amato (’86) and in ‘‘species com-
plexes’’ by Costa and Brasil (’90, ’93) (Table

1), whereas interspecific relationships were
analyzed by Costa (’95).

Reports on the characteristics of isolated
bones for various species are available in the
literature; however, the complete osteology
has not been previously described for any
species of Cynolebias. The present study has
three goals: first, to provide a complete osteo-
logical description of Cynolebias luteoflamu-
latus that could serve as baseline for com-
parative purposes; second, to describe some
of the inter- and intraspecific osteological
variation present in Cynolebias; and third,
to analyze the utility of osteological charac-
ters for phylogenetic analyses of the genus
Cynolebias as was defined by Costa (1995).

MATERIALS AND METHODS

Specimens of Cynolebias used in this study
were in part collected in the field in Uruguay
and in part borrowed from Facultad de Cien-
cias, Montevideo, Uruguay, with the rest
obtained in the pet trade (see the Appendix).

For osteological analysis specimens were
cleared and double-stained for cartilage and
bone following Dingerkus and Uhler (’77).
Specimens were observed under a dissecting
microscope (Leica Wild M3C), and drawings
were made with a camera lucida attached to
the microscope. Bone and cartilage terminol-
ogy follows that of Parenti (’81) and Costa
(’90).

RESULTS
Osteological description

of Cynolebias luteoflamulatus
Vertebrae

The number of vertebrae varied between
27 and 32 (x 5 30, sd 5 1, m 5 30). The first
vertebra lacks neural prezygapophyses and
pleural ribs but has a laterally compressed
neural spine (Fig. 1A). The second vertebra
also has a laterally compressed neural spine.
The first pleural rib originates from the sec-
ond vertebra. Neural prezygapophyses are
present on the abdominal vertebrae. These
structures are larger on the most anterior
vertebrae, decreasing posteriorly. The neu-
ral prezygapophysis is one fourth the height
of the neural spine. The caudal vertebrae
have reduced prezygapophyses (Fig. 1C).

Caudal fin
The caudal fin is homocercal and rounded.

The skeleton of the caudal fin is almost
perfectly symmetrical due to the fusion of
the hypural plates into a single fan-shaped
structure flanked by a dorsal free epural and

TABLE 1. Species complexes of Cynolebias
(Costa and Brasil, ’90, ’93)

Plesiomorphic species Antenori complex
C. constanciae1

C. whitei 1

C. myersi 1

C. izecksoni

C. fulminantis
C. antenori
C. flavicaudatus1

C. flammeus1

C. magnificus
Species related

C. stellatus
C. alternatus
C. notatus1

C. bokermanni 1

C. boitonei 1

C. zonatus
C. chacoensis1

C. hellneri
C. santanae

Bellottii complex Elongatus complex
C. affinis1,2

C. alexandri 1,2

C. cyaenus1,2

C. gymnoventris1,2

C. luteoflamulatus1,2

C. nigripinnis1,2

C. adloffi 1,3

C. bellottii 1,3

C. viarius1,3

C. cinereus3

C. carvalhoi 3

Species related
C. melanoorus
C. vazferreirai
C. nonoiuliensis
C. costai
C. duraznensis1

C. elongatus
C. prognathus
C. cheradophilus1

C. wolterstorffi 1

C. holmbergi
Porosus complex

C. porosus
C. albipunctatus
C. griseus
C. leptocephalus
C. perforatus

Unknown relations
C. trilineatus

1Species used in this analysis.
2Species of luteoflamulatus group.
3Species of adloffi group (Amato, ’86). Species related according
to Wildekamp (’95).
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a ventral free parhypural. The last three
vertebrae, and their corresponding neural
and hemal spines articulate with the fin
rays participating in the support of the cau-
dal fin (Fig. 1L).

Dorsal and anal fin
The proximal radials of dorsal and anal

fins are ossified and elongated, except for

their ventral tips, which are cartilaginous
(Fig. 1E,I), whereas the medial radials are
short and cartilaginous. Each radial sup-
ports one ray, except the first and the last
ray of both fins that support two rays each.
The first and second proximal radials of anal
and dorsal fins are partially or completely
fused into a single element. The distal radi-
als of both fins are small cartilaginous ele-

Fig. 1. Lateral view of first and second vertebrae
(ribs have been removed) of (A) Cynolebias luteoflamula-
tus; (B) Cynolebias viarius. Lateral view of caudal verte-
brae of (C) Cynolebias luteoflamulatus; (D) Cynolebias
bokermanni. Lateral view of first and second radials of
dorsal fin of Cynolebias luteoflamulatus (E). Lateral
view of second radials of dorsal fin of (F) Cynolebias
constanciae; (G) Cynolebias flavicaudatus; (H) Cyno-
lebias bokermanni. Lateral view of first and second
radials of anal fin of (I) Cynolebias luteoflamulatus;

(J) Cynolebias notatus; (K) Cynolebias chacoensis. Lat-
eral view of caudal skeleton of Cynolebias luteoflamula-
tus (L). da, distal radial of anal fin; dd, distal radial of
dorsal fin; eh, epural; hp, hypural plate; hs, hemal
spines of vertebrae; ma, medial radial of anal fin; md,
medial radial of dorsal fin; ns, neural spine; pa, proximal
radial of anal fin; ph, parhypural; poz, neural postzygapo-
phisis; pz, neural prezygapophisis; 1pd, first proximal
radial of dorsal fin; 2pd, second proximal radial of dorsal
fin. Shaded area represents cartilage. Scale bars 5 1mm.
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ments found at the base of the fin rays. The
proximal radials and the rays of the anal fin
are thicker in females than in males and
therefore appear closer to each other in fe-
males. Females have reduced medial and
distal radials.

Pectoral fin and pectoral girdle (Fig. 2A)
The pectoral girdle articulates with the

skull through the supracleithrum and the
post-temporal bones. The post-temporal ar-
ticulates with the epiotic in the skull. The
post-temporal bone is thin, elongated, and
partially fused to a flattened supraclei-

thrum; these two bones are about equal in
length. The post-temporal has a ventral pro-
cess that points anteriorly. The first and
second postcleithral bones are absent. Be-
tween the girdle and the first pleural rib,
there is a thin, elongated, and free third
postcleithrum bone. The third postcleithrae
is slightly curved on its ventral end and is as
thick as the first pleural rib. The main body
of the girdle is formed by the cleithrum,
scapula, coracoid, and pectoral radials. The
cleithrum is curved and tall, extending from
the ventral region of the body to the origin of
the neural spine of the second vertebra. The

