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Abstract 

Aim: Invasive species are an ideal system for testing geographic differences in performance 

traits and measuring evolutionary responses as a species spreads across divergent climates and 

habitats. The European gypsy moth, Lymantria dispar dispar L. (Lepidoptera: Erebidae), is a 

generalist forest defoliator introduced to Medford, Massachusetts, USA in 1869. The invasion 

front extends from Minnesota to North Carolina and the ability of this species to adapt to local 

climate may contribute to its continuing spread. We evaluated the performance of populations 

along the climatic gradient of the invasion front to test for a relationship between climate and 

ecologically important performance traits. 

Methods: Insects from 14 populations across the US invasion front and interior of the invasive 

range were reared from hatch to adult emergence in six constant temperature treatments. The 

responses of survival, pupal mass, and larval development time were analyzed as a function of 

source climate (annual mean normal temperature), rearing temperature, and their interaction 

using multiple polynomial regression.  

Results: With the exception of female development time, there were no significant interactions 

between source climate and rearing temperature, indicating little divergence in the shape of 

thermal reaction norms among populations. Source population and rearing temperature were 

significant predictors of survival and pupal mass. Independent of rearing temperature, 

populations from warmer climates had lower survival than those from colder climates, but 

attained larger body size despite similar development times. Larval development time was 

dependent on rearing temperature, but there were not consistent relationships with source 

climate. 



Main Conclusions: Thermal adaptation can be an important factor shaping the spread of invasive 

species, particularly in the context of climate change. Our results suggest that L. d. dispar is 

highly plastic, but has undergone climate-related adaptation in thermal performance and life 

history traits as it spread across North America.  

Keywords: climatic performance gradient, forest pest, gypsy moth, local adaptation, Lymantria 

dispar, thermal biology 

 

INTRODUCTION 

Species with broad geographic distributions often exhibit phenotypic variation among 

populations resulting from a combination of local adaptation and plasticity in performance 

(Bennett, Duarte, Marbà, & Wernberg, 2019; Gaston, 2009; Valladares et al., 2014). Many 

efforts have been made to classify the observed geographic patterns of inter-and intra-specific 

variation along gradients of latitude or elevation (e.g. Blois, Williams, Fitzpatrick, Jackson, & 

Ferrier, 2013). The characterizations of these patterns, such as Bergmann’s rule, James’ rule, and 

the metabolic cold adaptation hypothesis, provide general expectations for the types of life 

history and trait variation expected across geographic gradients (Horne, Hirst, & Atkinson, 2017; 

Shelomi, 2012; Williams et al., 2016). Climate, particularly as it relates to temperature, plays an 

important role in driving geographic variation in physiological performance, which contributes to 

shaping species’ ranges and determining distributional limits (Crozier & Dwyer, 2006). 

Environmental temperature is especially important for ectothermic organisms, whose 

physiological dependence on temperature often results in strong patterns of geographic variation 

in thermal performance and life history traits (Addo-Bediako, Chown, & Gaston, 2000; Spicer & 

Gaston, 1999; Sunday et al., 2019).  



Invasive species provide an ideal opportunity to both examine these processes over 

relatively short time-scales and to measure the evolutionary and plastic responses of a species as 

it spreads across divergent climates and habitats. Despite extensive knowledge of geographic and 

climate-related variation in performance of ectotherms, comparatively little is known about the 

rate at which these traits may evolve as species disperse across the landscape and expand their 

geographic range. Historically, successful invasive species were characterized as generalists with 

high degrees of plasticity in performance traits (Chown, Slabber, Mcgeoch, Janion, & Leinaas, 

2007; Sakai et al., 2001). More recently, greater attention has been paid to the role of local 

adaptation in these systems and adaptive evolutionary change has been found in an array of 

invasive organisms from a broad range of taxa (Colautti & Lau, 2015; Kosmala, Brown, 

Christian, Hudson, & Shine, 2018; Medley, Westby, & Jenkins, 2019). Quantifying adaptation in 

invasive species is challenging as selection pressures are often strongest on individuals at range-

edges. These range-edge populations are often prohibitively difficult to study as densities are 

very low, individuals are difficult to detect and range limits are often based on coarse-grained 

sampling methodologies ( Grayson & Johnson, 2018; Kramer, Dennis, Liebhold, & Drake, 

2009).  

