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Abstract We give a complete description of the possible ranges of real Smirnov func-
tions (quotients of two bounded analytic functions on the open unit disk where the
denominator is outer and such that the radial boundary values are real almost every-
where on the unit circle). Our techniques use the theory of unbounded symmetric
Toeplitz operators, some general theory of unbounded symmetric operators, classical
Hardy spaces, and an application of the uniformization theorem. In addition, we com-
pletely characterize the possible valences for these real Smirnov functions when the
valence is finite. To do so we construct Riemann surfaces we call disk trees by welding
together copies of the unit disk and its complement in the Riemann sphere. We also
make use of certain trees we call valence trees that mirror the structure of disk trees.

Keywords Hardy spaces · Real outer functions · Valence · Riemann surfaces ·
Conformal welding

Mathematics Subject Classification 30J05 · 30H10 · 46E22

B William T. Ross
wross@richmond.edu

Timothy Ferguson
tjferguson1@ua.edu

1 Department of Mathematics, University of Alabama, Tuscaloosa, AL, USA

2 Department of Mathematics and Computer Science, University of Richmond,
Richmond, VA 23173, USA

http://orcid.org/0000-0002-3357-3767


T. Ferguson, W. T. Ross

1 Introduction

This paper explores the range and valence of real Smirnov functions. Smirnov func-
tions, a well studied class of functions [10], are analytic functions on the open unit disk
D which can be written as the quotient of two bounded analytic functions where the
denominator is anouter function.Real Smirnov functions, studied in [14,15,19,20,22],
are those Smirnov functions which have real boundary values almost everywhere. In
a nutshell, we will characterize all possible ranges of such functions and all possible
finite valences on their range. The two main theorems of this paper (terminology,
motivation, and plenty of examples to be reviewed below) are the following:

Theorem If ϕ is a non-constant real Smirnov function, then ϕ(D) is either

ϕ(D) = C+\F or ϕ(D) = C−\G or ϕ(D) = C\(F ∪ G ∪ E),

where E � R and closed, F ⊆ C+ is relatively closed and has capacity zero, and
G ⊆ C− is relatively closed and has capacity zero.Moreover, given any closed E � R,
any relatively closed F ⊆ C+ of capacity zero, and any relatively closed G ⊆ C−
of capacity zero, there are real Smirnov functions with ranges C+\F, C−\G, and
C\(E ∪ F ∪ G).

Theorem The valence of every real Smirnov function with finite valence is given by
the valence of a plane valence tree, and any valence arising from a plane valence tree
is the valence of a real Smirnov function.

The inspiration for this paper, and what informs our results, comes from the study
of unbounded Toeplitz operators on the Hardy space H2 of the open unit disk D (see
[3,26] and below). Here, for a general analytic function ϕ on D, one can define the
Toeplitz operator

Tϕ : D(Tϕ) → H2, Tϕ f = ϕ f,

where D(Tϕ), the domain of Tϕ , is defined by

D(Tϕ) =
{
f ∈ H2 : ϕ f ∈ H2

}
.

Sarason [26] showed that D(Tϕ) �= {0} if and only if

ϕ = b

a
, (1.1)

where b and a are bounded analytic functions onD and a has no zeros. Suchϕ comprise
the well-known Nevanlinna class N [10]. It can also be arranged so that

a(0) > 0 and |a|2 + |b|2 = 1
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almost everywhere on the unit circle T. With these normalizing conditions, this rep-
resentation is unique. In the same paper, Sarason also showed that D(Tϕ) is dense in
H2 if and only a in (1.1) is an outer function. These ϕ comprise the Smirnov class
N+. Observe from [10, Ch. 2] that

⋃
p>0

H p ⊆ N+, (1.2)

where H p, theHardy classes, are the analytic functions f onD forwhich the p-integral
means

Mp(r, f ) :=
(∫ 2π

0
| f (reit )|p dt

2π

)1/p

(1.3)

are uniformly bounded for r ∈ [0, 1).
Classical theorems of Fatou and Riesz [10, Ch.1, 2] say that for each ϕ ∈ N+ the

radial limit
ϕ(eit ) := lim

r→1− ϕ(reit ) (1.4)

exists (and is non-zero) for almost every t ∈ [0, 2π ]. We say ϕ ∈ N+ belongs to the
real Smirnov class N+

R
if

ϕ(eit ) ∈ R

for almost every t (see some examples below). These real Smirnov functions have
been studied in [14,15,19,20,22] and a full characterization of them was given by
Helson [19,20] as

ϕ ∈ N+
R

⇐⇒ ϕ = i
u + v

u − v
, (1.5)

where u and v are inner functions and u − v is an outer function.
When ϕ ∈ N+

R
and

〈 f, g〉 =
∫ 2π

0
f (eit )g(eit )

dt

2π

denotes the usual inner product on H2 (considered in the usual way, via radial limit
functions, as a closed subspace of L2), one can use the fact that ϕ(eit ) is real for almost
every t to see that

〈Tϕ f, g〉 = 〈 f, Tϕg〉, f, g ∈ D(Tϕ).

In other words, Tϕ is a densely defined symmetric operator on H2.
Standard results from the theory of unbounded symmetric operators [2, Vol. II,

Ch. VII] show that when ϕ ∈ N+
R

and λ /∈ R, the densely defined operator Tϕ − λI
has closed range and the deficiency numbers

dϕ(λ) := dim(Rng(Tϕ − λI ))⊥, (1.6)
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where Rng denotes the range of an operator, are constant on each of the half planes

C+ = {z : �z > 0}, C− = {z : �z < 0}.

Moreover, given a pair (m, n), where m, n ∈ N0 ∪ {∞}, there is a ϕ ∈ N+
R
with

(dϕ(i), dϕ(−i)) = (m, n).

