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MEAN VALUE THEOREMS FOR RIEMANNIAN MANIFOLDS VIA

THE OBSTACLE PROBLEM

BRIAN BENSON, IVAN BLANK, AND JEREMY LECRONE

Abstract. We develop some of the basic theory for the obstacle problem on Riemann-
ian Manifolds, and we use it to establish a mean value theorem. Our mean value theorem
works for a very wide class of Riemannian manifolds and has no weights at all within
the integral.

1. Introduction

The mean value theorem (MVT) is a fundamental tool in the analysis of harmonic

functions and elliptic PDEs. Recalling the elementary setting of harmonic functions

in Euclidean space, the MVT states that the value of a harmonic function at a point

can be exactly recovered by taking the average value of the function over any sphere,

or ball, centered at the point of interest (i.e. the mean value property holds for all

harmonic functions). More generally, if the function is sub– (or super–) harmonic, the

MVT states that the integral average of the function over a sphere gives an under– (or

over–) estimate for the value of the function at the center; see for instance [9, Theorem

2.1]. In this setting, where the MVT becomes an inequality, one considers whether or

not integral averages are suitably monotone (as a function of sphere radius) and whether

the value of the function can be recovered from a limiting process.

The importance of the MVT for the theory of harmonic functions and elliptic PDEs is

readily apparent, as a fundamental tool in proving both the weak and strong maximum

principle, the Harnack inequality, and a priori estimates. Thus, as research on harmonic

functions turned from Euclidean spaces to Riemannian manifolds, much effort has gone

into developing versions of the MVT in this more general setting (c.f. [8, 11, 17, 21]).

Reviewing the variety of statements for the MVT on manifolds, it becomes clear that

properties of the manifold itself (regularity, curvature, topology, etc.) directly affect what

type of results one can hope to derive.

From early work of Friedman [8] and Willmore [20], the direct translation of the mean

value property to a Riemannian manifold (taking integral averages over geodesic balls,
1
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2 BENSON, BLANK, AND LECRONE

or spheres) requires restriction to so–called harmonic manifolds. In particular, Willmore

proved that the manifold’s volume density function is spherically symmetric if and only

if the classical MVT holds for geodesic balls [20]. Weakening the equality condition, and

looking at convergence properties of integral averages (as radius goes to zero), further

statements have been derived on Einstein manifolds, and manifolds with specific cur-

vature restrictions. These attempts at widening the class of manifolds on which MVT

statements can be proved has been accompanied by further modification and restrictions

on the inequality itself. These modifications include introduction of weights (both inside

and outside the integral), mean value inequalities which do not become equalities in the

limit, further specific conditions on geometric and topological properties of manifolds,

and terms involving Green’s functions and their derivatives. One recent version of MVT

due to Lei Ni states that harmonic functions satisfy

(1.1) u(x) =
1

rn

∫

Ωr

|∇ logG|2u dµ

where we see derivatives of the Green’s function appearing, and domains of integration,

Ωr, are upper level sets for the Green’s function [17, Theorem 2.3].

Addressing some of the drawbacks in the previous MVT results, we present in this

paper a version of MVT which contains no weights associated with integration, works

for a broad class of Riemannian manifolds, and becomes a perfect equality in the case of

harmonic functions. The domain of integration for our statement is no longer geodesic

balls, but rather sets, Dx0
(r), related to solutions to an obstacle problem where the

solution is constrained to be below the Green’s function. This connection between MVT

and the obstacle problem begins with an important observation of Luis Caffarelli.

In his Fermi Lectures on the Obstacle Problem, Luis Caffarelli gave an elegant proof

of the MVT that did not rely on many of the basic symmetry and smoothness properties

of the Laplacian [7]. Indeed, he asserted a statement of the MVT holding for general

second order uniformly elliptic divergence form operators which was subsequently proven

in complete detail by the second author and Hao [4]. This proof described by Caffarelli

and completed by Blank and Hao used the obstacle problem to create a key test function.

In the case of Laplace’s equation on IRn, the creation of this function is trivial because

of the aforementioned properties of the Laplacian on Euclidean space. In this paper, we

wish to extend this proof to the Laplace-Beltrami operator on Riemannian manifolds,

where the construction of the crucial test function is no longer trivial.
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In terms of reproducing a MVT result, it is clear that harmonic (and even subhar-

monic) functions on compact manifolds without boundary are uninteresting. We will be

interested in harmonic (and subharmonic) functions defined on all noncompact mani-

folds, and those functions which are defined on compact manifolds with boundary which

we assume are strict submanifolds of an ambient manifold. Here, in our usage of the

word “strict,” we mean that the complement of the original manifold contains an open

set.

Our main theorem can now be stated:

Theorem 1.1 (Mean Value Theorem on Riemannian manifolds). Given a point x0 in

a complete Riemannian manifold M (possibly with boundary), there exists a maximal

number r0 > 0 (which is finite if M is compact) and a family of open sets {Dx0
(r)} for

0 < r < r0, such that

(A) 0 < r < s < r0 implies, Dx0
(r) ⊂ Dx0

(s), and

(B) limr↓0 distx0
(∂Dx0

(r)) = 0, and

(C) if u is a subsolution of the Laplace-Beltrami equation, then

u(x0) = lim
r↓0

1

|Dx0
(r)|

∫

Dx0
(r)

u(x) dx ,

and 0 < r < s < r0 implies

1

|Dx0
(r)|

∫

Dx0
(r)

u(x) dx ≤ 1

|Dx0
(s)|

∫

Dx0
(s)

u(x) dx .

Furthermore, if M is a compact manifold with boundary and x0 ∈ M, then

(1.2) lim
r↑r0

[

inf
x∈∂Dx0

(r)
dist(x, ∂M)

]

= 0 .

Finally, if r < r0, then the set Dx0
(r) is uniquely determined as the noncontact set of

any one of a family of obstacle problems.

Because of the lack of weights involved, and the perfect equality for solutions, one can

hope to find nice relationships between properties of the sets Dx0
(r) and properties of

the manifold. The Dx0
(r) sets are characterized as solutions of appropriate obstacle

problems, and indeed, in order to prove our main theorem, we must first develop some

of the basic theory for the obstacle problem on a Riemannian manifold.