The invasion of North America by Lymantria dispar dispar L. (Lepidoptera: Erebidae) 

from Europe provides a unique example for understanding how geographic variation in 

performance among populations may develop when an introduced species spreads and 

encounters a wide range of novel habitats and climates. The North American introduction of this 

forest insect, commonly called the gypsy moth and denoted here as L. d. dispar, originated with 

an accidental release in Medford, MA in 1869. Genetic studies suggest that most, if not all, 

individuals in North America today are the descendants of this original population 



(Bogdanowicz, Mastro, Prasher, & Harrison, 1997; Y. Wu et al., 2015). The geographic 

expansion of L. d. dispar across the North American landscape has been well-documented both 

historically and contemporaneously, with the current invasion front extending 2000 km and 

encompassing a wide array of climates from Virginia and North Carolina in the south, to eastern 

Canada in the north, and, more recently, west to Minnesota and Wisconsin (Fig. 1; Grayson & 

Johnson, 2018; Tobin, Gray, & Liebhold, 2014). Currently, the average spread rate is estimated 

to be 4 km/yr (Slow the Spread Foundation, 2016), although this varies widely among regions 

(Tobin et al., 2014; Tobin, Whitmire, Johnson, Bjørnstad, & Liebhold, 2007). Outbreaks can 

result in mass defoliation of a wide variety of host trees and the ability to consume over 300 

woody species has undoubtedly contributed to the success of the L. d. dispar in North America 

(Liebhold et al., 1995).  

The establishment and success of L. d. dispar in climatically divergent regions of North 

America suggests this species has expressed significant variation in thermal performance through 

some combination of phenotypic plasticity and local adaptation as it has spread across the 

landscape. Much of the foundational work on L. d. dispar thermal biology utilized data derived 

from a single population to determine how temperature can predict developmental phenology in 

order to implement effective management interventions that target specific life stages (e.g, Gray, 

2004). Many of these studies focused on the effects of cold temperatures, particularly shortened 

season lengths in colder climates, the amount of cold necessary for egg hatching, and limitations 

on egg viability constraining northward expansion (Gray, Logan, Ravlin, & Carlson, 1991; 

Madrid & Stewart, 1981; Streifel, Tobin, Kees, & Aukema, 2019). More recent work has 

expanded these questions to include warm temperatures (Banahene et al., 2018; Limbu et al., 

2017). This area of research has shown that a range retraction along the southeastern invasion 



front is correlated with supraoptimal temperatures (Tobin et al., 2014) and provides support for 

local adaptation of fitness-related traits in southern populations (Faske et al., 2019; Friedline et 

al., 2019; Thompson et al., 2017). These lines of evidence suggest that while L. d. dispar may 

have become thermally constrained in the southeastern portion of the invasive range, these 

populations may be locally adapted to current climatic conditions. 

In this study, we examined how the performance of an invasive insect may be evolving as 

the species expands its range into increasingly divergent North American climates using the 

fitness-related metrics of pupal mass, larval development time, and survival. We hypothesized 

that populations from colder climates would survive and grow better under cooler conditions and 

conversely, populations from warmer climates would have higher performance under warmer 

conditions (i.e. the shape of the thermal performance relationship would differ among 

populations). We also predicted that individuals from warmer climates of the invasion front 

(southern populations) would achieve larger body sizes than those from colder climates (northern 

populations) based on the converse-Bergmann rule that is predominant in clinal patterns of size 

variation in Lepidoptera (Chown & Gaston, 2010; Shelomi, 2012). Finally, we predicted that 

populations from colder climates would develop in a shorter amount of time relative to 

populations from warmer climates as a result of experiencing a shorter growing season that 

favors more rapid growth (e.g. Nylin & Svärd, 1991). Together, this research sheds light on the 

effect of climate in an active and ongoing invasion and how future climates may alter the 

progression of its range expansion. 

 

 

 



MATERIALS AND METHODS 

 

Study system and populations 

 Lymantria dispar has a single, non-overlapping generation per year with the majority of 

the life cycle spent overwintering as an egg. Larvae hatch in the spring and transition through 5 – 

6 instars before pupation. Adults are sexually dimorphic; males are smaller and require fewer 

instars than females. In the European subspecies, flying males seek flightless females using 

pheromone signaling. The immobility of females limits both short and long distance dispersal to 

ballooning by neonates after hatch and human-mediated transport (Leonard, 1981). 