It is also the case that both deficiency numbers are finite if and only if ϕ ∈ N+
R
is a

rational function.
To get to our discussion of the range of ϕ, the focus of this paper, we unpack this

a bit further as was done in [19]. Observe that Rng(Tϕ − λI ) is not only a closed
subspace of H2 but it is also invariant under the shift operator S f = z f on H2 and
thus, by Beurling’s theorem [10, Ch. 7],

Rng(Tϕ − λI ) = �H2

for some inner function �. Let �λ denote the inner factor of ϕ − λ. All functions in
�H2 have �λ as a divisor. Moreover, since we can write ϕ − λ = b/a where b and a
are in H∞ and a is outer, it follows that the inner factor of (ϕ − λ) is the inner factor
of b, and thus the inner factor of (ϕ − λ)a is precisely �λ. Thus � = �λ. This means
that

(Rng(Tϕ − λI ))⊥ = (�λH
2)⊥

which is a model space [5,9,13,24], a typical invariant subspace for the backward
shift operator S∗. Moreover, the model space (�λH2)⊥ has finite dimension n if and
only if �λ is a finite Blaschke product of degree n. Since

ker(T ∗
ϕ − λI ) = (Rng(Tϕ − λI ))⊥ = (�λH

2)⊥,

and for each w ∈ D,

T ∗
ϕ kw = ϕ(w)kw, kw(z) = 1

1 − wz
,

we see that

∨
{kw : ϕ(w) = λ} ⊆ ker(T ∗

ϕ − λI ) = (�λH
2)⊥.

In the above,
∨

denotes the closed linear span. Hence, using the fact that �λ is the
inner factor for ϕ − λ, we see that for λ ∈ C\R,

λ ∈ ϕ(D) ⇐⇒ �λ(w) = 0 for some w ∈ D.
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Furthermore, the valence

vϕ(λ) := card{w ∈ D : ϕ(w) = λ} (1.7)

will be the degree of the Blaschke factor of �λ. For example, if the inner factor of
�λ is either a unimodular constant or a singular inner function (which will have no
zeros in D), then λ /∈ ϕ(D), i.e., vϕ(λ) = 0. On the other hand, if �λ has is an infinite
Blaschke factor, then vϕ(λ) = ∞. Note that

vϕ(λ) � dϕ(λ), λ /∈ R,

but equality does not always hold. For example, �λ might be the product of a finite
Blaschke product of degree n and a singular inner function. In this case vϕ(λ) = n
while dϕ(λ) = ∞.

Thus, characterizing the range of ϕ will involve a discussion of the λ ∈ C\R

such that ϕ − λ has a non-trivial Blaschke factor. Rudin [25], generalizing a classical
theorem of Frostman [6, p. 37], showed that for nearly all λ ∈ C\R, the inner factor of
ϕ − λ is a Blaschke product. Here “nearly all” means that this property holds with the
possible exceptional set of logarithmic capacity (capacity for short) zero. See [11,23]
for basic facts about logarithmic capacity and see [7,12,21] for more on Blaschke
products.

In the above, we are allowing a unimodular constant to count as a Blaschke factor
(of order zero). In this degenerate case we see that �λ ≡ ξ for some ξ ∈ T and so

(Rng(Tϕ − λI ))⊥ = (ξH2)⊥ = {0}.

Thus if�λ is a unimodular constant function for one λ ∈ C+ (or one λ ∈ C−) then,
since dϕ is constant on each of C+ or C−, it follows that �λ is a constant unimodular
function for all λ ∈ C+ (or all λ ∈ C−). If�λ is a constant unimodular function for one
λ ∈ C+, thenϕ(D)∩C+ = ∅ (similarly for some λ ∈ C− and henceϕ(D)∩C− = ∅).
Hence, for example, if ϕ(D) ∩ C+ omits an open disk about λ ∈ C+, then ϕ − λ is
an outer function, i.e., �λ is a constant unimodular function. In this case the above
discussion implies that ϕ(D) ∩ C+ = ∅.

Thus, using the above analysis, along with the fact that ϕ(D) is an open connected
subset of C (open mapping theorem), we have the following possibilities for the range
of ϕ ∈ N+

R
:

ϕ(D) = C+\F or ϕ(D) = C−\G or ϕ(D) = C\(F ∪ G ∪ E), (1.8)

where F ⊆ C+ and G ⊆ C− are relatively closed subsets of capacity zero and E � R

is closed. The question we ask and answer in this paper is whether or not we can
actually obtain all of these possibilities. In addition, we also discuss the valance on
these ranges.

To give the reader a feel for where we are heading, let us consider a few simple
examples of ranges of ϕ ∈ N+

R
.
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Example 1.1 If

ϕ1(z) = i
1 + z

1 − z
,

then ϕ1 ∈ N+ (since it is the quotient of two bounded analytic functions and the
denominator 1 − z is outer) and

ϕ1(e
it ) = − cot(t/2) ∈ R,

which says that ϕ1 ∈ N+
R
. Furthermore, ϕ1(D) = C+. In a similar way, we see that if

ϕ2(z) = −i
1 + z

1 − z
,

then ϕ2 ∈ N+
R
and ϕ2(D) = C−.

If θ is the singular inner function

θ(z) = exp

(
1 + z

1 − z

)
,

then θ(D) = D\{0} and thus if ψ1 := ϕ1 ◦ θ , then ϕ1 ∈ N+
R

and ψ1(D) = C+\{i}.
Observe that the singleton {i} has capacity zero [23, p. 140].

Given a relatively closed subset W ⊆ D of capacity zero, there is an inner function
σ such that σ(D) = D\W [6]. Then ψ2 = ϕ1 ◦ σ ∈ N+

R
and ψ2(D) = C+\F , where

F = ψ1(W ) has capacity zero.

Example 1.2 If

ϕ3(z) =
(
1 + z

1 − z

)4

then

ϕ3(e
it ) = cot4(t/2) ∈ R

and, since

z �→ 1 + z

1 − z

maps D onto the right-half plane {z : �z > 0}, then ϕ3(D) = C\{0}.
Example 1.3 If

ϕ4(z) = z

(1 − z)2
,
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the well-known Koebe function, then

ϕ4(e
it ) = −1

2

1

1 − cos t
∈ R

and ϕ4(D) is the single slit domain C\(−∞,− 1
4 ].

Example 1.4 If

ϕ5(z) = i z

1 − z2
,

then

ϕ5(e
it ) = −1

2
csc t ∈ R

and ϕ5(D) turns out to be the double slit domain

C\ (
(−∞,− 1

2 ] ∪ [ 12 ,∞)
)
.