Fig. 2. Lateral view of pectoral girdle of Cynolebias
luteoflamulatus (A). Lateral view of posttemporal and
supracleithrum of (B) Cynolebias bellottii, (C) Cynole-
bias wolterstorffi. Anal fin ray of Cynolebias cheradophi-
lus (D). Pectoral fin ray of Cynolebias luteoflamulatus
(E). Ventral view of pelvic bones of Cynolebias luteofla-

mulatus (F). ap, autopterotic; ch, cleithrum; co, coracoid;
e, epiotic; es, scapula; fr, first pleural rib; pt, posttempo-
ral; r, pectoral radials; sl, supracleithrum; tpc, third
postcleithrum. Symbols: big arrow, posttemporal spine;
small arrow, ray protuberances. Shaded area represents
cartilage. Scale bar 5 1mm.
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ventral tip of the cleithrum extends below
the level of the ventral edge of the coracoid.
The cleithrum has anterior and posterior
flat expansions. The scapula is rounded and
has a notch on its anterior margin. The
coracoid is also rounded with a posterior
spine-like projection. There are three
rounded pectoral radials. However, in one
individual examined, there are four pectoral
radials. The pectoral rays of males have
small and ossified projections arising from
the internal side of the pectoral fin (Fig. 2E).
Those projections are on rays 1–5. The
scapula and radials articulate with the clei-
thrum and coracoid through a cartilaginous
plate. Right and left cleithra articulate with

each other ventrally. The main axis of the
post-temporal–supracleithrum complex forms
a 45° angle with the main axis of the dorsal
edge of the cleithrum.

Pelvic fin and pelvic girdle
The two halves of the pelvic girdle do not

overlap due to reduction of the medial pro-
cess (Fig. 2F). Each bone is posteriorly ex-
panded and lacks the ischial process. Rays
supporting the pelvic fins articulate directly
with each one of these bones.

Neurocranium
Dorsal view (Fig. 3A). The nasals are

paired broad bones, forming an approxi-

Fig. 3. Dorsal view of the neurocranium of Cynole-
bias luteoflamulatus (jaws have been removed) (A). Dor-
sal view of supraoccipital of (B) Cynolebias luteoflamula-
tus, (C) Cynolebias whitei, (D) Cynolebias bellottii.
Lateral view of the hyomandibular-skull articulation of
(E) Cynolebias luteoflamulatus, (F) Cynolebias whitei,
(G) Cynolebias wolterstorffi, (H) Cynolebias bellottii. ap,

autopterotic; dm, dermosphenotic; e, epiotic; ep, eth-
moid process; ex, exoccipitals; f, frontal; h, hymandibu-
lar; n, nasal; p, parietal; pk, parietal crest; pt, posttempo-
ral; s, supraoccipital; sd, ‘‘second dermosphenotic’’; sh,
sphenotic; shp, sphenotic process; sx, suboccipital. Sym-
bol: arrow, supraoccipital spine. Shaded area represents
cartilage. Scale bars 5 1mm.
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mately 45° angle with the horizontal plane.
Nasals and frontals do not contact each other
and are separated by cartilaginous ethmoid
processes. The upper tip of this process is
triangular in shape and is placed anterior
and lateral to the frontals. The frontals are
broad rectangular bones. They are trun-
cated anteriorly and extend from the nasal
to the otic region. Laterally, the frontals fold
inward into the orbital region and form ir-
regular-shaped lateral projections. The su-

praoccipital is a single triangular shaped
bone found posterior of the frontals. The
supraoccipital has an anterior triangular-
shaped projection that underlies the fron-
tals, and a dorsal posterior process. The
posterior process, the supraoccipital spine,
is formed by two parallel ‘‘wings’’ (Figs. 3A,B,
4A). They are connected to each other by a
transverse bony bridge.

The sphenotic (Figs. 3A,E, 4A) articulates
with the anterior arm of the hyomandibular.

Fig. 4. Lateral view of the skull Cynolebias luteofla-
mulatus (A). Lateral view of the lacrimal of (B) Cynole-
bias luteoflamulatus, (C) Cynolebias whitei, (D) Cynole-
bias constanciae, (E) Cynolebias cheradophilus. Ventral
view of vomer and parasphenoid of (F) Cynolebias luteo-
flamulatus, (G) Cynolebias cyaenus, (H) Cynolebias
wolterstorffii. Ventral view of the neurocranium of
Cynolebias luteoflamulatus (I). a, autopalatine; aa, angu-
loarticular; ap, autopterotic; av, anterior process of the
vomer; b, basihyal; c, ceratohyal; d, dentary; e, epiotic;
ep, ethmoid process; ex, exoccipital; f, frontal; h, hyoman-
dibular; io, interopercular; l, lacrimal; le, lateral eth-

moid; m, maxilla; ms, mesopterygoyd; mt, metaptery-
goyd, n, nasal; o, opercular; p, parietal; pc, prootic; ph,
parasphenoid; pm, premaxilla; po, preopercular; pt, post-
temporal; pv, posterior process of the vomer; q, quad-
rate; r, retroarticular; s, supraoccipital; sn, sphenotic;
snn, sphenotic process; so, subopercular; ss, supraoccipi-
tal spine; sx, suboccipital; sy, symplectic; v, vomer; vt,
vomer tooth. Symbols: big arrow, orbital artery foramen;
small arrow, trigeminofascialis recess; thick arrow, pro-
cessus ascendens of the parasphenoid. Shaded area rep-
resents cartilage. Scale bars 5 1mm.
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The lateral process of the sphenotic pro-
trudes from the skull, directed ventrally and
posteriorly. The parietal is variably present;
if present, it is triangular shaped (Figs. 3A,E,
4A) and partially covers the frontal, the
sphenotic, the autopterotic, and the epiotic.
Cynolebias luteoflamulatus lacked parietals
in two of the examined individuals, while
the parietals in one specimen were reduced.
The autopterotic articulates with the poste-
rior arm of the hyomandibular and with the
epiotic. The back of the skull comprises the
exoccipitals, which articulate with the first
vertebra through two occipital condyles, and
the basioccipital, which articulates with the
centrum of the first vertebra.

Ventral view (Fig. 4I). In the ventral view,
the skeletal elements on the midline axis
(from anterior to posterior) are: vomer, ros-
tral cartilage, paired lateral ethmoids, para-
sphenoid, and basioccipital. The vomer is
overall rhomboid shaped with posterior and
anterior processes. The anterior edge of the
vomer is thick (Fig. 4F,I). A single tooth is
located on the anterior process of the vomer
in four of the individuals examined (Fig. 4F).
The posterior process of the vomer lies ven-
tral of the anterior arm of the parasphenoid.
The lateral ethmoid expands anteriorly, ar-
ticulating with the vomer and with the ante-
rior arm of the parasphenoids. It also has an
expanded dorsal process that articulates
with the autopalatine anteriorly. The para-
sphenoid is long, extending from the nasal
region to the back of the skull, and has two
lateral projections on its medial region (pro-
cessus ascendens of the parasphenoid), which
are triangular shaped. Medially the para-
sphenoid is expanded laterally (Fig. 4F, I).