Acknowledgements. The authors thank Dave Auckly and Bob Burckel for helpful

discussions.
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2. Setting, Terminology, and Geometric Estimates

We will use the following basic notation and assumptions throughout the paper:

M a smooth connected Riemannian n-manifold
N N ⊂ M and N satisfies assumptions that we detail below
g the metric for our ambient manifold M
TpM the tangent plane to M at p
Vol(S) the volume of the set S
χ

D
the characteristic function of the set D

D the closure of the set D
∂D the boundary of the set D
Ω(w) {x : w(x) > 0}
Λ(w) {x : w(x) = 0}
FB(w) ∂Ω(w) ∩ ∂Λ(w)
distp(x) the distance from p to x in M
Bp(r) {x ∈ M : distp(x) < r}
ηδ(S) the δ neighborhood of the set S
injp(N ) the injectivity radius of N at p
Ricp(v, w) Ricci curvature of vectors v, w ∈ TpM
Hp(x) mean curvature of the geodesic sphere ∂Bp(distp(x)) at x

(with respect to inward pointing normal vectors)
Dp(r) the Mean Value ball given in Theorem 1.1
∆g the Laplace-Beltrami operator on M

Note that in order to have a subscript “p” always denote a base point, we have switched

the locations of the center and radius from what is most customary for the notation for

a ball, including what was used in [4] for the mean value sets.

Assumptions 2.1. Regarding some additional assumptions on N :

(1) We assume N is a connected compact n-manifold with smooth boundary and

positive injectivity radius, call it R0.

(2) We assume thatN has the property that given any f ∈ C∞(N ) and h ∈ C∞(∂N ),

there exists a unique solution to:

(2.1)
∆gu = f in N

u = h on ∂N .

Remark 2.2 (Boundaries of Balls). Note that if M is a manifold with boundary, and if

Bx0
(r) has a radius r > 0 which is sufficiently large to guarantee that a portion of ∂M is

within Bx0
(r), then ∂Bx0

(r) not only contains all x ∈ M with distx0
(x) = r, but it also

contains all x ∈ ∂M with distx0
(x) < r.
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In the remainder of this section, we collect fundamental geometric estimates on mani-

folds and important results we will require for analysis on manifolds. The first important

result is the following geometric estimate which describes the behavior of the Laplace–

Beltrami operator acting on the square of the geodesic distance function (an important

tool we use to help establish necessary growth estimates for solutions to obstacle problems

in the next section).

Theorem 2.3 (Key Estimate). If r > 0 is sufficiently small, then for all x ∈ Bp(r)

(2.2) |∆g(dist
2
p(x))− 2n+

1

3
Ricp(v, v)r

2| ≤ C
KE1

r3

where C
KE1

is a finite positive constant depending on the manifold, and v is the unit

vector in the tangent plane whose direction corresponds to the geodesic flow from p to x.

In particular, it follows that, in the same setting, there is a C
KE2

> 0 such that

(2.3) |∆g(dist
2
p(x))− 2n| ≤ C

KE2
r2 .

To prove Theorem 2.3, we use the following lemma from Li [13, Theorem 4.1]:

Lemma 2.4. If p ∈ M and x is not in the cut–locus of p, then

(2.4) ∆g(distp(x)) = Hp(x) .

Proof of Theorem 2.3 . Applying the product rule, we have

(2.5) ∆g(dist
2
p(x)) = 2distp(x)∆g(distp(x))+2 ‖∇distp(x)‖2

︸ ︷︷ ︸

=1

= 2distp(x)∆g(distp(x))+2.

Therefore, we focus on estimating ∆g(distp(x)), for which we employ Lemma 2.4.

We begin by working in geodesic normal coordinates, parametrizing geodesic balls

Bp(r) via the exponential map (see Gray [12] and Gray and Vanhecke [10] for related

computations). In particular, given 0 < ρ < r and x ∈ ∂Bp(ρ) (not in the cut–locus of

p), it follows that x = expp(ρv) for a unique v ∈ Sn−1 ⊂ TpM. The expansion of the

mean curvature of a geodesic ball is well-known, appearing for instance in [18], and can

be written as

(2.6) Hp(x) =
n− 1

ρ
− 1

3
Ricp(v, v)ρ+O(ρ2).

Thus, combining (2.6) with Lemma 2.4 and (2.5), we have

(2.7) ∆g(dist
2
p(x)) = 2n− 1

3
Ricp(v, v)ρ

2 +O(ρ3),

and Theorem 2.2 is thus proved. �
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Remark 2.5. It now follows that Hp(x) > 0 for all x ∈ ∂Bp(ρ) and all sufficiently small

ρ > 0.

Another important tool from global analysis is the following Harnack inequality for

positive harmonic functions; the statement is given in Li [13, Theorem 6.1], where it is

attributed to Yau:

Theorem 2.6 (Harnack). Let M be a complete Riemannian n-manifold and let p ∈ M.

Suppose the Ricci curvature on Bp(2s) is bounded from below by −(n − 1)K for some

K ≥ 0. Then for u a positive harmonic function on Bp(2s), there exists a constant

C
H
= C

H
(p, n) > 0, depending only on p and n, such that

(2.8) sup
Bp(s)

u ≤
(

inf
Bp(s)

u

)

exp
(

C
H

(

1 + s
√
K
))

.

Returning to Equation (2.1), and viewing this problem as one of the calculus of varia-

tions, we can find u by minimizing

(2.9) Df(u) :=

∫

N

|∇u|2 + 2uf

among functions

(2.10) u ∈ Kh := {w ∈ W 1,2(N ) : w − h ∈ W 1,2
0 (N )} .

A minimizer for this variational problem exists as long as the functional is bounded from

below, though some effort will be required to ensure the minimizer is indeed a solution

to Equation (2.1). We address the equivalence of these settings in the remainder of this

section.

Assume that we are given f ∈ C∞(N ) and h ∈ C∞(∂N ) which satisfy

(2.11) 0 < λ ≤ f ≤ µ < ∞ and h ≥ 0.

Given N and f as above, we seek a nonnegative function w which satisfies the following

semilinear boundary value problem:

(2.12)
∆gw = χ

{w>0}
f in N

w = h on ∂N .