Of course one can compose any of the functions ϕ j from these examples with
interesting inner functions, like was done in the first example, to obtain ranges taking
the form C+\F , C−\G, and C\(F ∪ G ∪ E) for relatively closed sets F and G of
capacity zero and a closed set E � R. Can we obtain all of these possibilities as ranges
for given E, F,G?

2 The main range result

Our main result about the range of ϕ ∈ N+
R
is the following:

Theorem 2.1 If ϕ ∈ N+
R
and non-constant, then ϕ(D) is either

ϕ(D) = C+\F or ϕ(D) = C−\G or ϕ(D) = C\(F ∪ G ∪ E),

where E � R and closed, F ⊆ C+ is relatively closed and has capacity zero, and
G ⊆ C− is relatively closed and has capacity zero. Moreover, given any closed
E � R, any relatively closed F ⊆ C+ of capacity zero, and any relatively closed
G ⊆ C− of capacity zero, there are functions in N+

R
with ranges C+\F, C−\G, and

C\(E ∪ F ∪ G).

Our proof needs a variation of a result from [11, p. 119].

Lemma 2.2 Suppose f is a non-constant function belonging to H p for some p ∈
(0,∞) and E ⊆ T of positive Lebesgue measure for which

lim
r→1− f (rξ) =: f (ξ)

exists for each ξ ∈ E . If E = { f (ξ) : ξ ∈ E}, then E has positive capacity.
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Proof We follow the original proof from [11, p. 119] with a slight variation. First,
note that since the almost everywhere defined boundary ξ �→ f (ξ) function on T

is a limit of continuous functions (the dilations fr (ξ) := f (rξ)) on T, by Egorov’s
theorem there is a set of positive measure that is a subset of E on which the boundary
function f is continuous. By the inner regularity of Lebesgue measure, this set has a
compact subset of positive measure. Without loss of generality we may take E to be
this set. Then f (E) is compact, and | f | � K on E for some K > 0. Suppose towards
a contradiction that E has zero logarithmic capacity. Then by Evan’s theorem [11,
p. 33], for some probability measure σ on T, the logarithmic potential

p(z) = −
∫

E
log |z − ζ |dσ(ζ )

satisfies

lim
z→ξ

p(z) = +∞, ξ ∈ E .

The function u = p( f ) is harmonic on D and satisfies the condition

lim
r→1− u(rξ) = +∞, ξ ∈ E .

Let v be the harmonic conjugate of u on D and define F = e−u−iv . Assuming that
F ∈ H p (a fact we will prove momentarily), we see that

lim
r→1− |F(rξ)| = 0, ξ ∈ E .

But since E has positive Lebesgue measure, this would mean that f ≡ 0 [10, p. 17],
a contradiction.

To finish, we now show that F ∈ H p. Observe that a use of Jensen’s inequality
[23, p. 43] and the integral means definition of H p from (1.3) shows that

∫ 2π

0
|F(reit )|p dt

2π
=

∫ 2π

0
exp

(∫

E
log | f (reit ) − ζ |pdσ(ζ )

)
dt

2π

�
∫ 2π

0

(∫

E
| f (reit ) − ζ |pdσ(ζ )

)
dt

2π

=
∫

E

(∫ 2π

0
| f (reit ) − ζ |p dt

2π

)
dσ(ζ )

� 2p
(

sup
0<r<1

M(r, f )p + K p
)

.

Since the last quantity above is independent of r ∈ (0, 1), this shows that F ∈ H p

and thus completes the proof. ��
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Proof of Theorem 2.1 The first part of the theorem follows from the discussion pre-
ceding (1.8). For the second part (obtaining all possible types of ranges), we proceed
as follows. First consider the case where the range contains points in both the upper
and lower half planes. Since E is a proper closed subset of R, it follows that R\E has
at least one component. If it has exactly one component, then E must be one of the
following four options:

∅, (−∞, c], [c,∞), (−∞, a] ∪ [b,∞), (a < b). (2.1)

We will first deal with the case where R\E has at least two components. By means
of a real translation of our function at the end, we can assume 0 ∈ E and, for some
a < 0 and 0 < b < c, that

E ⊆ (−∞, a] ∪ [0, b] ∪ [c,∞). (2.2)

Define

E+ = E ∩ [0,∞), E− = E ∩ (−∞, 0)

and the open set

� = {�z > 0}\(Ẽ1 ∪ Ẽ2 ∪ Ẽ3 ∪ F̃ ∪ G̃), (2.3)

where

Ẽ1 = {x 1
4 : x ∈ E+},

Ẽ2 = ei
π
4 {(−x)

1
4 : x ∈ E−},

Ẽ3 = e−i π
4 {(−x)

1
4 : x ∈ E−},

and F̃ and G̃ are the intersections of the right half plane with the images of F and G
respectively under the multivalued map z �→ z1/4. See Fig. 1 for an illustration of �

when

E = (−∞, a] ∪ [0, b] ∪ [c,∞).

Since � is contained in

{�z > 0}\
(
[0, b 1

4 ] ∪ [c 1
4 ,∞) ∪ eiπ/4[|a| 14 ,∞) ∪ e−iπ/4[|a| 14 ,∞)

)

and this last set is connected, one concludes, also using the containment in (2.2) along
with the fact that extracting a set of capacity zero does not disconnect a domain [23,
p. 68], that � is connected. By [8, p. 125] there exists an analytic covering map for
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Fig. 1 The region � when
E = (−∞, a] ∪ [0, b] ∪ [c, ∞)

b1/4
E1

c1/4 E1

|a|1/4eπi/4

E2

|a|1/4e−πi/4

E3

F

F

G

G

Ω

�, such that ψ(D) = �. Furthermore, since ψ(D) is contained in a half-plane, then
ψ belongs to H p for all p ∈ (0, 1) [16, p. 109]. Thus, by (1.2), ψ ∈ N+.

The map ψ is a covering map from D to �, which means that each point of � is
contained in an open neighborhoodU such that ψ−1(U ) consists of disjoint open sets
each of which is homeomorphic to U under ψ .