Otic region (Fig. 4I). Lateral to the me-
dial series are the following bones: prootic,
sphenotic, autopterotic, and exoccipital (all
paired bones). The prootic articulates later-
ally with the sphenotic (anteriorly) and the
autopterotic (posteriorly); posteriorly with
the basioccipital, and medially with the para-
sphenoid. Two pairs of fenestrae are found
in the prootic, the larger one carries the
orbital artery and the smaller one the tri-
geminofascialis recess.

Orbital rim
The dorsal bones of the orbital rim are

attached to the skull. The infraorbital bones
are represented by the lacrimal, a free bone
located anteriorly. The lacrimal overlaps the

medial portion of the maxilla laterally. The
lacrimal is a narrow and elongate bone, its
upper portion twisted in one direction and
ventrally on the opposite direction, the ven-
tral tip of this bone is rounded (Fig. 4A,B).
The dermosphenotic is absent.

Jaw structure
Three bones are considered dorsal ele-

ments: premaxillae (paired), maxillae
(paired), and rostral cartilage (single). The
premaxillae have an ascending process that
extends dorsally and posteriorly. This pro-
cess is flat and broad and covers the rostral
cartilage in its anterior portion (Fig. 5A).
The alveolar arm of the premaxilla is anteri-
orly expanded. The maxillae are thin and
perpendicular to the main body axis (Fig.
4A). Anteriorly, the maxillae have dorsal
and ventral processes (Fig. 5E). The ventral
process is concave posteriorly. It is located
below the ascending process of the premaxil-
lae and above the anterior portion of the
rostral cartilage. The rostral cartilage has a
discoidal shape (Fig. 5A). In large adults, it
may be elongate and constrained medially.
The rostral cartilage covers the anterior re-
gion of the vomer and it is free, allowing for
the protrusion of the upper jaw.

There are four ventral elements: dentary,
Meckel’s cartilage, anguloarticular, and ret-
roarticular (all paired). The dentary pos-
sesses an elongated ventral process and ar-
ticulates posteriorly with the anguloarticular
(Fig. 5I). The anguloarticular bone has two
anterior processes: a medial (large) and a
ventral (small). The retroarticular is small,
located below and posteriorly to the angulo-
articular. Anguloarticular and retroarticu-
lar articulate with the quadrate. Meckel’s
cartilage runs between the dentary and the
anguloarticular along the length of the man-
dible.

Jaw suspensorium (Fig. 5L)
The jaw suspensorium consists of the auto-

palatine, mesopterygoid, quadrate, symplec-
tic, metapterygoid, and hyomandibular. The
autopalatine is elongate and covers part of
the mesopterygoid; the latter is slender and
curved. The autopalatine and mesoptery-
goid articulate with the quadrate ventrally.
The mesopterygoid is about the same size of
the autopalatine (Figs. 4A, 5L). The quad-
rate is triangular shaped and has a small
anterior process that articulates with the
anguloarticular and the retroarticular. The
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Figure 5
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quadrate possesses a thick, elongate, poste-
rior process that articulates with the sym-
plectic, which is partially overlapped by the
quadrate. The length of the posterior pro-
cess of the quadrate is equal to the bone
itself without the process. Metapterygoid and
mesopterygoid are separated by cartilage.
The metapterygoid bone is elongated and
slightly curved and contacts the symplectic
ventrally. The symplectic is long, partially
covers the metapterygoid, and has a poste-
rior cartilaginous articulation to the hyoman-
dibular. The hyomandibular is a Y-shaped
bone; the upper arms articulate with the
sphenotic anteriorly and with the autopter-
otic posteriorly. The ventral arm of the hyo-
mandibular articulates with the symplectic
anteriorly and with the interhyal posteri-
orly.

Opercular series (Fig. 4A)
The opercular is triangular shaped and

articulates with the hyomandibular anteri-
orly. In the place of articulation the opercu-
lar has a small spine. The upper portion
articulates with the hyomandibular and the
opercular bones. The horizontal segment is
laterally compressed and partially covers
the interopercular. The interopercular is
rounded and has a thick dorsal margin
(Fig. 5L).

Gill arches
Ventral components (Fig. 6A). The inter-

hyal is cartilaginous. The basihyal is trap-
ezoidal or triangular shaped. Laterally, the
basihyal articulates with the ventral and

dorsal hypohyals. Ventrally, it articulates
with the urohyal. Posteriorly, it articulates
with the first basibranchial. The ratio basi-
hyal length/ventral hypohyal length is three
to one (Fig. 6B). The thickness of the basi-
hyal is about 50% of its length. The basihyal
consists of two parts, a posterior ossified
component and a cartilaginous anterior one.
The proportion of cartilage and bone is ap-
proximately one to two.

There are three ossified basibranchials.
The hypobranchials are square shaped.
There are five ceratobranchials, all bearing
teeth. The first, second, and third have two
rows of teeth, the fourth has one row, and
the fifth is fully covered with teeth. The first
ceratobranchial articulates with the first epi-
branchial and the interarcual cartilage dor-
sally. The second, third, and fourth cerato-
branchials articulate with the second, third,
and fourth epibranchials, respectively. The
fourth ceratobranchial articulates with a tri-
angular-shaped cartilage ventrally. The lat-
ter is located posteriorly to the third basi-
branchial. The fifth ceratobranchial is
triangular shaped, has a ventral process,
and does not articulate with any epibran-
chial. The urohyal bone is laterally com-
pressed, is found ventral to the basihyal,
and has an anterior and dorsally directed
process. The height of the urohyal is 25% of
its length (Fig. 6H). Ventral and dorsal hypo-
hyals articulate with a long ceratohyal. The
ceratohyal is divided in two (Fig. 6N). The
anterior half is slender and has a posterior,
expanded, and deep process, while the poste-
rior half is deep in all its length. The ante-
rior half supports two branchiostegal rays in
50% of the specimens examined, whereas in
the other 50% it supports three branchioste-
gal rays. The deep process of the anterior
half supports two rays. The posterior half of
the ceratohyal supports one branchiostegal
ray, and articulates posterodorsally with a
cartilaginous interhyal. The processes of the
anterior half and the posterior half of the
ceratohyal are embedded in a cartilaginous
plate. This plate supports another branchio-
stegal ray between the two portions.