As mentioned earlier, we solve this boundary value problem by seeking a minimizer of

the functional

(2.13) Df(w) :=

∫

N

|∇w|2 + 2wf



MEAN VALUE THEOREMS FOR RIEMANNIAN MANIFOLDS 7

among

(2.14) w ∈ Ph := Kh ∩ {w : w ≥ 0},

which is a convex subset of W 1,2(N ).

Remark 2.7. We note that our proof of the Mean Value Theorem in Section 4 only

requires that one consider obstacle problems with f ≡ const. We treat more general

functions f herein because the general obstacle problem on Riemannian manifolds has

independent interest.

With our assumptions on M and N , and because we have Df bounded from below on

a convex subset of a Hilbert space (by assumption), the following theorem is now obvious

using standard arguments from the calculus of variations:

Theorem 2.8 (Minimizers). There exists a unique minimizer of Df within Ph.

Now by following the exact same procedure found within the second section of [4] we can

show the following:

Theorem 2.9 (Existence with a gap). With our assumptions as above, there is a pair

of functions W and F such that

(2.15)
∆gW = F in N

W = h on ∂N ,

where the function F is nonnegative and in addition satisfies:

(2.16)

F (x) = 0 for x ∈ {W = 0}o

F (x) = f(x) for x ∈ {W > 0}o

F (x) ≤ µ for x ∈ ∂{W = 0} ∩ ∂{W > 0} ,

where for any set S ⊂ N , we use So to denote its interior. Thus F agrees with χ
{W>0}

f

everywhere except possibly the free boundary, which is the set ∂{W = 0} ∩ ∂{W > 0}.

In order to show that there is no gap (i.e. that F = f a.e.), we follow the proof

within [4] which requires that we have the basic optimal regularity and nondegeneracy

statements, and we turn to the statement and proof of those statements now.
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3. Basic Theory of the Obstacle Problem

As we have mentioned, we wish to show that the free boundary has measure zero and

so we will actually have

(3.1) ∆gW = χ
{W>0}

f .

Within [4] there is a key regularity property and a key nondegeneracy property which

lead to this statement. In order to prove these properties, we will adapt the proofs found

in [3] and/or [7], and in particular, we won’t need anything as delicate as what is found

in [4] for the proof of nondegeneracy. On the other hand, we will make essential use of

the key estimates from Theorem 2.3 .

3.1. Optimal Regularity.

Theorem 3.1 (Local Optimal Regularity). Fix p0 ∈ N ∩ ∂{W > 0}. There exists an

r
OR

> 0 and a C
OR

> 0 with a finite bound depending only on distp0(∂N ), bounds on

the Ricci curvature on N , and on the constant C
KE1

from Equation (2.2), such that if

Bp0(2r) ⊂ N and r ≤ r
OR

, then for any x ∈ Bp0(r) we have

(3.2) W (x) ≤ C
OR

µ distp0(x)
2

where µ is the bound on f from above given in Equation (2.11).

We will also need the following corollary which we obtain by adjusting and iterating most

of the argument found in the proof of the local optimal regularity result.

Corollary 3.2 (Boundedness Result). Fix p0 ∈ N ∩ ∂{W > 0}, and fix a compact

Γ ⊂⊂ N which contains p0. Then there is a constant δ(Γ) such that for any x ∈ Γ we

have

(3.3) W (x) ≤ δ(Γ) .

Proof of Theorem 3.1 . Multiplying through by 1/µ, we can assume, without loss of

generality, that µ = 1. We fix

(3.4) r
OR

:= min

{

injp0(N ),

√
n

C
KE2

}

.

(Note that C
KE2

depends only on bounds on the Ricci curvature and on C
KE1

.) Con-

sider Bp0(r), with radius r ≤ r
OR

. Let C(p0, s,K) := exp
(

C
H
(p0, n)

(

1 + s
√
K
))

where

C
H
(·, ·) is the constant from Theorem 2.6. After observing that C is monotone increasing
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with respect to s, we define C1 := C(p0, r0, K). Within the neighborhood Bp0(r), for any

nonnegative solution of the Laplace-Beltrami Equation ∆gu = 0, the Harnack inequality

from Equation (2.8) in Theorem 2.6 gives:

(3.5) sup
Bp0

(s)

u ≤ C1 inf
Bp0

(s)
u

as long as 2s ≤ r ≤ r
OR

. Now, for such an s, we let u be the solution of:

(3.6)
∆gu = 0 in Bp0(2s)

u = W on ∂Bp0(2s) ,

we let v be the solution of:

(3.7)
∆gv = ∆gW in Bp0(2s)

v = 0 on ∂Bp0(2s) ,

and we observe that W = u + v. Obviously 0 ≤ ∆gv ≤ 1. Using Equation (2.2) we see

that the function

(3.8) D(p) :=
distp0(p)

2 − 4s2

n
,

satisfies:

(3.9) ∆gD(p) ≈ 2,

and now using the fact that

r
OR

≤
√

n

C
KE2

is implied by Equation (3.4) we have that ∆gD ≥ 1 ≥ ∆gv. At this point, by noting that

v(p) = D(p) ≡ 0 on ∂Bp0(2s), and using the weak maximum principle, we get:

(3.10)
−4s2

n
≤ D(p) ≤ v(p) ≤ 0

within Bp0(2s). Now, we use the last equation to get

(3.11) u(p0) = W (p0)− v(p0) = −v(p0) ≤ 4s2/n .

Applying the Harnack inequality in Equation (2.8) gives us:

sup
Bp0

(s)

u ≤ C1 inf
Bp0

(s)
u

≤ C1u(p0)

≤ 4C1s
2/n .
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From Equation (3.10), we have supBp0
(s) |v| ≤ 4s2/n. It follows that

W (x) ≤ |u(x)|+ |v(x)| ≤ 4C1s
2/n+ 4s2/n

= 4
(
C1 + 1

)
s2/n

= (C
OR

)s2

(3.12)

holds for all x ∈ Bp0(s), where C
OR

:= 4
(
C1 + 1

)
/n and 2s ≤ r. We conclude the proof

by fixing any x ∈ Bp0(r/2) and taking s = distp0(x). Then (3.12) implies

W (x) ≤ C
OR

(distp0(x))
2 .