We now claim that if the radial limit

lim
r→1− ψ(reit ) (2.4)

exists, which it will for almost every t [see (1.4)], then this value must belong to ∂�.
Indeed, if this were not the case, then, for some particular t , the limit would be equal to
some w ∈ �. Now choose an open neighborhood U of w such that ψ−1(U ) consists
of disjoint sets each of which is homeomorphic to U under ψ . Let W be an open
neighborhood of w contained in U and such that W ∩U is compact. Then

ψ−1(W ) =
⋃
a∈A

Va,

where A is some index set and the Va are pairwise disjoint open sets that are each
homeomorphic to W under ψ . Thus each Va has compact closure in ψ−1(U ). For
some b ∈ [0, 1), the curve

r → ψ([reit , eit )), r ∈ [b, 1),

must lie entirely inW since ψ has radial limit of w at eit . But since the Va are disjoint
open sets, this means that the ray
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[reit , eit ), r ∈ [b, 1),

must lie entirely in one of the Va . But this is impossible because each of the Va has
compact closure in ψ−1(U ) but eit /∈ ψ−1(U ).

The set F̃ is the union of two images of F under maps that are Lipschitz in any
annulus centered at the origin. Since F has capacity 0, each of the images has capacity
0 [23, p. 137], and their union F̃ also has capacity zero [23, p. 57]. The same applies
to G̃, and thus F̃ ∪ G̃ has capacity zero.

By Lemma 2.2, the values in those sets cannot be boundary values of ψ , except
possibly on a set of measure 0.

Setting ϕ = ψ4 we see that ψ ∈ H p for all p ∈ (0, 1
4 ) and thus, again from (1.2),

ψ ∈ N+. Moreover, since

lim
r→1− ψ(reit ) ∈ ∂�\(F̃ ∪ G̃)

for almost every θ , we see that

lim
r→1− ϕ(reit ) ∈ R

for almost every t . Thus ϕ ∈ N+
R
. The construction of � from (2.3), and the fact that

0 ∈ E , will show that

ϕ(D) = {z4 : z ∈ �} = C\(E ∪ F ∪ G).

For the cases where the desired range is C+\F or C−\G, and for the case where
E = (−∞, c] or E = [c,∞) or E = (−∞, a] ∪ [b,∞) and the desired range is
C\(E ∪ F ∪ G), we let ϕ be the covering map from D onto the desired range. The
proof that this map has the required properties is similar to the proof of the first case
above. We use the fact that any mapping from D into a domain with at least one slit
that goes to ∞ is in H p for all p ∈ (0, 1

2 ) [16, p. 110].
If the desired range is C\(F ∪ G), we let F̃ and G̃ be the images of F and G

respectively under the multivalued map z �→ z1/2—which are of capacity zero [23,
p. 137]. Letψ be the covering map from D onto C\(F̃ ∪ G̃∪[1,∞)), and let ϕ = ψ2.
The proof that mapping has the required properties is similar to the proofs above. ��
Remark 2.3 1. The mapping ϕ constructed above is actually outer, as long as 0 is not

in the range. To see this, observe that, in the first part of the proof, ψ(D) ⊆ {�z >

0}. Such functions are outer [16, p. 109]. Since the product of outer functions
is another outer function, this means that ϕ = ψ4 is outer. In the other cases in
which 0 is not in the range, we have that ϕ is a map onto a domain with a linear
slit containing 0 and going to ∞. But any map onto such a domain is outer, since
we can define the square root of such a mapping, and that mapping will be onto
a half plane omitting 0 and thus outer (and belong to H p for all p ∈ (0, 1) [16,
p. 109]).
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2. Theproof ofTheorem2.1 also shows thatwe canfind aϕwith the desired properties
that is in H p for each p ∈ (0, 1

4 ).

3 Controlling the valence

A key step in the construction in Theorem 2.1 was the uniformization theorem [8,
p. 125]. However, it is not clear from our construction how one can control the valence
of ϕ.

In this regard, one can ask the following question: Suppose we are given an closed
set E � R and a pair (m, n), m, n ∈ N0 ∪ {∞}. Can we find a ϕ ∈ N+

R
such that the

valence of ϕ is equal to m on C+, n on C−, and such that ϕ(D) = C\E? Can we say
anything about the valence of ϕ on R\E?

Let us start with a fewobservations. Extending a standard proof of the openmapping
theorem for analytic functions, one can prove the following. Recall that vϕ is the
valence function from (1.7) and dϕ is the deficiency index from (1.6).

Proposition 3.1 For ϕ ∈ N+
R
and N = 1, 2, . . ., the set

{w ∈ C : vϕ(w) � N }

is an open subset of C.

Note that the above result does not hold when N = ∞.

Example 3.2 Theorem 2.1 says that we can find a ϕ ∈ N+
R
such that

ϕ(D) = C\[0,∞).

However, the previous proposition says that we can’t find a ϕ ∈ N+
R

with the same
range and that also satisfies

vϕ |C+ = 1, vϕ |C− = 2, vϕ |{x<0} = 3

since vϕ |C+ and vϕ |C− must be at least 3.

Next we explore when the valence is finite.

Proposition 3.3 For ϕ ∈ N+
R
the following are equivalent.

(i) ϕ is a rational function;
(ii) vϕ |C+ and vϕ |C− are finite;
(iii) There are two relatively prime finite Blaschke products B1, B2 such that B1 − B2

has no zeros on D and such that

ϕ = i
B1 + B2

B1 − B2
. (3.1)

(iv) dϕ(i) and dϕ(−i) are finite.



The range and valence of a real Smirnov function

Furthermore,

(a) if any of the above equivalent conditions hold, we have

vϕ |C+ = deg(B2), vϕ |C− = deg(B1).

(b) if any of the above conditions do not hold then either vϕ |C+ or vϕ |C− is infinite
nearly everywhere.

Proof of Theorem 2.1 (i) ⇐⇒ (iv) is from [19].
(i i i) �⇒ (i): One can show directly that a ϕ given by (3.1) is a rational function

in N+
R
.

(i) �⇒ (i i i): Set g = (ϕ− i)/(ϕ+ i) and observe that g is meromorphic function
on D that is continuous with unimodular boundary values on T. A classical theorem
of Fatou [12] says that

g = B1

B2
,

where B1 and B2 are relatively prime Blaschke products. The result now follows with
a simple computation.