In this experiment, populations were sourced from 14 locations in the eastern United 

States (Fig. 1, Table S1). Three of the populations were sourced from the established range (NY, 

MA1, and MA2), with the two Massachusetts populations collected 15.9 – 23.1 km from the 

original site of introduction in Medford, MA. Five populations were collected from the southern 

portion of the L. dispar invasion front, with three populations from the Appalachian Mountain 

region (WV1, WV2, and SWVA) and two from the North Carolina Coastal Plain region (NC1, 

NC2). Six populations were collected from the northern portion of the invasion front in 

Wisconsin and Minnesota (AL, BF, IR, WI1, WI2, and MN). These 11 populations represent 

both areas of active range expansion and the current extremes of the invasive range in North 

America (Table S1). Variation in egg provisioning, which can impact larval development, has 

been shown to be related to maternal environmental feeding conditions in L. d. dispar and other 

insects (Rossiter, 1991; Rossiter, Cox-Foster, & Briggs, 1993, but see Myers, Boettner, & 

Elkinton, 1998). While we were unable to fully control for potential differences among 

populations arising from non-genetic parental effects, each of the populations collected directly 



from the field came from areas at the invasion front with low population density and we 

collected multiple separate populations from each region to serve as replicates. Insects used in 

this experiment were transported and housed under USDA APHIS permits P526P-17-03681 

(KLG) and P526P-16-04388 (DP). 

  

Experimental Design 

In order to compare the performance of populations across a wide range of temperatures, 

20 individuals from each population were reared in each of six constant temperature treatments: 

15, 20, 25, 28, 30, and 32°C. These were maintained in environmental chambers (Model: I-

22VL, Percival Scientific, Inc.) using a 14 hour light, 10 hour dark cycle. Prior to the 

experiment, each environmental chamber was carefully calibrated for both light and dark cycles 

at their assigned rearing temperature to ensure each chamber maintained temperature within ± 

0.5°C. Temperature data loggers (HOBO U23 Pro v2, Onset Computer Corporation) were also 

placed inside each environmental chamber to ensure rearing temperatures remained constant for 

the duration of the experiment. The temperatures were selected based on previous research 

suggesting that the known optimum temperature for development in the lab strain of L. d. dispar 

was 29°C (Casagrande, Logan, & Wallner, 1987; Logan, Casagrande, & Liebhold, 1991) and 

that successful development to adulthood was impeded at temperatures below 10°C (Casagrande 

et al., 1987) and above 32°C (Thompson et al., 2017). Additionally, this span of temperatures 

was within those that are experienced in the current invasive range (Faske et al., 2019). 

Caterpillars were housed in individual plastic cups with cubes of artificial diet (USDA APHIS 

formulation) that were replaced weekly. To minimize chamber effects, the location of individuals 

in the chambers was randomized at the time of diet replacement. Individuals in the first two 



instars were housed in 30 ml cups each with 5 ml of diet and were switched to 74 ml cups with 

10 ml of diet for the remainder of their life cycle to accommodate larval growth.  

Individuals were checked daily and the date of pupation and adult emergence was 

recorded. We measured pupal mass, which correlates with fecundity in females (Faske et al., 

2019; Honěk, 1993), for each individual on the date of pupation. Based on morphology, sex was 

recorded for each individual at adult emergence or determined from the pupal case. Larval 

development time was calculated as the number of days between the start of the experiment and 

pupation date. Adult survival was defined by successful adult emergence from the pupal stage. 

From the coordinates of the source location for each population, we obtained a mean 

annual 30 year (1981 – 2010) climate normal temperature calculated from the PRISM model 

(PRISM Climate Group, 2012) to objectively represent differences among populations in a 

biologically meaningful way (Fig. 1).  We chose PRISM to obtain our single metric of source 

location climate because it has been shown to be a robust method for calculating temperature 

data for continuous surfaces (Scully, 2010). Mean temperature was selected because it captures 

variation in climate that would not be included if using the minimum or maximum temperature 

alone. 