Dorsal components (Fig. 6O). The first
epibranchial is the only element of this se-
ries that possesses teeth. There are two teeth
on this element. The interarcual cartilage
and the second epibranchial articulate medi-
ally with pharyngobranchial 2. The third
epibranchial articulates with pharyngobran-
chial 3 and the fourth epibranchial articu-

Fig. 5. Dorsal view of the premaxillae and rostral
cartilage of (A) Cynolebias luteoflamulatus, (B) Cynole-
bias myersi, (C) Cynolebias chacoensis, (D) Cynolebias
wolterstorffi. Dorsal view of maxillae of (E) Cynolebias
luteoflamulatus; (F) Cynolebias myersi; (G) Cynolebias
cheradophilus; (H) Cynolebias chacoensis. Lateral view
of lower jaw of (I) Cynolebias luteoflamulatus, (J) Cynole-
bias constanciae, (K) Cynolebias cheradophilus. Lateral
view of jaw suspensorium of Cynolebias luteoflamulatus
(L). Lateral view of interopercular of Cynolebias boker-
manni (M). Lateral view of anterior jaw suspensorium of
Cynolebias wolterstorffi (N). a, autopalatine; aa, alveolar
arm of the premaxilla; aae, expansion of the alveolar
arm; am, ascending process of the premaxillae; ao, angu-
loarticular; d, dentary; da, dorsal process of the angulo-
articular; dm, dorsal process of the maxilla; h, hyoman-
dibular; io, interopercular; ma, medial process of the
anguloarticular; ms, mesopterygoid; mt, metaptery-
goyd; q, quadrate; rc, rostral cartilage; sy, symplectic;
va, ventral process of the anguloarticular; vd, ventral
process of the dentary; vm, ventral process of the max-
illa. Shaded area represents cartilage. Scale bar 5 1 mm.
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lates with pharyngobranchial 4. Third and
fourth epibranchials also articulate with
each other medially. The fourth epibranchial
is the thickest. The pharyngobranchials ar-
ticulate with each other and are covered

with teeth ventrally. The first pharyngobran-
chial is absent. The third pharyngobran-
chial is the largest and lies dorsal to the
second and the fourth pharyngobranchials,
covering them partially.

Fig. 6. Dorsal view of ventral gill arch of Cynolebias
luteoflamulatus (A). Ventral view of basihyal of (B)
Cynolebias luteoflamulatus, (C) Cynolebias constanciae,
(D) Cynolebias wolterstorffi, (E) Cynolebias cheradophi-
lus, (F) Cynolebias whitei, (G) Cynolebias affinis. Lat-
eral view of urohyal of (H) Cynolebias luteoflamulatus,
(I) Cynolebias constanciae, (J) Cynolebias whitei, (K)
Cynolebias nigripinnis, (L) Cynolebias cheradophilus,
(M) Cynolebias bokermanni. Lateral view of ceratohyal
of Cynolebias luteoflamulatus (N). Dorsal view of dorsal
gill arch of Cynolebias luteoflamulatus (O). ac, anterior

ceratohyal; b, basihyal; bb, ossified basihyal; bc, basi-
branchials; br, branchiostegal rays; c, ceratobranchials
1, 2, 3, 4, 5; cb, cartilaginous basihyal; dhh, dorsal
hypohyal; eb, epibranchials 1, 2, 3, 4; et, epibranchial
teeth; h, hypobranchials; ic, interarcual cartilage; ii,
interhyal; pc, posterior ceratohyal; ph, pharyngobranchi-
als 2, 3, 4; vhh, ventral hypohyals. Symbols: big arrow,
interhyal; small arrow, indentation of urohyal; thick
arrow, anterior process of urohyal. Shaded area repre-
sents cartilage. Scale bars 5 1mm.
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Teeth
Teeth are present on the premaxillae and

the dentaries. The premaxillae has four rows
of conical teeth. These teeth are all equal in
size, except those on the first row, which has
four larger, medial teeth. The dentaries also
have four rows of conical teeth, all equal in
size, except for four teeth that are located at
the front and are three times the size of
others. The gill arches teeth are also conical.
The teeth of the ceratobranchials are larger
on the first ceratobranchial, gradually de-
creasing posteriorly to the fourth ceratobran-
chial. Then, on the fifth ceratobranchial, the
teeth increase in size again. The vomer tooth,
when present, it is oriented anteriorly
(Fig. 4B).

Osteological comparisons among species
of Cynolebias

Vertebrae
Neural prezygapophyses are present in

the abdominal vertebrae in most species ex-
amined; however, they are absent in Cynole-
bias cheradophilus, C. myersi, and C. wolter-
storffi. Abdominal vertebrae of C. bellottii,
C. boitonei, and C. viarius have well-devel-
oped neural prezygapophyses that are one-
half the height of the neural spines (Fig. 1B).
In other species, the neural prezygapophysis
are only one-fourth the height of the neural
spines (e.g., C. luteoflamulatus, Fig. 1A).
Neural prezygapophyses of the caudal verte-
brae are absent in C. bokermanni, C. cher-
adophilus, C. constanciae, C. myersi, and
C. wolterstorffi (Fig. 1D). Other species pre-
sent reduced neural prezygapophyses in the
caudal vertebrae.

Caudal fin
Most species have a caudal fin similar to

that described for Cynolebias luteoflamula-
tus. In C. myersi and C. nigripinnis, the
caudal fin is supported only by the two last
vertebrae, whereas in C. cheradophilus and
C. wolterstorffi, the support is given by the
last four vertebrae.

Dorsal fin
The proximal radials have lateral flat

flanges in Cynolebias constanciae (Fig. 1F).
The medial radials are short and variably
ossified. In C. chacoensis and C. constanciae,
they are completely ossified, whereas in
C. flavicaudatus, C. notatus, and C. whitei,
only the central region of the medial radials
is ossified (Fig. 1G). In C. bokermanni and

C. myersi, the medial radials remain carti-
laginous only in their ventral tip (Fig. 5H).
In other species examined the medial radi-
als are similar to those of C. luteoflamula-
tus.

Anal fin
The medial radials are completely carti-

laginous in most species, except in Cynole-
bias bokermanni, C. constanciae, and C. no-
tatus, in which a center of ossification is
found at the center of the bone (Fig. 1J), and
in C. chacoensis where the medial radials
are completely ossified (Fig. 1K). Fin rays of
males of C. cheradophilus have small, spine-
like, ossified projections (Fig. 2D).

The posterior rays of anal and dorsal fins
of males of Cynolebias boitonei, C. boker-
manni, C. constanciae, C. chacoensis, C. fla-
vicaudatus, and C. whitei are elongated, with
their distal fourth cartilaginous. Cynolebias
chacoensis has a single, elongated, anal ray
that extends beyond the posterior margin of
the caudal fin.