(i i i) �⇒ (i i): We follow an argument from [12]. The Möbius transformation

ψ(z) = z − i

z + i

is injective and maps C+ onto D and C− onto Ĉ\D
−. If w ∈ C+, the number of

solutions to ϕ(z) = w is the same as the number of solutions to ψ ◦ ϕ(z) = ψ(w) =
η ∈ D. Writing this out, this is same as the number of solutions to

η = ϕ(z) − i

ϕ(z) + i
= B2(z)

B1(z)
.

To examine the number of zeros in D of B2 − ηB1, observe that on T we have

|ηB1| = |η| < 1 = |B2|

and so, by Rouche’s Theorem, the number of zeros in D of B2 and B2 − ηB1 are
the same. This proves that vϕ(w) = deg(B2) whenever w ∈ C+. The corresponding
valence on C− follows in a similar way. This also verifies (a).

(i i) �⇒ (iv): Suppose vϕ |C+ is finite but dϕ(i) = ∞. Since dϕ |C+ is constant,
we see that dϕ(λ) = ∞ for all λ ∈ C+. By [25], the inner factor �λ of ϕ − λ is a
Blaschke product for all λ /∈ R except possibly for a set of capacity zero. As discussed
in (1.7),

vϕ(λ) = deg(�λ) = ∞
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for nearly all λ ∈ C+, a contradiction. An analogous argument holds for vϕ |C− . This
also proves (b). ��

The techniques in the above proof also show the following.

Corollary 3.4 If ϕ ∈ N+
R
and vϕ |C+ is non-constant, then vϕ(λ) = ∞ for nearly all

λ ∈ C+. An analogous result holds for vϕ |C−

Remark 3.5 We point out a paper [27] which gives some information about how one
can, under mild technical conditions, define an inner function whose valence can be
prescribed on various closed subsets of the D of zero capacity. Since real Smirnov
functions take the form i(u+v)/(u−v) (recall Helson’s characterization from (1.5)),
where u and v are inner, this creates examples of real Smirnov functions with wild
valence behavior.

We now characterize the possible valences of real Smirnov functions of finite
valence. As seen in Proposition 3.3, these are the rational real Smirnov functions.

A disk tree is a type of Riemann surface made by welding together copies of D and

D
∗ := {

z ∈ Ĉ : |z| > 1 or z = ∞}
.

To each copy of D and D
∗ in the disk tree is associated a positive integer m which

we call the valence. A admissible arc on a disk tree is an arc on the boundary of a
copy of D or D

∗ of the form {eiθ : a < θ < b} where (a, b) contains no multiple of
2π/m. The image arc for a given admissible arc is the arc {eiθ : am < θ < bm}. This
is the image of the admissible arc under the function zm . An admissible arc is called a
free arc if it is part of the boundary of the disk tree, in other words, if it has not been
welded to another arc in the disk tree. An admissible arc is a welded arc if it has been
welded to another arc in the disk tree.

Wewill now formally define disk trees inductively. A copy ofD orD∗ with a valence
is a disk tree. Let X be a disk tree. Let Z be a new copy of D or D

∗ with valence m.
Let Y be a copy of D or D

∗ in X with valence n, where Y is a copy of D if Z is a copy
of D

∗, and vice versa. Suppose we are given a free arc on Y and a free arc on Z and
that both of them have the same image arc. We may weld Y and Z together on their
free arcs by the map Y � z �→ zn/m ∈ Z . See [1, II.3C] for more on welding Riemann
surfaces. We will also give an explicit example of welding in Example 3.6. We say the
resulting surface of X welded to Z is a disk tree if it still has a free arc remaining.

Any disk tree is simply connected (van Kampen’s theorem [17, Ch. 1]). It is also
conformally equivalent to the disk. Indeed, by the uniformization theorem, it is equiv-
alent to the disk, the plane, or the Riemann sphere. But we may weld another copy of
the disk (or complement of the disk) to any disk tree and still obtain a simply connected
Riemann surface, since any disk tree has a free arc. Thus we can obtain the original
disk tree from the new Riemann surface by removing a set with infinitely many points.
But if we take a set with infinitely many points away from either the Riemann sphere,
the plane, or the disk, and we are left with a simply connected set, that set must be
conformally equivalent to the disk.
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For a disk tree X , define

fX : X �→ Ĉ\{1}

by fX (z) = zm for z in a copy of D or D
∗ with valence m, or for z in a welded arc

that belongs to a copy of D with valence m. The function fX is clearly meromorphic
in each copy of D or D

∗. By construction, it is continuous in a neighborhood of each
welded arc. To see this, suppose that some admissible arc I in a copy of D or D

∗ with
valence n (call the copy Y ) is welded to an admissible arc J in a copy of D or D

∗ of
valence m (call the copy Z ). Let Y ′ and Z ′ be sufficiently small neighborhoods of I
and J in Y ∪ I and Z ∪ J , respectively. Note that by definition of the welding the map

ϕ(z) =
{
zn/m if z ∈ Y ′

z if z ∈ Z ′

is well defined, continuous and even conformal. But fX (z) = ϕ(z)m in Y ′ ∪ Z ′.
Thus by Morera’s theorem, fX is analytic in a neighborhood of each welded arc and
thus meromorphic on X . When restricted to a copy of D or D

∗ that has valence m
the function fX has valence m at each point of D or D

∗ respectively, and valence 0
elsewhere. Also, when restricted to a welded arc, the function fX has valence 1 on
the image arc and 0 elsewhere. Thus, fX has valence on D equal to the sum of the
valences of the copies of D in the disk tree, and similarly for D

∗. Its valence on a point
in ∂D\{1} is equal to the number of image arcs in which it appears, where if two arcs
are welded together in the disk tree we count their image arc (which is the same for
both the welded arcs) as appearing only once. Let ϕ : D �→ X be a conformal map
from D to X . Then fX ◦ ϕ is a (meromorphic) map from D to Ĉ\{1}.
Example 3.6 We give an explicit construction of a disk tree. This disk tree will have
valence 1 on D and 2 on D

∗. See Fig. 2 for an illustration of some aspects of this
example. Let X consist of one copy each of D and D

