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Nano-Scaled MOSFET Devices

Suk Joo Bae Seong-Joon Kim

Department of Industrial Engineering, Hanyang University, Seoul, Korea

Way Kuo

Department of Electrical & Computer Engineering, The University of Tennessee, Knoxville

Paul H. Kvam

School of Industrial & Systems Engineering, Georgia Institute of Technology

Abstract

In a MOS structure, the generation of hot carrier interface states is a critical feature of the

device’s reliability. On the nano-scale, there are problems with degradation in transconductance,

shift in threshold voltage, and decrease in drain current capability. Quantum mechanics has

been used to relate this decrease to degradation and device failure. Although the lifetime and

degradation of a device are typically used to characterize its reliability, in this paper we model

the distribution of hot-electron activation energies, which has appeal because it exhibits two-

point discrete mixture of logistic distributions. The logistic mixture presents computational

problems that are addressed in simulation.

Index Terms– EM Algorithm, Logistic Distribution, Maximum Likelihood, Mixture Distribution,

Nanotechnology, Reliability.
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ACRONYMS

cdf cumulative distribution function

HCI hot carrier injection

IC integrated circuit

MLE maximum likelihood estimator

MN multivariate normal

MOS metal-oxide-semiconductor

MOSFET metal-oxide-semiconductor field effect transistor

pdf probability density function

NOTATION

Ci constant of hot carrier induced degradation model for i = 1, 2, 3

DIT (t0) original interface trap density

∆DIT (t) hot carrier activated trap density at time t

D(t) degradation of a MOSFET device at time t

DIT interface traps density

Em electrical field

F (·) distribution of the hot-electron activation energies

I(·) Fisher information matrix

ID drain current

ISub substrate current

k reaction constant

l(·) log-likelihood function

nb concentration of Si-H bonds at the interface

n0 initial concentration of Si-H bonds at the interface

NT total concentration of Si bonds

NIT (t0) initial concentration of interface traps for t0 = 0
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NIT (t) concentration of interface traps at time t

∆NIT (t) generated interface traps

p probability of higher activation energies; p ∈ (0, 1)

τ , τ1, τ2 lifetime constants

Si∗ Si dangling bond

W channel width of a device

VDD power supply voltage

β coefficient for the ISub-VDD relationship

µ, σ parameters of a logistic distribution

µi, σi parameters of a mixture logistic distribution for i = 1, 2

Θ(Θn) parameter space (with samples size n)

ϕIT critical energy in electronvolts (eV) for generating an interface trap

ϕ0 minimum energy (eV) that an electron must possess to create impact ionization

ϕ̄IT , ϕ̄IT,1, ϕ̄IT,2 mean defect energies

q elementary charge with the value 1.60218× 10−19C

λ hot-electron mean-free-path
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1 Introduction

The study of reliability has played a vital role in the engineering of products, both large scale and

micro scale. In the next decade, it will play an even bigger role for industries in nanofabrication,

which amounts to designing and manufacturing devices on the nanometer scale; a nanometer (1

nm = one billionth of a meter) is approximately the length of a row of ten hydrogen atoms.

Actually, standard reliability analysis is already essential for the efficient manufacture of nano-

devices, but the field of nanotechnology is virtually devoid of results that address reliability issues

that are unique to this scale of product. In fact, just as basic physics principles must be rethought

at the quantum level, current reliability theories and methods are only partially applicable to

systems operating on a nanometer scale. On the molecular level, familiar material properties

like conductivity no longer obey laws based on macro scale materials (e.g., Ohm’s law). In the

same sense, the essential metrics of reliability analysis - material degradation, fatigue, and basic

failure mechanisms assume new meaning on the nanometer scale. Sennhauser [25] noted that

traditional reliability models may be insufficient due to quantum effects, thermal processes and

defect diffusion processes. Experimenters need to consider additional sources of variation such as

thermal fluctuations, quantum statistics and Heisenburg uncertainty [3].

There is great potential for reliability improvement if only because current nano-devices are

riddled with defects that cause frequent failure problems; the devices are easily damaged by defects

that are otherwise harmless to larger micro-devices. A full understanding of the physics and statis-

tics of the defect generation is required in order to investigate the ultimate reliability limitations

for nano-devices.