Pectoral fin and pectoral girdle
Post-temporal and supracleithrum bones

are of the same length in all species except
in Cynolebias boitonei, in which the post-
temporal is shorter. In C. bellottii, C. boker-
manni, C. duraznensis, C. flavicaudatus,
C. viarius, and Cynolebias sp., the post-
temporal ventral process is long and reaches
the back of the skull (Fig. 2B), whereas in
C. boitonei, C. myersi, C. whitei, and
C. wolterstorffi, this process is absent (Fig.
2C). In other species, the process is similar
to C. luteoflamulatus. Cynolebias wolter-
storffi has the shortest third postcleithrum,
less than one-half the height of the clei-
thrum. In other species, the third postclei-
thrum is about 75% of the cleithrum height.
In C. gymnoventris, he postcleithrum is
thicker than the rib, whereas in the rest of
the species postcleithrum and rib have the
same thickness. The dorsal tip of the postclei-
thrum of C. bellottii can be fused to the first
pleural rib (fused in 15 of the examined
specimens). The number of pectoral radials
is variable. Cynolebias boitonei, C. boker-
manni, C. chacoensis, C. constanciae, C. fla-
vicaudatus, C. myersi, C. notatus, and C.
whitei have four rounded, pectoral radials
whereas C. cheradophilus, C. gymnoventris,
C. wolterstorffi, and Cynolebias sp. have
three, rounded, pectoral radials. The latter
species have lost the upper radial. In the
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other species, the number of radials varied
between three and four among individuals.
The percentage of individuals examined
having four radials was: C. alexandri 5 10%,
C. affinis 5 20%, C. bellottii and C. nig-
ripinnis 5 45%, C. cyaenus and C. duraz-
nensis 5 25%. In these species with a vari-
able number of radials, the radials are
rounded as in the species with three pecto-
rals. Like C. luteoflamulatus, the pectoral
rays of males of C. boitonei, C. cheradophi-
lus, and C. whitei have small, ossified projec-
tions on the internal side of the pectoral fin.
Similar structures were found on the anal
fin of C. cheradophilus. The arrangement of
these projections is species specific. In
C. boitonei, they are present on rays 1, 2,
and 3 (counting dorsal to ventral), in
C. whitei on rays 1–6, and in C. cheradophi-
lus on rays 1 through 11. Species with four
pectoral radials have a more curved clei-
thrum, with a well-developed posterior pro-
jection that covers the dorsal half of the
scapula. In these species, the scapula is least
rounded.

Pelvic fin and pelvic girdle
Most species of Cynolebias have ossified

pelvic bones, but the posterior three-fourths
of the bone are cartilaginous in C. wolter-
storffi, and in C. notatus the bones are com-
pletely cartilaginous. Cynolebias boitonei is
unique among Cynolebias species because it
lacks pelvic girdle and pelvic fins.

Neurocranium
Dorsal view. The ‘‘wings’’ of the supraoc-

cipital spine can be completely separated
from each other or they can be dorsally free
but joined at their origin. They are free in
Cynolebias myersi and C. whitei (Fig. 3C).
They are joined at the origin in C. boitonei,
C. bellottii, C. cheradophilus, C. viarius, and
C. wolterstorffi (Fig. 3D). Other species ex-
hibit a condition similar to that of C. luteofla-
mulatus.

The lateral process of the sphenotic is
similar to the condition in Cynolebias luteo-
flamulatus in most species examined; how-
ever, in C. bellottii, C. cheradophilus, and
C. viarius, the process points ventrally and
anteriorly, and in C. wolterstorffi the process
has a broad edge (Fig. 3G). The parietal of
C. affinis is fused to the autopterotic, whereas
in C. bokermanni it fuses with the epiotic.
Cynolebias whitei has a parietal crest that
runs from the anterior to the ventral apices
of this bone (Fig. 3F). The parietal presents

two states in C. viarius; it is reduced in five
of the individuals and not reduced in the
rest. Cynolebias wolterstorffi has a reduced
and circular-shaped parietal in the only
specimen examined (Fig. 3G). In other spe-
cies the parietal is similar to that of
C. luteoflamulatus. Parietals are absent in
C. cheradophilus and C. constanciae. The
bones of the posterior and dorsal region of
the skull are mostly separated from each
other in Cynolebias; however, in C. boitonei,
C. bokermanni, C. chacoensis, C. flavicauda-
tus, and C. notatus, these bones contact with
each other.

Ventral view. The posterior process of the
vomer is thin and long in Cynolebias chacoen-
sis, C. cyaenus, and C. gymnoventris. In these
species, the length of the posterior process is
three times the width of the bone (Fig. 4G).
If present, the anterior process is rounded,
but it is absent in C. boitonei and C. flavicau-
datus. A single tooth may be present on the
anterior process of the vomer. The tooth was
observed in C. nigripinnis (4.4%) and
C. sp.(6.7%). One specimen of C. viarius
(2.6%) has two teeth on the vomer. In
C. wolterstorffi, the processus ascendens of
the parasphenoid is long and thin (Fig. 4H),
while in other species examined it is similar
to that of C. luteoflamulatus. In C. luteofla-
mulatus, C. cheradophilus, C. bellottii, and
C. viarius, the parasphenoid expands later-
ally in its medial region; in other species,
this bone is slender (Fig. 4G, H).

Orbital rim
In most species, the lacrimal has the same

characteristics described for Cynolebias lu-
teoflamulatus. However, in C. whitei, the
upper portion of the lacrimal is reduced (Fig.
4C), in C. bokermanni and C. constanciae,
the ventral portion curves posteriorly (Fig.
4D), while in C. cheradophilus, it is curved
anteriorly (Fig. 4E). The dermosphenotic,
when present, is a small, rounded, free bone
next to the sphenotic (Fig. 3F). Species with
a dermosphenotic are C. whitei, C. constan-
ciae, C. bokermanni, C. myersi, C. chacoen-
sis, and C. bellottii. Cynolebias bellottii has a
second ossification similar and dorsal to the
dermosphenotic (Fig. 3H).

Jaw structure
The rostral cartilage is discoidal in all

species examined in this study. The ascend-
ing processes of left and right premaxillae
are fused into a single structure in Cynole-
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bias myersi (Fig. 5B). In C. chacoensis, the
premaxillae overlap medially but do not fuse
(Fig. 5C). Most species have the alveolar
arm of the premaxilla anteriorly expanded
(Fig. 5A,B,C). This anterior expansion is re-
duced in C. cheradophilus and C. wolter-
storffi (Fig. 5D). Cynolebias boitonei, C. boker-
manni, C. chacoensis, C. constanciae,
C. flavicaudatus, C. myersi C. notatus, and
C. whitei have the ventral process of the
maxilla enlarged anteriorly (Fig. 5F),
whereas in C. cheradophilus and C. wolter-
storffi it is thin and straight (Fig. 5G). The
dorsal process of the maxilla is oriented dor-
sally, but it is reduced to a rounde protuber-
ance in C. chacoensis (Fig. 5H). The ventral
tip of the maxilla is expanded in C. constan-
ciae.

The ventral process of the dentary is re-
duced in Cynolebias constanciae (Fig. 5J).
Cynolebias cheradophilus and C. wolter-
storffi also have a dorsal process on the angu-
loarticular bone (Fig. 5K) that it is not found
in any other species.