�

Proof of Corollary 3.2. The idea of this proof is that we iterate the basic estimate of

the previous proof until we have exhausted Γ and, because Γ is compact, we get to every

point within Γ after a finite number of iterations. The only real change occurs because

we have to iterate the estimate around points which are not part of the free boundary.

Indeed, if we have p1 near enough to p0 so that we can apply the local result, and then

we attempt to redo everything centered at p1, then Equation (3.11) becomes

(3.13) u(p1) = W (p1)− v(p1) = C
PB

− v(p1) ≤ C
PB

+ 4s2/n ,

where the “PB” in C
PB

is short for the “previous bound.” This new estimate propagates

into the new version of Equation (3.12), but we still get a finite bound on the right hand

side. The constant C
PB

does indeed get worse with each step, but is always finite, and

we only need a finite number of steps to exhaust Γ. �

3.2. Nondegeneracy.

Theorem 3.3 (Local Nondegeneracy). Fix p ∈ N ⊂⊂ M. There exists an r
ND

> 0

depending only on bounds on the Ricci curvature on N and on the constant C
KE1

from

Equation (2.2), and there exists a constant C
ND

depending only on n such that if p ∈
Ω(W ), Bp(r) ⊂ N , and r ≤ r

ND
, then

(3.14) sup
x∈Bp(r)

W (x) ≥ W (p) + C
ND

λ r2

where λ is the bound on f from below given in Equation (2.11).

We will also need the following global nondegeneracy statement which is easily obtained

by iterating parts of the argument from the proof of the previous theorem.



MEAN VALUE THEOREMS FOR RIEMANNIAN MANIFOLDS 11

Theorem 3.4 (Global Nondegeneracy). Fix p ∈ Ω(W ) and Bp(R) ⊂⊂ N . There exists a

constant C
GN

> 0 depending only on bounds on the Ricci curvature on N , and on bounds

over N on the constant C
KE1

from Equation (2.2), such that for any r
ND

≤ s ≤ R we

have:

(3.15) sup
x∈Bp(s)

W (x) ≥ W (p) + C
GN

s λ

where again the definition of λ is found in Equation (2.11).

Remark 3.5 (Independence from p). If we are on a compact manifold, then r
OR

and

r
ND

can be taken to be independent of p.

Proof of Theorem 3.3 . Multiplying everything through by 1/λ we can assume that f ≥ 1

without loss of generality. Next, by continuity of w it suffices to take p1 ∈ N satisfying

w(p1) > 0 and then prove

(3.16) sup
p∈∂Bp1

(r)

w(p) ≥ r2

2n+ 1
+ w(p1) .

To this end, we define

(3.17) v(p) := w(p)− distp1(p)
2

2n+ 1
.

By Equation (2.2) if we take r ≤ r
ND

sufficiently small, then for all p ∈ Bp1(r), we have:

(3.18) 2n− 1 ≤ ∆gdistp1(p)
2 ≤ 2n+ 1 .

As a result, in Ωr := {w > 0} ∩Bp1(r), we have that

∆gv(p) = 1− ∆gdistp1(p)
2

2n+ 1
≥ 0

and v(p1) = w(p1). Therefore, since v is subharmonic in Bp1(r), the weak maximum

principle implies that

w(p1) = v(p1) ≤ sup
p∈∂Bp1

(r)

v(p) = sup
p∈∂Bp1

(r)

w(p)− r2

2n+ 1
.

Hence,

sup
p∈∂Bp1

(r)

w(p) ≥ r2

2n+ 1
+ w(p1) ,

from which the claim follows and we can take

C
ND

:=
1

2n+ 1
.

�
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Proof of Theorem 3.4 . As in the previous proof, we can assume f ≥ 1. Now, we need to

bound the function

(3.19) Θ(s) := sup
x∈Bp(s)

(W (x)−W (p))

from below by a linear function of s as long as s ≥ r0. We already have

(3.20) sup
x∈Bp(rND

)

(W (x)−W (p)) ≥ C
ND

r2
ND

=: γ > 0

from local nondegeneracy. We claim that

(3.21) Θ(s) ≥ γ

2r
ND

s

for all s ≥ r
ND

. Of course, for r
ND

≤ s ≤ 2r
ND

there is nothing to prove.

Now for s ≥ 2r
ND

, we let n =
⌊

s
r
ND

⌋

, where ⌊q⌋ is the greatest integer less than or

equal to q. We set p0 := p and define pj iteratively for j = 1 . . . n by the equation:

(3.22) W (pj)−W (pj−1) = sup
x∈Bpj−1

(r
ND

)

(W (x)−W (pj−1)) ,

and observe that by local nondegeneracy, this implies that W (pj) − W (pj−1) ≥ γ, and

further, pj ∈ Bp(jrND
). Thus,

(3.23) Θ(s) ≥ Θ(nr
ND

) ≥ nγ =

⌊
s

r
ND

⌋

γ ≥ s

2r
ND

γ ,

so we can let

C
GN

:=
γ

2r
ND

.

�

With the proof of optimal regularity and nondegeneracy behind us, we can use the

exact same proof as found in Lemma 5.1 of [5] and referenced within Corollary 3.10 of

[4] to show:

Theorem 3.6 (The Semilinear PDE Formulation). The set ∂{W = 0}∩∂{W > 0} from

Theorem 2.9 is strongly porous and therefore has a Hausdorff dimension strictly less than

n. As an immediate consequence of this set having n-dimensional measure zero, we can

say W satisfies:

(3.24)
∆gW = χ

{W>0}
f in N

W = h on ∂N ,

and that solutions of this equation satisfy the regularity and nondegeneracy properties

given in Theorems 3.1 and 3.3 above.
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Remark 3.7. Now by following the same procedures as in the fourth section of Blank

and Hao [4], we can show that the function w from Theorem 2.8 above is the same

function found by the semilinear PDE formulation in Equation (3.24) (i.e. w = W ).

4. The Mean Value Theorem

Now we have all of the tools that we need from the theory for the obstacle problem,

and so in this section we will split the proof of our main theorem into a number of smaller

lemmas. We start with the following.