 

Data analysis 

Data were analyzed using multiple polynomial regression with the “stats” and “aod” 

packages in R version 3.5.2 (Lesnoff & Lancelot, 2010; R Core Team, 2018). Statistical 

significance was assessed using α = 0.05. Response variables of larval development time, pupal 

mass, and adult survival were independently modeled as a function of source climate, rearing 

temperature, and the quadratic effect of rearing temperature, which accounts for the curvature of 



thermal reaction norms (Bodensteiner et al., 2019). Interactions of source climate with rearing 

temperature and with the quadratic effect of rearing temperature were also assessed to test for 

differences in the shape of thermal reaction norms. Given the complexity of interpreting 

interactions with quadratic effects, the reported results are of models with any non-significant 

interactions removed (Eq. 1).  

𝑃𝑒𝑟𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 = 𝑆𝑜𝑢𝑟𝑐𝑒	𝐶𝑙𝑖𝑚𝑎𝑡𝑒 + 𝑅𝑒𝑎𝑟𝑖𝑛𝑔	𝑇𝑒𝑚𝑝 + 𝑅𝑒𝑎𝑟𝑖𝑛𝑔	𝑇𝑒𝑚𝑝7										(Eq.1) 

Both source climate and rearing temperature were treated as continuous fixed effects in the 

model. We included data for all individuals reaching a specific development point regardless of 

their survival later in the experiment. Adult survival was analyzed as a binominal for individuals 

emerging from pupae as adults. Pupal mass and larval development time are sexually dimorphic 

(Leonard, 1981); therefore, analyses of these metrics were conducted separately for females and 

males. To conform to model assumptions, transformations were performed on the data if doing 

so improved normality.  

 

RESULTS 

Survival to adult emergence was generally high across moderate rearing temperatures, 

but low at the upper and lower rearing temperature extremes (Fig. 2). Interactions between 

rearing temperature and the quadratic effect of rearing temperature with source climate were not 

significant predictors of survival (p < 0.05), indicating the shape of thermal performance was 

similar among populations; therefore, these interactions were removed from the model. In the 

model without interactions, rearing temperature (β = 2.41, p < 0.001), the quadratic effect of 

rearing temperature (β = -0.050, p < 0.001), and source climate (β = -0.039, p = 0.017) were all 

significant predictors of adult survival (χ2 = 373.5, df = 3, p < 0.001). The highest (32°C) and 



lowest (15°C) rearing temperatures resulted in the lowest survival for all populations, but 

populations from colder source climates survived better than those from warmer climates overall, 

especially at moderate temperatures (Fig. 2). 

Larval development time ranged from 29 to 125 days for females and from 25 to 127 

days for males across all rearing temperatures. Within a particular rearing temperature, mean 

development time varied very little between populations from the warmest and coolest source 

climates; the maximum difference was 0.2 days for males and 1.7 days for females (Fig. 3b and 

3d). Populations differed significantly in the shape of thermal reaction norms for females; lower 

rearing temperatures resulted in longer larval development time for colder source climate 

populations, while warmer rearing temperatures resulted in longer development time for warmer 

source climate populations (Fig. 3a). This pattern is indicated by a significant interaction 

between source climate and rearing temperature (β = 0.37, p = 0.022) and between source 

climate and the quadratic effect of rearing temperature (β = -0.007, p = 0.032). Female 

development time was also significantly predicted by the main effects of rearing temperature (β 

= -25.76, p < 0.001), the quadratic effect of rearing temperature (β = 0.46, p < 0.001), and source 

climate (β = -4.47, p = 0.018). Together, these predictors explained 95% of the variance in the 

female data (adj R2 = 0.95, F(5, 482) = 1832, p < 0.001). In contrast, we found no evidence for 

differences in the shape of thermal reaction norms or in development times overall for males 

(Fig. 3c and 3d). Since the interactions of rearing temperature and the quadratic effect of rearing 

temperature with source climate were not significant predictors of male larval development time 

(p < 0.05), they were removed from the model.  Male larval development time was significantly 

predicted by rearing temperature (β = -20.5, p < 0.001) and the quadratic effect of rearing 

temperature (β = 0.36, p < 0.001), but not by source climate (p > 0.05). These predictors 



explained, 94% of the variance in the data for male larval development time (adj R2 = 0.94, F(3, 

564) = 3462, p < 0.001).  