Jaw suspensorium
The mesopterygoid is longer than the auto-

palatine in Cynolebias boitonei, C. boker-
manni, C. chacoensis, C. constanciae, C. fla-
vicaudatus, C. notatus, and C. whitei. In
C. cheradophilus and C. wolterstorffi, the
mesopterygoid is reduced (Fig. 5N), whereas
in other species, the two bones are about the
same size as described for C. luteoflamula-
tus (Fig. 5L).

Opercular series
The opercular bones of all species are as

those described for Cynolebias luteoflamula-
tus. Cynolebias bokermanni is unique in hav-
ing the thicker segment of the interopercu-
lar extending beyond the anterior end of the
bone like an anterior spine (Fig. 5M).

Gill arches
Ventral components. The basihyal is of

variable length. In Cynolebias constanciae it
is long, representing about five times the
length of the ventral hypohyal (Fig. 6C). In
C. wolterstorffi the relation is four to one
(Fig. 6D), and in most other species, the
relation is three to one (Fig. 6B). Cynolebias
cheradophilus has a reduced basihyal. Its
length is about the same as that of the
hypohyal (Fig. 6E). The basihyal is of vari-
able thickness. It is thickest in C. cherado-
philus, being twice its length. It is about

25% of the length in C. constanciae, 75% of
the length in C. boitonei, C. bokermanni,
C. chacoensis, C. myersi, C. notatus, and in
C. whitei (Fig. 6F), and the thickness is
about the same as the length in other spe-
cies. The proportion of cartilage and bone
also varies among the species. In C. boitonei,
C. bokermanni, C. chacoensis, C. constan-
ciae, C. flavicaudatus, C. myersi, C. notatus,
and C. whitei, the cartilaginous component
represents 25% of the total length (Fig. 6C,F).
In C. nigripinnis and Cynolebias sp., 33% is
cartilaginous, as it occurs in C. luteoflamula-
tus (Fig. 6B). In C. affinis, C. alexandri,
C. bellottii, C. cyaenus, C. duraznensis, and
C. gymnoventris, 50% is cartilaginous (Fig.
6G), and in C. viarius, and C. wolterstorffi
the cartilaginous component reaches 65% of
the total length. Cynolebias wolterstorffi also
has the cartilaginous segment widened ante-
riorly (Fig. 6D).

The height of the urohyal represents 20%
of its length in Cynolebias chacoensis,
C. constanciae, C. flavicaudatus, C. myersi,
C. whitei, and C. wolterstorffi (Fig. 6I). It is
25% in other species (Fig. 6H). In C. whitei,
the posterior part of the bone splits in two
(Fig. 6L). The urohyal of C. affinis, C. alexan-
dri, C. boitonei, C. bokermanni, C. duraznen-
sis, C. nigripinnis, and C. notatus has an
indentation next to the anterior process (Fig.
6I). Cynolebias cheradophilus lacks the ante-
rior process (Fig. 6K), while in C. boker-
manni this process points anteriorly (Fig.
6M). The anterior half of the ceratohyal sup-
ports two branchiostegal rays in all species,
except in C. notatus and C. wolterstorffi,
where it supports three branchiostegal rays.
In C. bokermanni, it supports only one ray.

Dorsal components. The first epibran-
chial is the only element of this series that
possesses teeth. The number of teeth is vari-
able among species, Cynolebias chacoensis
and C. flavicaudatus have four teeth. Cynole-
bias boitonei, C. bokermanni, C. viarius, and
C. whitei have three teeth. Cynolebias gym-
noventris, C. luteoflamulatus, C. myersi, and
C. wolterstorffi have two teeth. In the other
species, the number of epibranchial teeth is
intraspecifically variable from two to three
(C. affinis, C. alexandri, C. constanciae,
C. cyaenus, C. duraznensis, C. nigripinnis,
and C. notatus), three to four (C. bellottii
and C. cheradophilus), and two to four
(Cynolebias sp.).
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Teeth
The characteristics of the teeth of all spe-

cies examined are similar to those described
for Cynolebias luteoflamulatus. In C. myersi,
where the ascending processes of the pre-
maxillae are fused, there are only three
larger teeth, one of them located medially
(Fig. 5B).

DISCUSSION

Overall, the osteological characteristics re-
ported here for Cynolebias agree with the
few and isolated observations previously re-
ported for the genus (Vaz-Ferreira and Si-
erra, ’73; Parenti, ’81; Costa ’90, ’94). How-
ever, there are noteworthy deviations from
the general pattern and characteristics found
here that have not been previously reported.

The absence of neural prezygapophysis on
the first vertebra has been suggested as a
derived condition for the family Rivulidae
(Costa, ’90), whereas the presence of pleural
rib on the second vertebrae was considered a
unique characteristic uniting all Cyprino-
dontiformes (Parenti, ’81). In the species
studied here, these characters agree with
previous reports. The lack of neural prezyg-
apophyses on the caudal vertebrae has been
considered as a synapomorphy for Cynolebia-
tini (Costa, ’90, ’94). However, these struc-
tures although reduced, were present in
twelve of the twenty species studied here.
Thus, the presence of neural prezygapophy-
ses on the caudal vertebrae in Cynolebias
may be a plesiomorphic state for the genus.
Otherwise the reduction, instead of the ab-
sence of neural prezygapophyses, could be
considered a derived state for Cynolebias.

The caudal fin of Cynolebias cheradophi-
lus and C. wolterstorffi is supported by four
vertebrae. This character could be diagnos-
tic for the ‘‘elongatus complex,’’ as it was not
found in any other species examined. Cynole-
bias nigripinnis has two vertebrae support-
ing the caudal fin, differentiating it from the
similar C. affinis, which has three vertebrae
supporting the caudal fin. These two species
were differentiated by Amato (’86) using ex-
ternal morphology.

The ossified medial radials of dorsal and
anal fins have not been previously reported
for Rivulidae, and represent a derived condi-
tion among Cynolebias. This condition was
found in species of the ‘‘antenori complex’’
and in C. constanciae, C. myersi, and
C. whitei, species previously suggested to be

related to the ‘‘antenori complex’’ (Costa and
Brasil, ’93). Furthermore, it distinguishes
the ‘‘antenori complex’’ species from other
groups. Cartilaginous radials in C. boitonei,
a species related to the ‘‘antenori complex,’’
could be interpreted as an autapomorphy
(secondary loss/reversal). The ossified me-
dial radials of C. bokermanni and C. notatus
could be interpreted either as relating them
to the ‘‘antenori complex’’ or as a conver-
gence among the species. The small bony
projections on the rays of the anal fin of
males of C. cheradophilus are a characteris-
tic that needs to be examined further in
other species of the ‘‘elongatus complex.’’
Similar structures are also in the pectoral
fin of this species and could have a sensory
function in courtship (see below).