Lemma 4.1 (Mean Value Theorem on Riemannian manifolds). Given a point x0 in a

complete Riemannian manifold, M, there exists a number r0 > 0 and a family of open

sets {Dx0
(r)} for 0 < r < r0, such that

(A) 0 < r < s < r0 implies, Dx0
(r) ⊂ Dx0

(s),

(B) limr↓0 dist(x0, ∂Dx0
(r)) = 0, and

(C) if u is a subsolution of the Laplace-Beltrami equation, then

u(x0) = lim
r↓0

1

|Dx0
(r)|

∫

Dx0
(r)

u(x) dx ,

and 0 < r < s < r0 implies

1

|Dx0
(r)|

∫

Dx0
(r)

u(x) dx ≤ 1

|Dx0
(s)|

∫

Dx0
(s)

u(x) dx .

Proof of Lemma 4.1 . We will first prove (C), and return to (A) and (B) afterward. We

will assume that M is not compact, but there is no real problem here as long as we are

confined to the case where r0 is sufficiently small. We fix x0 ∈ M, and we let R > 1 be

very large and r0 > 0 be very small. Let Bx0
(R) be the open ball of radius R centered at

x0; or, in case ∂Bx0
(R) is not smooth, we will assume that the ball is approximated by

a slightly larger set with smooth boundary. Although these sets are not strictly geodesic

balls, we will continue to refer to them as such for notational convenience. The reader

will see in Lemma 4.2 that this approximation has no meaningful effect on the mean

value sets we ultimately construct in the current proof.

Next, we let GR(x, x0) denote the Green’s function on Bx0
(R), with singularity at x0,

and remind the reader that GR(x, x0) automatically satisfies:

I) GR(x, x0) > 0 in Bx0
(R) \ {x0},

II) GR(x, x0) is smooth in the set Bx0
(R) \ {x0},
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III) GR(x, x0) ≡ 0 for all x ∈ ∂Bx0
(R), and

IV) limx→x0
GR(x, x0) = +∞.

All of these properties are well-known, see for instance Aubin [2, Chapter 4] and Li and

Tam [14, Section 1].

Now we make definitions exactly like the ones above Theorem 4.1 of [4]. We will fix R

and suppress this dependence for the rest of this argument until we potentially need to

vary it again. Let

(4.1) J(w,Bx0
(R), r) :=

∫

Bx0
(R)

|∇gw|2 − 2r−nw ,

and let wr be the minimizer of J among functions in W 1,2
0 (Bx0

(R)) which are less than

or equal to the Green’s function, GR(x, x0). Note that the minimizer solves the obstacle

problem:

(4.2)
∆gu = −r−nχ

{u<GR}
in Bx0

(R)

u = 0 on ∂Bx0
(R) .

The conclusion for property (C) will follow from the argument preceding Theorem 6.3 of

[4], once we are able to conclude that the sets {wr < GR} are a positive distance away

from the boundary of Bx0
(R), for r ≤ r0 sufficiently small.

First, by comparing with max{wr, 0}, note that the minimizer wr is nonnegative. It

follows from the nondegeneracy theorem, that if we are away from x0 and we are at a

free boundary point y0 (i.e. a place where wr separates from GR), then the difference

GR − wr obeys the estimate:

(4.3) sup
y∈Bs(y0)

(GR(y, x0)− wr(y)) ≥ C
SN

r−nmin{s, s2} ,

where C
SN

is the minimum of the two nondegeneracy constants, i.e.

(4.4) C
SN

:= min{C
ND

, C
GN

} .

On the other hand, since GR(x, x0) is continuous away from x0, and, for 0 < δ < r
ND

,

η2δ(∂Bx0
(R)) ∩ Bx0

(R) is a compact set, there exists a positive constant C1 such that

0 ≤ GR(x, x0) ≤ C1 in all of η2δ(∂Bx0
(R))∩Bx0

(R). Now, we choose y0 ∈ Bx0
(R) so that

dist(y0, ∂Bx0
(R)) = δ and assume that it belongs to the closure of the positivity set of

GR − wr. Applying the nondegeneracy theorems, we see that

(4.5) C1 − inf
y∈Bδ(y0)

wr(y) ≥ sup
y∈Bδ(y0)

(GR(y, x0)− wr(y)) ≥ C
SN

r−nδ2 ,
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and this implies:

(4.6) inf
y∈Bδ(y0)

wr(y) ≤ C1 − C
SN

r−nδ2 < 0

as soon as r is sufficiently small. Thus, we have a contradiction if we don’t have

GR(y, x0) − wr(y) ≡ 0 for all y that are a distance δ from ∂Bx0
(R). By unique con-

tinuation, we can be sure that GR(y, x0) − wr(y) ≡ 0 on all of ηδ(∂Bx0
(R)) ∩ Bx0

(R).

Now we are done with the proof of (C) however, as the proof is the same as the proof

starting right after Equation 6.8 in [4].

The proofs of (A) and (B) are easier. The proof of (B) follows from the fact (stated

above as IV) that limx→x0
GR(x, x0) = +∞. For the proof of (A), the fact that Dx0

(r) ⊂
Dx0

(s) follows from the claim:

(4.7) ws ≤ wr .

Suppose there is a x̃ where ws(x̃) > wr(x̃) and define v(x) := wr(x)−ws(x). By the proof

(C) above, we know that ws = wr = GR(·, x0) in some neighborhood of the boundary

∂Bx0
(R). Thus, v is identically zero outside of a compact set, and has a negative minimum

at some point x̄. It follows that wr(x̄) < G(x̄, x0). Thus, in a neighborhood of x̄ we have

(4.8) ∆gv = ∆gwr −∆gws = −r−n −∆gws ≤ s−n − r−n < 0

contradicting the maximum principle. Of course, it is still possible that there is a point

y0 ∈ ∂Dx0
(r) ∩ ∂Dx0

(s) which would allow

Dx0
(r) ⊂ Dx0

(s) and Dx0
(r) * Dx0

(s) .

So, we suppose that there exists a y0 ∈ ∂Dx0
(r) ∩ ∂Dx0

(s). By zooming in toward

y0 if necessary, and using the original regularity theorems for the free boundary due to

Caffarelli, see for example [6, Corollary 3 and Theorem 3], we know that there exists a

geodesic ball Bz0(ρ) which satisfies:

1) Bz0(ρ) ⊂ Dx0
(r), and

2) ∂Bz0(ρ) ∩ ∂Dx0
(r) ∩ ∂Dx0

(s) = y0.