∗, together with the boundary of
∂D\{1}. For 0 < θ < 2π , identify the point eiθ on ∂D\{1} with the point eiθ/2 on
∂D

∗\{1}. We will weld along these identified boundary points. To do this explicitly,
let

D ⊃ U1 =
{
reiθ : 1/2 < r � 1 and 0 < θ < 2π

}

and

D∗ ⊃ U2 =
{
reiθ : 1 � r < 2 and 0 < θ < π

}

and let U = U1 ∪ U2. Take coordinate charts ϕ1 : D → C and ϕ2 : D
∗ → C and

ϕ3 : U → C, where ϕ1(z) = z and ϕ2(z) = 1/z and

ϕ3(z) =
{
z1/2 if z ∈ U1,

z if z ∈ U2
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Fig. 2 An illustration of ϕ3 and
fX on U , from Example 3.6

U1 U2

fX
ϕ3

z2

ϕ3(U2)

ϕ3(U1)

where we take the branch of z1/2 with (−1)1/2 = i and branch cut along the positive
real axis. We can take as a basis for the open sets in X sets that are open in D or in
D

∗ or sets that are the inverse images of open sets under ϕ3. Thus U is an open set.
(Note that any set that is the inverse image of an open set under ϕ3 and lies entirely
in D is open in D; the same may be said for D

∗.) Notice that ϕ3 is continuous, and
that ϕ1(ϕ

−1
3 (z)) = z2 and ϕ2(ϕ

−1
3 (z)) = z−1. Both of these maps are analytic in their

domains. Thus we have made X into a Riemann surface with the given charts.
Define

fX (z) =
{
z for z ∈ D or z ∈ ∂D

z2 for z ∈ D
∗ or z ∈ ∂D

∗.

Then fX is analytic from X into Ĉ\{1}. To see this, note that

fX (ϕ−1
1 (z)) = z, fX (ϕ−1

2 (z)) = 1/z2, fX (ϕ−1
3 (z)) = z2.

Also, f has valence 1 on D, valence 2 on D
∗, and valence 1 on ∂D\{1}.

We now define some types of graphs which we need to state the main result. A
plane valence tree is a graph that is a tree. To each node is associated a label of either
C+ or C− and positive integer m, called the valence. A node with label C+ may only
be adjacent to nodes labeled C−, and nodes labeled C− may only be adjacent to nodes
labeled C+. To each edge is associated an open interval in R. The interval may be all
of R but may not be empty. We make the requirement that a disjoint union of all the
intervals on edges coming from a node is a subset of a disjoint union of m copies of
R, where m is the valence of the node. We require that some node has the property
that a disjoint union of m copies of R, where m is the valence of the node, contains a
disjoint union of all the intervals on edges coming from the node, as well as another
open interval in R. We say that such a node has a free interval. For a plane valence
tree, the valence of a point in C+ is the sum of the valences of the C+ nodes, and
similarly for C−. For a point in R, it is the number of times it appears in an edge of
the valence tree.
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Fig. 3 An example plane
valence tree

Define

ψ = −i
z + 1

z − 1
.

Then ψ maps D to C+ and D
∗ to C− and R to ∂D\{1}.

We may form a disk valence tree by mapping C+ and C− and R in the labeling of
the valence tree to D and D

∗ and ∂D\{1} under ψ−1.

Example 3.7 Figure 3 is an example of a plane valence tree. By Theorem 3.8 (see
below), there is a real Smirnov function with valence 3 on C+, valence 9 on C−,
valence 3 on (0, 1), valence 2 on (−3, 0] ∪ [1, 5), valence 1 on (7, 8) and (9, 10), and
valence 0 elsewhere.

Theorem 3.8 The valence of every real Smirnov function with finite valence is given
by the valence of a plane valence tree, and any valence arising from a plane valence
tree is the valence of a real Smirnov function.

The proof of Theorem 3.8 needs the following valence result. It is an exercise in
[18] (Example 3.1 of Section 3.3), but for the sake of completeness we give the proof.

Lemma 3.9 Let f be an analytic function in D of valence at most m. Then f ∈ H p

for every p ∈ (0, 1
2m ).

Proof of Theorem 2.1 Recall the definition of the p-integral means Mp(r, f ) from
(1.3) and define

M∞(r, f ) := sup
|z|=r

| f (z)|.

By [4, Thm. 1] (see also [18, Sec. 2.3]) we have

M∞(r, f ) = O

(
1

(1 − r)2m

)
. (3.2)
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From [18, Theorem 3.2] we see that if f is m-valent and 0 < r0 < r < 1 then

Mp(r, f ) � M∞(r0, f )p + mmax
(
m,

m2

2

) ∫ r

r0

M∞(t, f )p

t
dt.

Applying the estimate in (3.2) for M∞(r, f ) shows that the function

r �→ Mp(r, f )

is bounded when p ∈ (0, 1
2m ), i.e., f ∈ H p for all p ∈ (0, 1

2m ). ��
Proof of Theorem 3.8 Given a plane valence tree, form the associated (disk) valence
tree under the mapping ψ−1. Construct a disk tree X where nodes labeled D with
valence m correspond to disks of valence m, and similarly for D

∗. If Y is a copy of D

orD
∗ with valencem, consider the arcs labeling edges connected to the corresponding

node.Call these arcs I1, . . . , Ik . The disjoint unionof these arcs are a subset of a disjoint
union of m copies of ∂D\{1}. This means that we can find a disjoint set of admissible
arcs on the boundary of Y whose image arcs are precisely the arcs I1, . . . , Ik .

Given copies of D and D
∗ with corresponding nodes connected by an edge, weld

them together together on arcs with image arcs equal to the arc labeling the edge
between them. This is possible by the above remarks. Since the valence tree has the
free arc property and is a tree, X will have a free arc on some copy ofD orD

∗ contained
in it and will be a disk tree.