The loss of pelvic fins in Cynolebias boito-
nei was used by Costa and Brasil (’90) to
relate this species to C. zonatus, which has
reduced pelvic fins. Cartilaginous pelvic
bones were found only in C. notatus, a char-
acter diagnostic of the species.

The short third postcleithrum of Cynole-
bias wolterstorffi and the thick third postclei-
thrum of C. gymnoventris are diagnostic
characteristics for those species respectively.
The absence/reduction of the upper pectoral
radial has been suggested as a synapomor-
phy for the ‘‘bellottii complex’’ (Costa and
Brasil, ’93). However, five species of this
complex—C. affinis, C. alexandri, C. bellot-
tii, C. luteoflamulatus, and C. nigripinnis—
show unreduced upper radials. Small struc-
tures on the pectoral fin-rays of males have
been described as tactile organs in Cynole-
bias whitei (Carvalho, ’57) and in other gen-
era of killifishes (Foster, ’67). These struc-
tures include nerve endings and could
function during reproductive behavior (Fos-
ter, ’67). The presence of these structures in
C. whitei has been defined by Costa (’95) as
autopomorphic; however, these structures
were also found in C. boitonei, C. cheradophi-
lus, and C. luteoflamulatus. The four species
were placed in different clades by Costa,
(’95), so its acquisition is considered indepen-
dent.

The supraoccipital spines are highly vari-
able, having the same configuration in differ-
ent species groups. However, the state where
both wings of the spine are free is shared
only by Cynolebias whitei and C. myersi.
This character could suggest a close relation-
ship between these two species. Among stud-
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ied species, C. wolterstorffi is diagnosed by a
broad lateral process of the sphenotic and a
unique shape of the processus ascendens of
the parasphenoid. The parietal bone is not
always present among Cyprinodontiformes.
When present, its long axis extends obliquely
and forward from the supraoccipital (Rosen,
’64). Costa (’94) illustrated the parietal reach-
ing and partially covering the supraoccipi-
tal, and extending between the supraoccipi-
tal and the epiotic in the tribe Plesiolebiatini
(sister group of Cynolebiatini). In Cynole-
bias, the parietal is overall triangular shaped
and does not resemble the parietal of other
Cyprinodontiformes.Atriangular shaped pa-
rietal is a synapomorphy of Cynolebias. The
parietal fusion with the autopterotics in
C. affinis and with the epiotics in C. boker-
manni is independently derived in those spe-
cies. A crest on the parietal in C. whitei is an
autapomorphy for the species. Reduction of
the parietal is seen in less than 6% among
the specimens of only two species within the
‘‘bellottii complex,’’ C. luteoflamulatus and
C. viarius . If Amato’s (’86) placement of
these species in different subgroups of the
‘‘bellottii complex’’ is correct, the parietal
reduction is independent in both species.
Cynolebias wolterstorffi also possesses re-
duced parietals. All species with a compact
skull, i.e., no spaces between bones, belong
to the ‘‘antenori complex’’ or are related to it.

The absence of teeth on the vomer is a
synapomorphy for the tribe Cynolebiatini
(Costa, ’94). The presence of a tooth found on
this bone in Cynolebias luteoflamulatus,
C. nigripinnis, and C. viarius is derived
within the genus. In the suborder Aplochei-
loidei, the vomer is dorsal to the anterior
arm of the parasphenoid (Parenti, ’81); how-
ever, in Cynolebias the vomer is ventral to
the parasphenoid. Thus, this condition is a
synapomorphy for Cynolebias.

The shape and torsion of the lacrimal are
a synapomorphy for Aplocheiloidei (Parenti,
’81). A lacrimal with reduced torsion and
with a wide upper portion is a synapomor-
phy of the tribe Cynolebiatini (Costa, 90,’94).
However, the lacrimal of the species exam-
ined herein showed no reduction in torsion,
resembling the typical lacrimal of Rivulinae
(Costa, ’90). The lacrimal shows characteris-
tics that can help to diagnose some species.
For example, the reduction in the upper
portion of the lacrimal is diagnostic of Cynole-
bias whitei and an anteriorly curved lacri-
mal diagnoses C. cheradophilus. The lacri-

mals of C. bokermanni and C. constanciae
are curved posteriorly and this condition
could reflect a close relation between these
two species. Costa (’90) reported the lack of a
dermosphenotic in all Cynolebias except
some large species. A dermosphenotic was
not found in the large species examined
herein, C. cheradophilus and C. wolter-
storffi, but it was present in several of the
‘‘small’’ species, C. bokermanni, C. chacoen-
sis, C. constanciae, C. myersi, and C. whitei.
All species with a dermosphenotic are in the
‘‘antenori complex’’ or are related to this
complex. The ‘‘small’’ C. bellottii, not only
has a dermosphenotic but also another ossi-
fication in the same region. This second ossi-
fication has not been reported previously for
Rivulidae. The homology of this bone is un-
clear. It could represent (1) a new ossifica-
tion of a ‘‘second dermosphenotic,’’ (2) an-
other bone of the orbital rim, or (3) the
division of the original dermosphenotic into
two separate centers of ossification. The
analysis of a developmental series in this
species may help to understand the homol-
ogy of this ossification.

Three jaw characteristics not previously
reported were found in Cynolebias cherado-
philus and C. wolterstorffi: (1) the reduction
of the expanded process of the alveolar arm
of the premaxillae, (2) a thin and straight
ventral process of the maxillae, and (3) a
dorsal process of the anguloarticular. These
three characteristics could be derived condi-
tions within the ‘‘elongatus complex.’’ The
modifications of jaw structure in C. cherado-
philus and C. wolterstorffi could reflect differ-
ences in feeding behavior with other Cynole-
bias species or could be the consequence of
allometric growth since these species are
among the largest in the genus.

An enlarged ventral process of the maxil-
lae is shared by all species of the ‘‘antenori
complex’’ and the plesiomorphic species. A
long ventral dentary process is a synapomor-
phy for Cynolebias (Costa, ’90). The reduc-
tion of this process and the expansion of the
ventral tip of the maxillae found in C. con-
stanciae are autopomorphies diagnostic of
the species. As suggested for the ‘‘elongatus
complex’’ species, these characters could re-
flect a change in the feeding habits of
C. constanciae in relation to other Cynole-
bias.

A small mesopterygoid, relative to the au-
topalatine, has been considered as a synapo-
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morphy for Cynolebiatini (Costa, ’90). How-
ever, the mesopterygoid is longer than the
autopalatine in the ‘‘antenori complex’’ and
related species. The only species examined
with a reduced mesopterygoid are Cynole-
bias cheradophilus and C. wolterstorffi.
Species of the ‘‘bellottii complex’’ have a me-
sopterygoid about equal in size to the auto-
palatine, this state being the most common
among cyprinodontiforms (Costa, ’90).

Cynolebias myersi has the ascending pro-
cesses of the parasphenoids fused into a
single structure. The existence of possible
variation in this character could not be tested
because only one specimen was available.