Considering the function v(x) := wr(x)−ws(x) again. We see that v ≥ 0 in Bz0(ρ), and

v(y0) = 0. Since ∆gv = s−n − r−n < 0 in Bz0(ρ), we can apply the Hopf lemma to see

that ∇v(y0) 6= 0. (See for instance Taylor [19, Chapter 5, Proposition 2.2].) On the other

hand, since y0 is in the free boundary for both wr and ws we have

(4.9) ∇wr(y0) = ∇G(x0, y0) = ∇ws(y0) ,
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which forces ∇v(y0) = 0, giving us a contradiction. �

Because of the construction given in the proof above, it makes sense to introduce the

notation Dx0
(r;N ) to denote the set

{
x
∣
∣wr(x) < GN (x0, x)

}
. As this notation implies,

it may be possible for the noncontact sets {wr < GR} to depend upon the submanifold

on which we construct the Green’s function and minimizer wr. However, in the following

result, we demonstrate that the mean value sets are invariant under changes to the

submanifold N if they avoid the submanifold boundary ∂N .

Lemma 4.2 (Uniqueness of the Family of Mean Value Sets). Consider a point x0 ⊂⊂ M,

r > 0 fixed, and n–submanifolds N1,N2 with boundary, each of which contain an open

set about x0 and are each compactly contained in M. We call their respective Green’s

functions G1 and G2, and we let Wi solve ∆gWi = −r−nχ{Wi<Gi} for i = 1, 2 with

Wi ≡ 0 on ∂Ni. Defining the sets

(4.10) Di
x0
(r) := Dx0

(r;Ni) = {Wi < Gi} for i = 1, 2.

If

(4.11) D1
x0
(r) ⊂⊂ N1 and D2

x0
(r) ⊂⊂ N2 ,

then D1
x0
(r) = D2

x0
(r) ⊂⊂ N1 ∩N2.

Remark 4.3. Following from this invariance, we modify our notation for mean value

sets whenever we can ensure that they avoid the boundary of large enough submanifolds

N . In particular, we will freely use the notation Dx0
(r) whenever we assume one can

find a submanifold with boundary on which {wr < GN} is uniformly bounded away from

∂N . Meanwhile, the notation Dx0
(r;N ) indicates a construction where the noncontact

set may approach the boundary of N .

Proof of Lemma 4.2. Choose a compact N with N1 ∪ N2 ⊂⊂ N and denote its Green’s

function by G . For i = 1, 2, we have that w = Wi minimizes
∫

Ni

|∇gw|2 − 2r−nw

among w ≤ Gi which are equal to 0 on ∂Ni. This implies that ∆gWi = −r−nχ{Wi<Gi}

in Ni and Wi = 0 on ∂Ni. Similar equations hold for W and G where G is the Green’s

function for ∆g on N and W will denote the solution of the corresponding obstacle

problem on N .
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Note that Gi differs from G by a harmonic function, specifically, we have

(4.12) Gi = G − hi

where ∆ghi = 0 and hi > 0, since Gi < G by the maximum principle. Now we make the

following definition:

(4.13) W̃i(x) :=

{

G(x, x0) for x ∈ N \Ni

Wi(x) + hi(x) for x ∈ Ni .

Because Di
x0
(r) ⊂⊂ Ni, it is easy to see that W̃i(x) ≡ G (x, x0) on a neighborhood of

∂Ni. From there we can verify that W̃i satisfies the exact same obstacle problem as W

and then, by uniqueness of solutions to the obstacle problem, we get W̃i ≡ W. From here

we conclude that

Di
x0
(r) = {Wi < Gi}

= {Wi + hi < Gi + hi}
= {W̃i < G}
= {W< G}
= Dx0

(r)

which proves the result. �

Although the previous uniqueness proof breaks down if one of the sets Dx0
(r,N )

reaches the boundary of the submanifold N , the following monotonicity result (with

respect to domain inclusion) will be useful in this setting.

Proposition 4.4 (Noncontact Monotonicity). If N1 ⊂ N2 ⊂⊂ M, then for any x0 ∈ N1

and any r > 0, we have the inclusion:

Dx0
(r;N1) ⊂ Dx0

(r;N2) .

Proof of Proposition 4.4. The idea here is essentially the same as the idea of the proof

of the previous lemma. Using the same notation as the previous proof, if we let h be the

function satisfying h := G2 −G1 on ∂N1 and ∆gh = 0 in N1, then G2 ≡ G1 + h in all of

N1. Furthermore, letting Wi denote the solution to the obstacle problem:

(4.14)
∆gu = −r−nχ

{u<Gi}
in Ni

u = 0 on ∂Ni .

we see that the functions w2 := W2 and w1 := W1 + h both satisfy

∆gu = −r−nχ
{u<G2}

and u ≤ G2
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within N1. While, on ∂N1 we have w2 ≤ w1. The result now follows by the comparison

principle for the obstacle problem, along with the observation that {w1 < G2} = {W1 <

G1}. (See [3, Theorem 2.7a] for a proof of the comparison principle in the Euclidean case

that essentialy uses only the weak maximum principle.) �

What remains for us to prove now is the existence of a maximal r0, that allows us

to be sure that from a certain point of view the mean value sets become as large as

possible. Stated differently, we want to show that we can keep increasing r until the set

Dx0
(r) either collides with a boundary of M or escapes out to infinity. In the case where

our manifolds are compact, we succeed in proving this conjecture by the time we get to

Lemma 4.8. On the other hand, in the case of noncompact manifolds we will succeed

only partially, and these results are contained in the next section.

Lemma 4.5 (Convergence of Membranes). We assume that we are given functions wr

that minimize

J(w,Bx0
(R), r) :=

∫

Bx0
(R)

|∇gw|2 − 2r−nw

among functions which vanish on ∂Bx0
(R), and are constrained to be less than or equal

to the Green’s function with singularity at x0. Then, as s → r,

(4.15) ws ⇀ wr in W 1,2(Bx0
(R))

and

(4.16) lim
s→r

||ws − wr||Cα(Bx0
(R))

= 0

for some α > 0. Furthermore, as s → ∞ we have

(4.17) ||ws||Cα(Bx0
(R))

and ||ws||W 1,2(Bx0
(R)) → 0 .