Let ϕ be a conformal map from D onto X . The map g = ψ ◦ fX ◦ ϕ has valence
equal to the valence of the plane valence tree. Since g has finite valence, it is in the
Smirnov class by Lemma 3.9. Every point in C\(R ∪ {i,−i}) has a neighborhood U
such that g−1(U ) consists of disjoint sets that are each homeomorphic to U under f .
The reason that we exclude i and −i is that i = ψ(0) and −i = ψ(∞), and the points
0 and ∞ may be the image under fX of points where fX has zero derivative. The
fact that {i,−i} has zero capacity together with the same argument used to prove (2.4)
shows that g has real boundary values almost everywhere. Wemention in passing that,
in fact, since g has finite valence and thus is rational (by the result from [19]), it has
real boundary values everywhere, except for a finite number of points where it has ∞
as a boundary value.

For the other direction, suppose that f is real Smirnov with finite valence. Then f
is rational and thus continuous on D, when viewed as a map into Ĉ.

Consider f −1(−∞,∞). This is a set of branched analytic arcs inD, with endpoints
only at D and branch points only at points where f ′ is zero. Each branch point has
an even number of analytic arcs coming from it. Also, f −1(C+) is a finite disjoint
union of open sets we will call upper regions (similarly for C− and lower regions).
By the maximum principle for harmonic functions applied to the real part of f , no
upper region can have more than two of the analytic arcs going into a branch point
as boundary arcs. Also by the maximum principle, no two upper regions can share a
boundary curve, and each upper region is simply connected. Given an upper region,
note that its boundary curve is mapped into R, and so by the argument principle each
point inC+ has the same valencem under f restricted to the upper region. This means
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Fig. 4 I1 = (−1,∞),
I2 = (0, 3), I3 = (−∞, −2).
Valence is 3 on C+, 2 on C−, 2
on (0, 3), 1 on (−1, 0] and
[3,∞), and 1 on (−∞, −2).
Note that as we proceed
counterclockwise around the
boundary of an upper region and
clockwise around the boundary
of a lower region, the image
under f increases on the real
line

the boundary of the upper region must contain some point that maps to ∞. The same
applies to lower regions. By the orientation preserving properties of analytic functions,
each upper regionmaps its boundary (considered as positively oriented) to the real line
in a way so that moving along the boundary increases the value on the real line (except
at ∞). A lower region has the opposite property. Thus, by the argument principle, the
boundary of an upper or lower region must map onto R ∪ {∞} exactly m times. We
give Figs. 4 and 5 for illustration.

We will now give a method that, given a finite valence real Smirnov function,
constructs a plane valence tree such that the valence of the tree corresponds to the
valence of the function. We proceed by induction on the number of regions. If there
is only one region, and this region has valence m, construct a plane valence tree with
only one node of valence m.

Suppose there is more than one region. We may replace upper regions by lower
regions in the following argument if needed. Take an upper region, and consider all
upper regions sharing common boundary points inside the unit disk with the given
region. Take the union, including the boundary points and boundary arcs. Repeat the
process for all the new upper regions added, and continue until it is no longer possible
to do so. This forms a finite union of upper regions (and their boundaries) - call it X ,
and call it an upper collection. By the maximum principle for harmonic functions, X
is simply connected. X is not the whole disk by our assumption.

The boundary of X must intersect the boundary of the disk since some point in the
boundary of each upper region maps to ∞. Thus, the complement of X consists of a
union of simply connected sets. For the j th set, let ϕ j be the conformal map from the
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Fig. 5 The disk with upper and
lower regions, and the
corresponding valence tree.
Upper regions are labeled C+
and lower regions are labeled
C−. Edges and valences are not
labeled. Note that, if we start
with upper region A, we obtain
the upper collection with A, B,
C, and D as the first node

unit disk onto this set. By the induction hypothesis, we may form a valence tree for
the j th set, using the function f ◦ ϕ j instead of the function f , and by starting with
a lower region instead of an upper region. (We could also apply the above reasoning
directly to the j th set without using the conformal map ϕ j .) Let Tj denote the valence
tree for the j th set. Now suppose the total valence of all components of X is M . Draw
a C+ node with valence M . Draw edges from the node for X to the nodes in the trees
Tj that correspond to lower collections sharing boundary arcs with X . There is at least
one edge to each Tj because every Tj shares a boundary arc with X . We will later
see that there is exactly one edge to each Tj . Label each arc’s edges with the intervals
corresponding to the values of f on the edges.

We will show the graph formed is a tree. Consider an analytic arc in f (−∞,∞)

that approaches the boundary of the circle and is part of the boundary of the upper
collection. If we start from a point in the arc that is on the unit circle and follow the
arc, it either terminates at another point of the circle, or at a branch point. If this is the
case, some other arc going from the branch point must be the boundary of the same
lower region as the original arc; follow the new arc. We may continue until we hit the
boundary of the unit circle, which we must since the arc can never approach the same
branch point again, and there are finitely many branch points. Call the combination
of arcs γ . The combination of arcs γ will be part of the boundary of some lower
region, call it L . The lower region L can only have a common boundary with the
upper collection X along γ , since the upper collection X is connected and γ intersects
the circle at its two ends. The component of the complement of the upper collection
X that contains L can have common boundary with X only on γ , for the same reason.
This shows that the graph we form is a tree.
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The arc γ (not counting points on the unit circle) maps to some subset of (−∞,∞)

once. This follows since as a point travels along γ , the image of the point always
increases on the real line, or always decreases, since γ is part of the boundary of a
lower region. This shows each edge is labeledwith an interval inR. Since the boundary
of the upper collection maps onto R ∪ {∞} exactly M times, the disjoint union of all
the intervals labeling edges coming from the upper collection is contained in a disjoint
union of M copies of R.

Note that there is some node (say of valence m) such that m disjoint copies of R

minus the disjoint union of its edges contains an (open) interval. This follows from
the fact that some upper or lower region must have a boundary arc in common with
the unit disk. Thus, the graph we construct is a plane valence tree. The valence of the
tree is the same as that of f by construction. ��

Note that if a holomorphic function has bounded finite valence on C+ and C−, it
must have finite valence on R by the open mapping theorem.

We now give some examples.

Example 3.10 Let n � 1 and

(a1, b1), (a2, b2), . . . , (an, bn)

be a finite set of open intervals such that none of the intervals is the entire real line
and (a j , b j ) is disjoint from (a j+1, b j+1) for each j . Then there is a function from
N+
R
whose range is

n⋃
j=1

(a j , b j ) ∪ C+ ∪ C−.