A long basihyal is diagnostic of Cynolebias
constanciae. This character is also consid-
ered a synapomorphy of the tribe Plesiolebia-
tini (Costa, ’94). Reduction of the bony part
of the basihyal and a deep uruhyal were
considered synapomorphies for the ‘‘bellottii
complex’’ (Costa and Brasil, ’93). This analy-
sis agrees with that interpretation. The lack
of teeth on the fourth ceratobranchial was
considered a synapomorphy for Cynolebia-
tini (Costa, ’90). A row of teeth in the species
studied here suggests that the presence of
teeth could be a derived character within the
tribe and a synapomorphy for Cynolebias.
However, the presence of teeth on this bone
is common in other genera of the family, so
their presence could also be interpreted as
primitive and the absence in other Cynole-
biatini as the derived condition. The pres-
ence of teeth on the first epibranchial has
not been previously reported for Cyprinodon-
tiformes. This character can be considered a
synapomorphy for Cynolebias.

Costa’s phylogeny of the genus Cynolebias
shows a common ancestry of the ‘‘bellottii
complex,’’ the ‘‘antenori complex,’’ C. boito-
nei, C. zonatus, and C. constanciae based on
one character, i.e., the elongation of the up-
per portion of the cleithrum. This study found
at least five characters, e.g., ossification of
dorsal fin medial radials, four pectoral radi-
als, ventral process of the maxillae enlarged,
mesopterygoyd bigger than autopalatine,
and proportion of cartilage in the basihyal,
that relate the ‘‘antenori complex,’’C. boitone,
and C. constanciae to the clade comprised of
C. bokermanni, C. myersi and C. whitei and
separates all of them from the ‘‘bellottii com-
plex.’’

The present study found that several osteo-
logical characters, including some of the

characters previously use as diagnostic, ei-
ther for the genus or the species, are polymor-
phic, e.g., shape of the parietal bone, num-
ber of pectoral radials, epibranchial teeth,
and vomerine teeth. Polymorphisms have
not been taken into account in most phyloge-
netic studies and their proper use could
change some of the relations among taxa
(Wiens, ’95; Rannala, ’95). Previous studies
in Rivulidae have been based on very few
specimens per species and consequently poly-
morphisms have been overlooked. Further-
more, Parenti and Tigano (’93), reported poly-
morphism in the rostral cartilage in an Old
World cyprinodontiform. Polymorphic char-
acters seem not to be infrequent in this
order and should be taken into consider-
ation in any phylogenetic reconstruction.
Herein we have shown that the osteological
characters can be used to diagnose species
as well as address phylogenetic relation-
ships among species of Cynolebias.
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de uma nova espécie da bacia do Rio Tocantis. Comun.
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APPENDIX

List of species used in this study. Part of
the material examined in this study will be
deposited in the U.S. National Museum
(Smithsonian Institution). The remainder be-
long to Facultad de Ciencias, Depto. Zoolo-
gia de Vertebrados, Montevideo (ZVC.P). The
material is listed below; number of speci-
mens and their localities are specified.

Cynolebias affinis Amato—Pet trade, 25
specimens examined, 13 cleared and stained.

Cynolebias alexandri Castello and Lopez—
Uruguay: Salto: Parque Indı́gena, 30 speci-
mens examined, all cleared and stained.

Cynolebias bellottii Steindachner—Uru-
guay: Salto: Bañado Verocay, 37 specimens
examined, all cleared and stained. ZVC.P
876; Uruguay: Colonia: Carmelo, 61 speci-
mens examined, 19 cleared and stained.

Cynolebias boitonei Carvalho—Pet trade,
1 specimen examined, cleared and stained.

Cynolebias bokermanni Carvalho and
Cruz—Pet trade, 2 specimens examined, all
cleared and stained.

Cynolebias chacoensis Amato—Pet trade,
2 specimens examined, all cleared and
stained.

Cynolebias cheradophilus Vaz-Ferreira, Si-
erra and Scaglia—Uruguay: Rocha: Ruta 10,
Arroyo Valizas, 17 specimens examined, all
cleared and stained.

Cynolebias constanciae Myers—Pet trade,
45 specimens examined, 18 cleared and
stained.

Cynolebias cyaenus Amato—Pet trade, 4
specimens examined, all cleared and stained

Cynolebias duraznensis Reichert—Uru-
guay: Durazno: Durazno, 41 specimens ex-
amined, 26 cleared and stained. Uruguay:
Durazno: Sarandi del Yi, 17 specimens exam-
ined, 4 cleared and stained.

Cynolebias flavicaudatus Costa and Bra-
sil—Pet trade, 3 specimens examined, all
cleared and stained.

Cynolebias gymnoventris Amato—Uru-
guay: Rocha: Velazquez, 7 specimens exam-
ined, 5 cleared and stained.

Cynolebias luteoflamulatus Vaz-Ferreira—
Uruguay: Rocha: Camino de los botes, 17
specimens examined, all cleared and stained.
Uruguay: Rocha: Ruta 16, 26 specimens ex-
amined, all cleared and stained. Uruguay:
Rocha: Ruta 9 km 200, 4 specimens exam-
ined, all cleared and stained.

Cynolebias myersi Carvalho—Pet trade, 1
specimen examined, cleared and stained.

Cynolebias nigripinnis Regan—Uruguay:
Colonia: Higueritas, 36 specimens examined
all cleared and stained. ZVC.P 848; Uru-
guay: Colonia: Higueritas, 44 specimens ex-
amined, 4 cleared and stained.

Cynolebias notatus Costa and Brasil—Pet
trade, 2 specimens examined, all cleared
and stained.

Cynolebias viarius Vaz-Ferreira, Sierra
and Scaglia—Uruguay: Rocha: Ruta 10 y
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Ruta a Aguas Dulces, 25 specimens exam-
ined, all cleared and stained. ZVC.P 525;
Uruguay: Rocha: Palmeras gemelas, 50
specimens examined, 8 cleared and stained.
ZVC.P 596; Uruguay: Rocha: Totora, 14 speci-
mens examined, 2 cleared and stained. Uru-
guay: Rocha: Ruta 10, 7 specimens exam-
ined, 2 cleared and stained.

Cynolebias whitei Myers—Pet trade, 55
specimens examined, 18 cleared and stained.

Cynolebias wolterstorffi Ahl—Pet trade, 1
specimen examined, cleared and stained.

Cynolebias sp.—Uruguay: Rocha: Ruta 16
km 26, 26 specimens examined, 6 specimens
cleared and stained. Uruguay: Rocha: Chuy, 19
specimens examined, 5 cleared and stained.
Uruguay: Treinta y Tres: Charqueada, 8 speci-
mens examined, 2 cleared and stained. Uru-
guay: Rocha: Arroyo San Miguel, 24 specimens
examined, 6 cleared and stained.
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