In a MOS structure, for example, the generation of hot carrier interface state is a critical feature

of the device’s lifetime measurement. Gate current of MOSFETs is made up of electrons injected

into the gate oxide by quasi-elastic scattering [13]. However, electrons with high kinetic energies

(called “hot carriers”) can generate electron-hole pairs near the drain due to impact ionization

from atomic-levelled collisions. Those carriers may be injected into the gate oxide and trapped
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on defect sites in the oxide. It results in creation of interface states at Si-SiO2 interface which

leads to degradation in transconductance, shift in threshold voltage, and decrease in drain current

capability [15]. Understanding the physical mechanisms of HCI will provide meaningful clues for

backtracking from observed macro-defects to inferred nano-defects scattered inside the MOSFET

devices. This is analogous to reliability problems in which system failure data are used to infer

properties about the system’s components. In this paper, we investigate physical models of the

defects (hot carriers) generation leading to failure based on statistical properties for MOSFETs.

The main results are contained in Section 2. A model for hot electron degradation is achieved

via the mixture distribution of hot-electron activation energies. Procedures for statistical inference

are outlined in Section 3, and Section 4 contains a discussion of its computation.

2 Physical Models for Hot Carrier Interface State Generation

In a MOS structure, a thin layer of silicon dioxide (SiO2) forms the insulating layer between the

control gate and the conducting channel of transistors used in modern ICs (see Figure 1). As cir-

cuits have been made denser to meet the increasing demand for faster logic and memory devices,

the dimensions of the transistors have been reduced (“scaled”) correspondingly. For example, SiO2

layer thickness has decreased to 2.0 nm or less, but technology cannot shrink these dimensions in-

definitely because thinning down the oxide thickness raises severe technological problems: dielectric

thickness variation, penetration of impurities from the highly doped polysilicon gate, reliability and

lifetime problems for devices made with the ultrathin oxides, etc [23].

In particular, hot carrier induced degradation in SiO2 films is perceived as a main potential

obstacle for the continued down-scaling of MOSFET devices. During device operation, the film

is subjected to electrical stress, and electronic defects like hot carriers that limit device lifetimes

are more likely to be created for short-channel devices. Generally, silicon-based transistors are
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annealed1 in a hydrogen-rich environment in order to passivate2 defects at the Si-SiO2 interface.

However, hydrogen (H) is known to play a key role in the HCI degradation of the transistors with

smaller geometries. Lyding et al. [15] proposed to replace hydrogen with deuterium during the

final wafer sintering process3 in order to reduce susceptibility to hot electron degradation effects.

The details as to how hydrogen degrades a MOSFET device will be illustrated at the following.

2.1 Mechanisms of Hydrogen Release from the Si-SiO2 Interface

A principal mechanism of MOSFET degradation is the creation of an interface state (or traps)

at the Si-SiO2 interface. The creation is mainly caused by desorption of hydrogens from the

passivated dangling bonds at the mismatched Si-SiO2 interface. This depassivation is activated

directly by the hot electrons that exist during transistor switching. The hot electrons near the drain

(see Figure 1) in short-channel devices can generate electron-hole pairs via impact ionization4 [9].

Figure 2 describes the depassivation procedure at Si-SiO2 interface. First, electrons (e) or holes

(h) with high kinetic energies are attracted to the Si-SiO2 interface, which weaken the Si-H bond

until it breaks. As a result, the hydrogen diffuses into the oxide or Si substrate, subsequently

creating interface traps with density DIT . The hydrogen (H: atom and H+: ion) release reaction

breaking Si-H bonds is described in the following equation:

Si−H + H+ + e− → Si∗ + H2 or Si−H + H → Si∗ + H2, (1)

where Si∗ represents the Si dangling bond that is an “interface trap”.

The hot-carrier-induced trap density DIT is directly proportional to the concentration of Si

dangling bonds at the interface. Because the amount of degradation of a MOSFET switching

current that leads to device failure is a function of the variation in the interface trap density

activated by the hot carriers, the amount of degradation of a MOSFET device can be represented
1The annealing is a process that the transistors are heated at sufficiently high temperatures and slowly cooled

down
2To treat a subject in order to reduce the chemical reactivity
3A process of forming a coherent mass by heating without melting
4The formation of or separation into ions by heat, electrical discharge, radiation, or chemical reaction
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as the concentration of Si dangling bonds at the interface, which can be measured by DIT via

charge pumping technique [8].

Electrons need sufficient activation energies to surmount a surface energy barrier to generate

interface traps, and the activation energies are directly linked to interface trap defects. Defects do

not necessarily have the same activation energy; in fact, there exists a distribution of activation

energies for the HCI generation failure mechanism [17]. From a chemistry viewpoint, there are

two reasons to expect a distribution of activation energies for MOSFET devices: the variation in

the bond energies due to Si-SiO2 interface disorder, and the possibility of multiple pathways to

activation. If the bonding energies are homogeneously distributed at the interface, the activation

energy distribution will be of unimodal form, but the distribution will be bimodal if there exist

competing mechanisms of interface state formation following multiple pathways to activation [9].