Pupal mass ranged from 0.56 to 4.02 g in females and from 0.20 to 1.04 g in males across 

all rearing temperatures. Among all populations, the highest (32°C) and lowest (15°C) rearing 

temperatures resulted in the smallest pupal masses (Fig. 4). For both sexes, the shape of thermal 

performance related to pupal mass did not differ among source climates as indicated by non-

significant interactions of rearing temperature and the quadratic effect of rearing temperature 

with source climate (p < 0.05; Fig. 4a and 4c); thus, these interactions and were removed from 

the models. In the model without interactions, female pupal mass was significantly predicted by 

rearing temperature (β = 0.60, p < 0.001), the quadratic effect of rearing temperature (β = -0.013, 

p<0.001), and source climate (β = 0.044, p < 0.001). These predictors explained 26% of the 

variance in female pupal mass (adj R2 = 0.264, F(3, 477) = 58.41, p < 0.001). Similarly, male 

pupal mass was significantly predicted by rearing temperature (β=0.11, p<0.001), the quadratic 

effect of rearing temperature (β = -0.0023, p < 0.001), and source climate (β = 0.0079, p < 

0.001). These predictors explained 20% of the variance in male pupal mass (adj R2 = 0.195, F(3, 

560) = 46.53, p < 0.001). Overall, pupae from warmer source climates were larger across all 

rearing temperatures (Fig. 4b and 4d). Within a particular rearing temperature, pupae ranged 

from 15 to 34% larger in the population from the warmest climate compared to the population 

from the coolest source climate.  

 

DISCUSSION 

A mechanistic understanding of the factors that determine geographic ranges is a 

fundamental goal of ecology (Gaston, 2003) and critical for predicting the dynamics of 



biological invasions (Buckley & Csergő, 2017; Early & Sax, 2014). Invasive species that spread 

over broad geographic areas provide a unique window into the processes of adaptation and 

geographic structure in trait variation as a species encounters novel environments and climatic 

conditions. Here we used the invasion of L. d. dispar, which has steadily spread over the North 

American landscape over the last 150 years, to test for performance differences across the 

current climatic extremes of the invasion, including populations near the original introduction 

point in the interior of the established range. When reared in constant conditions at a gradient of 

ecologically relevant temperatures (Casagrande et al., 1987; Thompson et al., 2017), we found 

many of the expected differences in performance among source climates indicating the potential 

for local adaptation to the climatic regimes along the invasion front. 

Our comparison of populations from the northern and southern extremes of the invasion 

front provides evidence for local adaptation in body size and survival associated with climate. 

Surprisingly, with the exception of small differences in female development time, we found little 

evidence for divergence in the shape of thermal reaction norms based on source climate over the 

range of rearing temperatures tested (i.e. no significant interactions between source climate and 

rearing temperature for the performance traits measured). Independent of temperature, we found 

a clear source climate-related cline for both survivorship (decreases with increasingly warmer 

source climate) and pupal mass (increases with increasing warmer source climate). This suggests 

a potential performance trade-off in which this species has poorer survival in warm climates, but 

grows to a larger body size. For female L. d. dispar, larger pupal mass is advantageous because it 

is highly correlated with fecundity (Faske et al., 2019). Similarly, larger males can have 

increased flight capacity, giving them an advantage in mate-finding (Agosta, 2010). Larger body 

size may also provide increased energetic efficiency and resistance to thermal stress (Chown & 



Gaston, 1999; Cushman, Lawton, & Manly, 1993). Together, our results suggest that this 

invasive species is highly plastic, but has also undergone climate-related adaptation in thermal 

performance and life history traits as it has spread from its point of introduction (Friedline et al., 

2019). 

Although widely considered broad ranging generalists, many studies have demonstrated 

rapid adaptive change in invasive species (Colautti & Barrett, 2013; Huey & Pascual, 2009; 

Kosmala et al., 2018; Medley et al., 2019), suggesting the potential for clines in performance to 

develop across invasive ranges and to shape the potential for further range expansion. Across the 

climates of our source populations, we found pupal size variation to be consistent with the 

converse-Bergmann’s rule, with larger individuals in lower latitude populations, where climates 

are warmer (Mousseau, 1997). This relationship is well-documented in ectotherms and has been 

found in many other species of Lepidoptera (Chown & Gaston, 2010; Shelomi, 2012). The 

comparison of survival in relation to source climate provides additional support for local 

adaptation in this system, although contrary to other study systems we found that individuals 

from colder climates had higher survival than those from warmer climates. Previous research in 

L. d. dispar has similarly found that populations from different regions of eastern North America 

are genetically distinct (Friedline et al., 2019; Y. Wu et al., 2015) and evidence suggests that 

these genetic differences are reflective of local adaptation in fitness-related traits at the southern 

invasion front (Faske et al., 2019) and along a latitudinal gradient from the point of introduction 

(Thompson et al., 2017). 