Sketch of the proof of Lemma 4.5 . Except for Equation (4.17), the proof is almost

the same as what is given in [1], but to make the current work more self-contained, we

provide here a sketch. First of all, because of the functional being minimized, it is not

hard to show that all of the relevant functions are uniformly bounded in W 1,2(Bx0
(R)).

By elliptic regularity, it is then easy to get uniform bounds on the functions in Cα.

So, taking a sequence sn → r we get a corresponding sequence of functions wsn which

converges weakly in W 1,2 and strongly in Cα to a function w̃. Now, in order to show that

w̃ is in fact wr, we use the lower semicontinuity of the Dirichlet integral with respect to

W 1,2 convergence along with uniform convergence of wsn to w̃ to get that Jr(w̃) ≤ Jr(wr).

The claim then follows by uniqueness of minimizers.
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Turning to Equation (4.17) we make the following observation: If we let Hr be defined

to be the solution to the problem

(4.18)
∆gHr = −r−n in Bx0

(R)

Hr = 0 on ∂Bx0
(R) ,

then by the maximum principle it is clear thatHr ≥ wr ≥ 0. On the other hand, Schauder

theory on manifolds implies that Hr → 0 uniformly as r → ∞, and then the result follows

from standard estimates on solutions to elliptic PDEs. �

We will now show a pair of useful corollaries of this result. These corollaries, in some

sense, each indicate that the boundaries of the Mean Value Sets vary continuously.

Corollary 4.6 (Extension of Mean Value Sets to Greater r). If Dx0
(r) ⊂⊂ M, then

there exists an ǫ > 0 so that for all s ∈ [r, r + ǫ], the set Dx0
(s) ⊂⊂ M. More precisely,

with ws defined as the minimizer of J(w,Bx0
(R), s) the set {ws < G} ⊂⊂ M.

Proof of Corollary 4.6. Without loss of generality we assume that there is a δ > 0 such

that the closure of the 2δ neighborhood of Dx0
(r) is still compactly contained within

M. We also assume that δ < r0, where r0 is the number from our local nondegeneracy

theorem. (Recall Theorem 3.3.) Now suppose that there is a sequence sk ↓ r such that

the Dx0
(sk) sets are not contained within the δ neighborhood of Dx0

(r). In this case,

there exists a corresponding sequence of points {yk} ⊂ Dx0
(sk)∩∂(ηδ(Dx0

(r))). Since the

yk belongs to Dx0
(sk), we have

(4.19) wsk(yk) < G(yk, x0) .

Applying Theorem 3.3 to wsk while observing that wr ≡ G(·, x0) within Byk(δ) for all k,

we see that

(4.20) sup
Byk

(δ)

(wr(y)− wsk(y)) = sup
Byk

(δ)

(G(y, x0)− wsk(y)) ≥ C
ND

δ2s−n
k > 0 .

Now, by the uniform convergence of the wsk to wr, guaranteed by Equation (4.16) of

Lemma 4.5, we get the desired contradiction. �

Corollary 4.7 (Continuous expansion of mean value sets). Fix x0, y0 ∈ M and assume

that there exists 0 < s < t such that y0 /∈ Dx0
(s) but y0 ∈ Dx0

(t). Then there exists a

unique R0 ∈ (s, t) such that y0 ∈ ∂Dx0
(R0).

The following proof is essentially identical to the proof in Aryal and Blank [1] which

in turn borrows a key idea from the counter-example within Blank and Teka [5], but to

keep our work more self-contained we provide a sketch of the proof.
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Sketch of the proof of Corollary 4.7. Let S := {t ∈ IR : y0 /∈ Dx0
(t)} and then set

R0 := supS. We proceed by contradiction. If y0 /∈ ∂Dx0
(R0), then we know that there

exists a small ρ > 0 such that either C := By0(ρ/2) is completely contained within

Dx0
(R0) = {wR0

< G} or it is completely contained within Dx0
(R0)

∁ = {wR0
= G}.

First assume that C ⊂ Dx0
(R0). Defining α to be the minimum of wR0

in C, Lemma

4.5 implies that for small δ > 0, we have ‖wr−wR0
‖L∞(C) ≤ α/2, whenever |r−R0| < δ.

It follows from the triangle inequality that

‖wr −G‖L∞(C) ≥ ‖wR0
−G‖L∞(C) − ‖wr − wR0

‖L∞(C) ≥
α

2
> 0.

Taking r = R1 := R0 + δ/2 > R0, the previous inequality tells us that wR1
< G on C

implying that y0 ∈ Dx0
(R1), contradicting that R0 = supS.

Now assume that C ⊂ Dx0
(R0)

∁ = {wR0
= G}. By nondegeneracy, we know that

whenever r > R0, there exists z ∈ C and a constant β > 0 such thatG−wr(z) > β.On the

other hand, Lemma 4.5 implies that there exists δ > 0 such that ‖wr−wR0
‖L∞(C) ≤ β/2.

Since wR0
≡ G on C, we have that

0 < β ≤ ‖G− wr‖L∞(C) = ‖wr − wR0
‖L∞(C) ≤

β

2
,

a contradiction. �

Lemma 4.8 (Exiting compact sets). Fix R > 0, and x0 ∈ M. Then there exists an

r0 > 0 such that ∂Dx0
(r0) ∩ ∂Bx0

(R) is nonempty.

Proof of Lemma 4.8. This lemma will follow from the claim that as r increases, the

minimum distance from ∂Dx0
(r) to ∂Bx0

(R) must become arbitrarily small. Suppose

not. Then there exists a δ > 0 so that within Sδ := ηδ(∂Bx0
(R)) ∩ Bx0

(R) (i.e. the

one-sided δ neighborhood of ∂Bx0
(R)) we have wr ≡ G for all r. On Bx0

(R)\Sδ we know

that G achieves a minimum, γδ > 0. By the maximum principle, since wr = G on ∂Sδ,

we have

(4.21) wr ≥ γδ > 0

in all of Bx0
(R) \ Sδ for all r. Now by applying Equation (4.17) we have a contradiction.