2.2 Activation Energy Distribution of Hot Carrier Induced Defects

Because the activation of hydrogen at the passivated Si-SiO2 interface is caused by collisions with

electrons (or holes) flowing in the channel, it is crucial to identify the energy distribution of these

electrons as a function of the number of interface traps over time to evaluate reliability of MOSFET

devices.

NIT is proportional to the concentration of the Si dangling bonds at the interface NT − nb,

where NT is a total concentration of Si bonds which are able to appear as dangling ones if hydrogen

leaves the bond. The time dependent trap generation can be described by a simple version of power

law [19]:

∆NIT (t) = NIT (t)−NIT (t0) =
n0

1 + (kt)−α
. (2)

The reaction constant k and the power α are values which can be estimated from the experimental

data. In terms of the concentration of interface traps, the degradation of a MOSFET device can

be approximated by

D(t) =
∆DIT (t)
DIT (t0)

' ∆NIT (t)
NIT (t0)

=
1

1 + (t/τ)−α
, (3)
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where τ = 1/k is a lifetime constant that has units of time. Note that the model (3) is identical to

the degradation model for grating decays in optical interconnects derived from Bragg grating theory

in Erdogan et al [6]. For the hot carrier degradation mechanism, lifetime determination is based

on the observed accelerated degradation of drain voltage. This is because hot carrier degradation

is not accelerated by an increase in temperature [10]. The degradation of a device in terms of

∆NIT (t) can be related to at ID [13] as

∆NIT (t) = C1

[
t
ID

W
exp

(
− ϕIT

qλEm

)]n

. (4)

Introducing an easily measurable ISub to monitor the device degradation, Em can be represented

with the multiplication factor

ISub

ID
= C2 exp

(
− ϕ0

qλEm

)
. (5)

A lifetime is defined as the time to reach a fixed number of interface traps. By combining (4) and

(5),

tID

W
∝

[
ISub

ID

]−ϕIT /ϕ0

or t ∝ I
−ϕIT /ϕ0

Sub . (6)

The substrate current is a function of the power supply voltage as

ISub ∝ exp
(
− β

VDD

)
. (7)

Combining (6) and (7), the lifetime of the device can be written as

t = C3 exp
(

ϕIT β

ϕ0VDD

)
, (8)

and replacing C3 exp(ϕ̄IT β/(ϕ0VDD)) by experimentally observed τ in (3), finally the degradation

of a MOSFET device can be approximated by using the following distribution on the hot-electron

activation energies:

F (ϕIT ) =
[
1 + exp

(
−ϕIT − ϕ̄IT

σ

)]−1

, (9)

where σ = (ϕ0VDD)/(αβ). Note that the degradation model D(t) in (3) that is represented as the

proportion of activated defects before time t is equivalent to the probability that activated defects

have activation energy less than or equal to ϕIT .
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Although the lifetime and degradation of a device are typically used to characterize its reliability,

in this case the distribution of hot-electron activation energies has a unique appeal because it has

a common logistic structure. The logistic distribution, derived from disorder-induced variations

in the Si-H activation energies, is identical to a Fermi-derivative distribution of the energies of

electronic states [5]. Figure 4-(a) shows how the degradation model caused by interface traps (or

defects) varies as a function of power supply voltage(VDD) of a MOSFET device for fixed values of

β and ϕ0, along with the distributions of defect activation energies in 4-(b). The parameter values

in the figure are simulated from experimental observations of short-time-tests for 180 nm MOSFET

devices in Haggag et al. [9].

2.3 Bimodal Distribution of Activation Energies

Existence of multiple paths and competing mechanisms for the release of hydrogen yields inhomo-

geneous activation energy distributions. Figure 3 shows the energy level of hydrogen release to

different activation pathways (the hydrogen may be attracted to Si or SiO2 or the Si-SiO2 inter-

face). Through atomic simulations based on density functional theory, Tuttle et al. [28] showed

that the activation energy of hydrogen is distributed around 3.5 eV if the hydrogen desorbs into

the SiO2, but below 3 eV if the final hydrogen state is closer to the silicon bulk. As a result, the

time-dependent HCI degradation model is a mixture of the model (3) [11]:

D(t) =
∆DIT (t)
DIT (t0)

=
p

1 + (t/τ1)−α1
+

1− p

1 + (t/τ2)−α2
. (10)

By letting τ1 = C3,1 exp(ϕ̄IT,1β1/(ϕ0VDD)) and τ2 = C3,2 exp(ϕ̄IT,2β2/(ϕ0VDD)) in (10), the degra-

dation model of a MOSFET device can be represented through ϕIT as a mixture of logistic distri-

butions:

F (ϕIT ) = p ·
[
1 + exp

(
−ϕIT − ϕ̄IT,1

σ1

)]−1

+ (1− p) ·
[
1 + exp

(
−ϕIT − ϕ̄IT,2

σ2

)]−1

, (11)

where σ1 = (ϕ0VDD)/(α1β1) and σ2 = (ϕ0VDD)/(α2β2).