Studies demonstrating clinal patterns in performance and life history traits in relation to 

latitude and elevation are common in the literature and have taught us a great deal about the 

evolution of geographic differences within and among species (e.g. Addo-Bediako et al., 2000; 



Beck et al., 2016; DeLong et al., 2018; Keller, Alexander, Holderegger, & Edwards, 2013). 

These spatial attributes have been used not only to describe geographic variation, but also as a 

surrogate for climate (De Frenne et al., 2013; Howard-Williams, Peterson, Lyons, Cattaneo-

Vietti, & Gordon, 2006). While latitudinal and elevational gradients are often correlated with 

changes in climate, the correlations are not always strong or linear; therefore, their role as a 

climate surrogate can be limited (Hawkins & Felizola Diniz-Filho, 2004). Instead, we chose to 

use mean annual temperature as a more direct proxy of the local climate experienced by each 

population (as in Bennett et al., 2019). By assessing populations using the 30 year mean annual 

temperature derived from each sampling location, rather than latitude, elevation, or region alone, 

we were able to more directly assess the hypothesis that geographic variation in performance is 

driven by variation in climate.  As this metric is representative of the climatic environment for a 

particular geographic location, we aimed to measure how selection for thermal performance 

traits may have affected a particular population. While condensing climate into any single metric 

for a particular location is undoubtedly an oversimplification, our approach allowed for 

biologically meaningful comparisons among populations based on a metric of local temperature. 

The strongest geographic pattern found in our study was that insects from warmer source 

climates ultimately produced larger pupae across all rearing temperatures. Body size is a 

fundamental life history trait that is positively correlated with an array of other fitness-related 

traits (Chown & Gaston, 2010). Across taxa with complex life cycles, intraspecific variation in 

size at metamorphosis is often driven by trade-offs with development time, where selection for a 

shorter larval development time can result in smaller adult body sizes (Nylin & Gotthard, 1998; 

Rohde, Dreher, & Hochkirch, 2015). However, despite increased pupal mass at warmer 

temperatures, we found no biologically meaningful relationship between source climate and 



development time, with differences in development time less than 1 – 2 days among populations 

within a rearing temperature. Given the significantly larger size of L. d. dispar from warmer 

climates across all rearing temperatures, our results indicate that these populations have higher 

growth rates and can attain a greater mass in the same duration than those from colder climates, a 

similar pattern to that found by Friedline et al. (2019). An increased growth rate in warmer 

climates may be driven by differences in ingestion rates, conversion efficiency, or metabolic 

rates among the populations. The metabolic cold adaptation hypothesis suggests that populations 

from colder climates have higher metabolic rates than those from warmer climates because of 

adaptations that maximize physiological efficiency in cold temperatures (Shik, Arnan, Oms, 

Cerdá, & Boulay, 2019). May et al. (2018) did not find support for metabolic cold adaptation in 

L. d. dispar, but their study compared populations based on latitude rather than a measure of 

local climate. Further research on growth and metabolic rates across a broader environmental 

gradient and using a metric of climate rather than latitude would increase understanding of the 

physiological mechanisms underlying the patterns found in our study. 

Numerous studies have demonstrated rapid evolutionary change in invasive species, 

despite constraints on local adaptation such as genetic bottlenecks during introduction (e.g. 

Selechnik et al., 2019; N. Wu et al., 2019). Once established, human-mediated transport can add 

additional introductions, contribute to long distance dispersal, and result in heterogeneous 

satellite populations, all processes that potentially disrupt local adaptation through continued 

genetic mixing (Garnas et al., 2016; Rius & Darling, 2014). Successful invasive species often 

undergo rapid range expansion and encounter novel habitats and climates when spreading across 

a landscape, which can result in local phenotypic changes despite these constraints. Local 

adaptation, or lack thereof, in invasive species can illustrate the capacity of organisms respond to 



rapid changes in climate (Moran & Alexander, 2014; Wiens, Litvinenko, Harris, & Jezkova, 

2019). Our research demonstrates how geographic differences in ecologically important traits 

can develop in invasive species, which can aid mitigation efforts while increasing our 

understanding of adaptive and plastic responses to changing climates.  
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Figure Legends 

 

Fig. 1. Map of Lymantria dispar dispar population source locations in the United States 

including quarantined areas (darker gray shading) and the 1-moth line in 2017, which represents 

the invasion front based on geographically-referenced annual deployment of pheromone traps. 