Moreover, the valence of each point of C+ is �n/2� + 1 and the valence of each point
of C− is �n/2�. The valence of each point in R is equal to the number of the intervals
(a j , b j ) in which it lies.

Clearly we can interchange the roles of C+ and C− in the above example.
We could deduce this from our previous theorem, but we will first give an indepen-

dent proof that is simpler than the proof of the previous theorem.

Proof of Theorem 3.8 Construct a Riemann surface as follows. Weld a copy of C+ to
C− along the interval (a1, b1). Now weld the copy of C− to a different copy of C+
along the interval (a2, b2). Now weld this copy of C+ to a different copy of C− along
the interval (a3, b3). Proceed in this manner until all of the intervals are exhausted.
Call this Riemann surface X . Let θ be the projection map from X to C that takes a
given point in the Riemann surface to the corresponding point in either C+, C−, or R.

We now claim that the Riemann surface is conformally equivalent to D. If it were
not, then, since it is simply connected, it would be equivalent to either the Riemann
sphere or the complex plane (uniformization theorem). It is not equivalent to the sphere
since it is not compact.
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It is not equivalent to the complex plane since we could weld another half plane
onto the last half plane welded onto X and still have a simply connected surface, and
if we remove infinitely many points from any simply connected Riemann surface and
are left with a simply connected surface, the new surface must be equivalent to the
disk by the uniformization theorem and the Riemann mapping theorem.

Let ϕ be the conformal map from D to the Riemann surface and

f = θ ◦ ϕ.

Then f maps from D into C. Since f has valence at most �n/2� + 1 at each point, it
belongs to some Hardy space (Lemma 3.9) and thus belongs to N+.

We will now show that f has real (radial) boundary values almost everywhere.
To see this, note that every point in C\R has a neighborhood U such that θ−1(U )

consists of disjoint sets that are each homeomorphic to U under θ . Thus every point
in C\R has a neighborhoodU such that f −1(U ) consists of disjoint sets that are each
homeomorphic to U under f . The same argument as used to prove (2.4) shows that
no (radial) boundary values of f lie in C\R. ��

For example, for n = 3, the valence tree for this example is as shown below. The
nodes are shown with their valences.

C+ : 1 C− : 1 C+ : 1 C− : 1
(a3, b3)(a2, b2)(a1, b1)

Example 3.11 The only possible valence trees for a real Smirnov functionwith valence
1 on C+ and valence 1 on C− have a C+ node of valence 1 connected to a C− node
of valence 1. The interval labeling the edge connecting them can be any nonempty
open interval, except R, since if the edge was labeled R neither node would have a
free interval. Thus the valence of such a real Smirnov function is 1 on a nonempty
open proper subinterval of R, and 0 elsewhere on R.

Example 3.12 Let us find all possible valences for real Smirnov functionswith valence
2 on C+ and valence 1 on C−. The valence tree for such a function has either one C+
node of valence 2, or two C+ nodes of valence 1. These nodes cannot be adjacent.
Figure 6 shows all possible valence trees. In tree I, I1 and I2 must be disjoint; both the
top and bottom node automatically have free intervals. In tree II, I1 can be an arbitrary
non-empty open interval. Because the C+ node has valence 2 and only one edge, it
has a free arc automatically. So the valence at every point in R is either 1 or 0. The
range on R is either the union of two open intervals, or is one interval.

Example 3.13 Let us find all possible valences for real Smirnov functionswith valence
2 on C+ and valence 3 on C−. The valence tree for such a function has either one C+
node of valence 2, or two C+ nodes of valence 1. These nodes cannot be adjacent.
Figure 7 shows all possible valence trees. Note that if all the other conditions for being
a real valence tree are satisfied, some node in a tree must have a free interval if there
is some node of valence one connected to at least two nodes, one of which connects
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Fig. 6 All possible valence
tress with valence 2 on C+ and 1
on C−

Fig. 7 All possible valence tress with valence 2 on C+ and 3 on C−

to no other nodes. If a node of valence m has less than m edges connected to it, the
free interval condition is also automatically satisfied. These remarks apply to all the
trees in Fig. 7 except for tree VIII, which also automatically has a free interval since
two of the intervals labeling its edges must be disjoint.

In tree I, we require I1, I3, and I4 to be pairwise disjoint, and I1 and I2 to be disjoint.
In tree II, we require I1 and I3 to be disjoint. The intervals I1 and I2 do not have to
be disjoint, since the node they have in common has valence 2, and any two intervals
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can fit disjointly into two copies of R. In tree III, we require I1 and I3 to be disjoint,
and I1 and I2 to be disjoint. In tree IV, the intervals I1 and I2 can be arbitrary.

In tree V, intervals I1 and I2 must be disjoint, intervals I1 and I3 are disjoint, and
intervals I3 and I4 are disjoint. In tree VI, I1 must be disjoint from I2 and I2 must be
disjoint from I3. In tree VII, I2 must be disjoint from I3.

In tree VIII, the intervals I1, I2, and I3 must be able to fit into two disjoint copies
of R without intersecting. This is equivalent to requiring that two of them be disjoint.
In trees IX and X, there are no requirements on the intervals. Note that for all cases,
the conditions above imply that some node must have a free interval, and the above
intervals are allowed to be R if this does not conflict with any of the above conditions.

Considering all possible cases shows that the range of the function on R may be
(counting multiplicity) the union of four open intervals I1, I2, I3 and I4 where I1 and
I2 are disjoint, I1 and I3 are disjoint, and I3 and I4 are disjoint. The range of the
function on R (counting multiplicity) may also be the union of three open intervals,
at least two of which are disjoint, or it may be the union of two open intervals; or it
will be one open interval. These are the only cases. Some of these intervals may be
R if the conditions are satisfied (although they cannot be empty). To take a concrete
example, from the first case we see that the range could be (counting multiplicities)

(0, 1) ∪ (2,∞) ∪ (2, 3) ∪ (4, 5).

In other words, the valence would be one on (0, 1), two on (2, 3) and (4, 5), one on
[3, 4] ∪ [5,∞), and zero on the rest of R.
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