Tuttle et al. [28] experimentally observed a higher mean energy ϕ̄IT,1 ≈ 3.5 eV as well as a

lower mean energy ϕ̄IT,2 ≈ 2.9 eV. The higher energy band comes from “single collisions” with

9



higher energetic electrons and a consequent release of the hydrogen through a higher energy path

in the MOSFET. On the other hand, the lower energy band comes from “multiple collisions” with

lower energetic electrons and a consequent release of the hydrogen through a lower energy path in

the MOSFET [9]. Figures 5-(a) and 5-(b) display the mixture of time-dependent HCI degradation

model (10) and the mixture distribution of defect activation energies, respectively, at varying p

values with ϕ̄IT,1 = 3.5 eV, ϕ̄IT,2 = 2.9 eV, and VDD = 3.0V .

3 Parameter Estimation

In this section, we outline the procedures for statistical inference for different characteristics of

the MOSFET lifetime. Using the measurement of hot-electron activation energies, we rely on

the method of maximum likelihood to estimate logistic model parameters, or more precisely, pa-

rameters for the logistic mixture distribution. While the inference for the logistic distribution is

straightforward, there are important issues in dealing with estimation for the mixture distribution.

3.1 Logistic Mixture Distribution

The cdf of the random variable X having the logistic distribution is given by

F (x;θ) =
1{

1 + exp
(−x−µ

σ

)} , −∞ < x < ∞, (12)

for θ = (µ, σ)T , where µ and σ are location and scale parameters. The corresponding pdf is

f(x; θ) =
1
σ

exp
(−x−µ

σ

)
{
1 + exp

(−x−µ
σ

)}2 =
1
σ
{F (x)[1− F (x)]} . (13)

The pdf of the logistic distribution is symmetric and bell-shaped like that of the normal distribution.

Since the logistic distribution has slightly longer tails, it would require an extremely large number

of observations to accurately assess whether data come from a normal or logistic distribution. The

logistic random variable X has mean E[X] = µ, variance Var(X) = (π2σ2)/3 and coefficient of

variation πσ/(µ
√

3). The log-likelihood function for a sample of size n from the logistic distribution
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is given by

l(x1, . . . , xn; θ) =
n∑

i=1

log f(xi; θ) = −n log σ −
n∑

i=1

(
xi − µ

σ

)
− 2

n∑

i=1

log
{

1 + exp
(
−xi − µ

σ

)}
,

and the MLEs, (µ̂, σ̂) of the parameters (µ, σ) satisfy the following likelihood equations:

n∑

i=1

{
1 + exp

(
−xi − µ̂

σ̂

)}−1

=
n

2
,

−1
2

n∑

i=1

(
xi − µ̂

σ̂

)
+

n∑

i=1

(
xi − µ̂

σ̂

){
1 + exp

(
−xi − µ̂

σ̂

)}−1

=
n

2
. (14)

Taking advantage of the similarity in shape between the logistic and normal distributions, initial

values of µ̂ and σ̂ might be taken as X̄ = n−1
∑n

i=1 Xi, and
√

n−1
∑n

i=1(Xi − X̄)2, respectively.

Then solutions could be improved by applying the Newton-Raphson method. When both µ and σ

are unknown, the Newton-Raphson method converges quickly to the solutions θ̂ = (µ̂, σ̂)T . Since

the logistic-likelihood function is quasi-concave, the solutions are unique for distinct values of xi.

[1].