�

So with this last lemma, except for showing that r0 < ∞, we can already consider

Theorem 1.1 to be proven in the case of compact manifolds with boundary, and the r0

from the lemma is the r0 for the theorem.
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Corollary 4.9 (For Compact Manifolds r0 < ∞). Let M be a compact Riemannian

manifold with boundary, and let x0 ∈ M. Then there exists a maximal r0 < ∞ such that

Dx0
(r0) ⊂ M and ∂Dx0

(r0) ∩ ∂M is nonempty.

Proof of Corollary 4.9. Suppose not. Then the set

D :=
⋃

r>0

Dx0
(r)

has a positive distance from ∂M and so by applying Lemma4.8 to a compactK satisfying

D ⊂ K ⊂⊂ M

we get a contradiction. �

5. Results for Strongly Nonparabolic Manifolds

The results of the previous sections offer a foundation for the local theory of the MVT

on complete Riemannian manifolds. On the other hand, in the case where M is not

compact some obvious questions remain. The most pressing and immediate issue seems

to be a statement that r0 “gets as large as possible.” Indeed, one could hope for a

statement that the mean value balls can grow until either they hit a finite boundary

or until they escape to infinity. Following Lei Ni we make the following definition [17,

Definition 2.2]:

Definition 5.1 (Strongly Nonparabolic Riemannian Manifolds). We call the unbounded

Riemannian manifold M strongly nonparabolic if there is a minimal positive Green’s

function G∞(x, y) which satisfies:

(5.1) lim
y→∞

G∞(x, y) = 0

for fixed x ∈ M.

Ni discusses this definition and shows a variety of classes of manifolds which satisfy

this property [17]. Indeed, in addition to the trivial observation that IRn works for n ≥ 3,

Ni mentions the following:

a) Li and Yau [16] prove that if M is a manifold with nonnegative Ricci curvature,

then M is nonparabolic if and only if

(5.2)

∫ ∞

r

τ

Vol(Bx0
(τ))

dτ < ∞ .



22 BENSON, BLANK, AND LECRONE

There is also an estimate given which shows that for this case nonparabolic implies

strongly nonparabolic.

b) If M satisfies the Sobolev Inequality:

(5.3)

(∫

M

f
2ν
ν−2 dµ

) ν−2

2ν

≤ A

∫

M

|∇f |2dµ

for some ν > 2, A > 0, and all smooth f which are compactly supported, then

M is strongly nonparabolic.

c) Finally Li and Wang [15] give examples related to the spectrum of the Laplace

operator [15]. Further, Ni shows that if M has a positive lower bound on the

spectrum of the Laplace operator, if Ric ≥ −(n−1)g, and finally if the volume of

the unit ball around every point is bounded uniformly from below by a positive

constant, then M is strongly nonparabolic [17, Proposition 2.5].

In any case whenM is strongly nonparabolic we have the following boundedness result:

Theorem 5.2 (Mean value sets are bounded). Assume that M is complete, unbounded

without boundary, and strongly nonparabolic, and assume further that r
ND

and C
ND

are

bounded from below at every point of M. Then given any x0 ∈ M and r > 0, there exists

an s > 0 such that

Dx0
(r;Bx0

(s)) ⊂⊂ Bx0
(s) .

Of course in this case we can say that Dx0
(r;Bx0

(s)) = Dx0
(r), and as a consequence

r0 = ∞.

Proof of Theorem 5.2. The proof will use the same key idea as the proof we gave earlier

for Lemma 4.1. As in that proof we will abuse notation by using “Bx0
(s)” to mean a

smooth approximation to Bx0
(s) when necessary. Also, since we will always be evaluating

our Green’s functions at x0 as one of the points, we will suppress that within our notation

below.

Since M is strongly nonparabolic, we will let G∞ denote the minimal Green’s function

satisfying Equation (5.1). Given any δ > 0, there exists an s0 such that G∞(x) ≤ δ in all

of Bx0
(s0)

∁. Define s1 := s0+2r
ND

, and let G1(x) denote the Green’s function on Bx0
(s1)

we note the following:

a) 0 ≤ G1(x) ≤ G∞(x) in Bx0
(s1),

b) G∞(x) ≤ G1(x) + δ in Bx0
(s1) \Bx0

(s0), and
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c) h(x) := G∞(x) − G1(x) is a harmonic function in Bx0
(s1) which satisfies the

estimate:

(5.4) ||h||L∞(Bx0
(sj)) ≤ δ

by the weak maximum principle.

Now let w1 denote the minimizer of

(5.5) J(w,Bx0
(s1), r) :=

∫

Bx0
(s1)

|∇gw|2 − 2r−nw ,

among functions in W 1,2
0 (Bx0

(s1)) which are less than or equal to the Green’s function,

G1(x). As before, this minimizer solves the obstacle problem:

(5.6)
∆gu = −r−nχ

{u<G1}
in Bx0

(s1)

u = 0 on ∂Bx0
(s1) .

Now suppose that y0 ∈ ∂Bx0
(s0+r

ND
) and w1(y0) < G1(y0). Then we can apply Theorem

3.3 to the function G1 − w1 at y0 in order to state:

(5.7) sup
By0

(r
ND

)

(G1(x)− w1(x)) ≥ r−nC
ND

(r
ND

)2

On the other hand,

(5.8) sup
By0

(r
ND

)

(G1(x)− w1(x)) ≤ δ,

and so if δ is sufficiently small, we get a contradiction. Therefore, we must have w1 ≡ G1

in Bx0
(s0 + r

ND
)∁. Defining δ to be such a number, we can take s for the theorem to

be the constant r
ND

plus the s0 determined by the requirement: G∞(x) ≤ δ in all of

Bx0
(s0)

∁. �

Remark 5.3 (Weaker Condition). It follows from the proof that there is a weaker con-

dition under which Theorem 5.2 holds. Indeed, if we let r
ND

(x) and C
ND

(x) denote the

values of r
ND

and C
ND

at the point x ∈ M, then we can replace all of the hypotheses of

the theorem with the simple requirement that a Green’s function G∞ exists and

(5.9) lim
y→∞

G∞(x, y)

C
ND

(y)r
ND

(y)2
= 0

for any x ∈ M. Of course, since all of the statements above can be made for IR2 which

is obviously not a strongly nonparabolic manifold, and which does not satisfy Equation

(5.9), it is clear that there must be weaker conditions than even this one.
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