Inset shows graphical representation of the PRISM mean annual 30-year climate normal 

temperature for each population location from lowest to highest. Colors of points correspond to 

source climate values shown in the map legend.  

 

Fig. 2. Proportion of Lymantria dispar dispar individuals surviving to adult emergence by source 

climate and rearing temperature. The left panel visualizes our results as a thermal performance 

curve across rearing temperatures with a gradient of colors illustrating populations based on 

source climate. Populations were sourced from 14 locations in the eastern United States from the 

northern (n = 6) and southern (n = 5) portions of the current invasion front, as well as the 

established range (n = 3; see also Fig. 1, Table S1). The right panel shows the same data 

illustrating the linear trend across populations based on source climate, with each rearing 

temperature as a separate colored line. In all cases, lines represent the regression and are shaded 

with 95% confidence intervals. 

 

Fig. 3. The effect of source climate and rearing temperature on Lymantria dispar dispar larval 

development time for females (a, b) and males (c, d). The left panel visualizes our results as a 

thermal performance curve across rearing temperatures with a gradient of colors illustrating 

populations based on source climate. Populations were sourced from 14 locations in the eastern 



United States from the northern (n = 6) and southern (n = 5) portions of the current invasion 

front, as well as the established range (n = 3; see also Fig. 1, Table S1). The right panel shows 

the same data illustrating the linear trend across populations based on source climate, with each 

rearing temperature as a separate colored line. In all cases, lines represent the regression and are 

shaded with 95% confidence intervals. 

 

Fig. 4. The effect of population source climate and rearing temperature on Lymantria dispar 

dispar pupal mass for females (a, b) and males (c, d). The left panel visualizes our results as a 

thermal performance curve across rearing temperatures with a gradient of colors illustrating 

populations based on source climate. Populations were sourced from 14 locations in the eastern 

United States from the northern (n = 6) and southern (n = 5) portions of the current invasion 

front, as well as the established range (n = 3; see also Fig. 1, Table S1). The right panel shows 

the same data illustrating the linear trend across populations based on source climate, with each 

rearing temperature as a separate colored line. In all cases, lines represent the regression and are 

shaded with 95% confidence intervals. 
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SUPPORTING INFORMATION 

Table S1. Population information for Lymantria dispar dispar including coordinates, elevation, 

number of generations reared prior to this experiment, and the number of egg masses 

contributing to the reared population. Egg masses were field collected from relatively low-

density populations from across the invasive range at sites where populations were high enough 

for sampling, but well below outbreak densities. Detection of extremely low populations at the 

leading edge of an invasion can be prohibitively difficult, thus, some of our populations were 

sourced from collections made in previous years and reared annually under ambient outdoor 

conditions. These populations were used when we were unable to find new eggs masses at 

desired localities. While variation in number of previously reared generations was unavoidable, 

the pattern among populations is consistent between those that were recently collected and those 

that were reared for multiple years. 

Population Coordinates (Lat, Long) Elevation 
(m asl) 

No. of previously 
reared generations 

No. of egg masses 
contributing to 

2018 experiment 

BF 46.8126°N, 90.8204°W 222 0 > 30 

IR 46.6762°N, 91.4469°W 269 0 13 

AL 46.5967°N, 91.0251°W 297 0 21 

WI2 45.8033°N, 92.0680°W 353 0 30 

MN 44.8660°N, 93.2296°W 261 0 > 30 

WI1 42.6231°N, 90.5451°W 243 0 30 

NY 43.0806°N, 75.9812°W 146 2 30 

MA1 42.4050°N, 71.2871°W 56 1 > 40 

MA2 42.2073°N, 71.0809°W 96 1 > 40 



WV2 38.7851°N, 79.2228°W 525 0 30 

WV1 38.3747°N, 80.9011°W 614 0 60 

SWVA 37.2843°N, 80.9081°W 528 0 11 

NC1 36.4491°N, 76.0246°W 3 6 20 

NC2 35.2503°N, 75.5813°W 1 0 – 1* 5, ~6* 

*5 egg masses were freshly collected in 2018, ~6 had been reared for 1 previous generation. 
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