The MLEs θ̂ = (µ̂, σ̂)T , as consistent roots of the likelihood equations (14), satisfy

(√
n(θ̂ − θ0)

)
L−→MN (0, I−1(θ0)), (15)

where θ0 is the true value of θ and the Fisher information I(θ0) is given by

I(θ0) = −E




∂2l
∂2µ2

∂2l
∂µ∂σ

∂2l
∂µ∂σ

∂2l
∂2σ2


 =




1
3σ2 0

0 3+π2

9σ2


 . (16)

It is common in practice to estimate the inverse of the covariance matrix of the MLE by the

observed information matrix I(θ̂) rather than the expected information matrix I(θ0) evaluated at

θ0 = θ̂. In general, the observed information matrix is more convenient to use than the expected

information matrix as it does not require an expectation to be taken. However as shown in (16),

the expectations are trivial in the logistic case and we can easily derive the covariance matrix of the

MLE from the expected information matrix. When only µ is unknown, a MLE µ̂ can be uniquely
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determined by replacing σ̂ with known σ value in the likelihood equation. Alternatively, we can

use an estimator

ζn = X̄n − l′(X̄n)
l′′(X̄n)

, (17)

instead of µ̂ because they have the same asymptotic distribution. Here X̄n is the average of n

samples as a
√

n-consistent estimator (denoted as µ̃) and

l′(X̄n) =
∂

∂µ
l(x;θ)

∣∣
µ=X̄n

= n− 2
n∑

i=1

exp
(

xi−x̄n
σ

)

1 + exp
(

xi−x̄n
σ

) ,

l′′(X̄n) =
∂2

∂µ2
l(x; θ)

∣∣
µ=X̄n

= −2
n∑

i=1

exp
(

xi−x̄n
σ

)

1 + exp
(

xi−x̄n
σ

)2 .

Theorem 3.1 Let µ̂ be the MLE of µ, and let ζn be given by (17), then
√

n(ζn− µ̂) → 0 as n →∞.

The proof is listed in the appendix. When only µ is known, the MLE σ̂ can be uniquely determined

by replacing µ̂ with known µ value in the likelihood equations. With moment estimator σ̃ =

{∑n
i=1(Xi − X̄n)2/n}1/2, which is a

√
n-consistent estimator of σ,

ηn = σ̃ − l′(σ̃)
l′′(σ̃)

(18)

has the same asymptotic distribution as the MLE σ̂ (from the theorem) with σ̃ instead of X̄n. Here,

l′(σ̃) =
∂

∂σ
l(x; θ)

∣∣
σ=σ̃

and l′′(σ̃) =
∂2

∂σ2
l(x; θ)

∣∣
σ=σ̃

.

The degradation model of a MOSFET device can represented in (11) is a two-point discrete

mixture of logistic distributions. For a random variable X generated from this mixture of logistic

distributions, then in terms of θ1 = (µ1, σ1)T , θ2 = (µ2, σ2)T and Ψ = (p, (θT
1 , θT

2 ))T , X has pdf

f(x;Ψ) = p · f1(x; θ1) + (1− p) · f2(x; θ2), (19)

and corresponding CDF

F (x;Ψ) = p · F1(x; θ1) + (1− p) · F2(x; θ2), (20)

where Fj(x;θj) and fj(x;θj) are from (12) and (13), respectively, with parameters µj and σj for

j = 1, 2.
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4 Solving the MLE

Several methods have been proposed to estimate the parameter Ψ. The MLE, based on maximizing

the log-likelihood function

l(x1, . . . , xn;Ψ) =
n∑

i=1

log {p · f1(xi;θ1) + (1− p) · f2(xi;θ2)} ,

possesses a number of desirable statistical properties. The MLE can be solved via the likelihood

equation ∂l(x1, . . . , xn;Ψ)/∂Ψ = 0. The resulting solution Ψ̂ satisfies

p̂ =
n∑

i=1

κ(xi; Ψ̂)/n and
2∑

j=1

n∑

i=1

κ(xi; Ψ̂)∂ log fj(xi; θ̂j)/∂θ = 0, (21)

where κ(xi; Ψ̂) = p̂f1(xi; θ̂1)/[p̂f1(xi; θ̂1) + (1 − p̂)f2(xi; θ̂2)] is the posterior probability that xi

belongs to the first component of the mixture.

The EM algorithm (see McLachlan and Krishnan [16], for example) can be used to find the

MLE for mixtures by solving the likelihood equations (21) iteratively. To apply the EM method,

we imagine each observation from the mixture distribution comes with an indicator variable that

tells us which of the two logistic distributions the observation was generated. In this case, such an

indicator is treated as a missing value.

Starting from an arbitrary initial guess, the algorithm operates in two repeated steps. The

E-step estimates missing values as they appear in the log-likelihood, then the M-step finds a local

optimum to the likelihood using the estimated data in place of what was missing. With the

estimated indicator functions, the MLE is solved more simply using (14) in the M-step (as discussed

in the last section). Convergence properties for finite mixture models are discussed in Tanaka and

Takemura [22]. In this case, because of the heavy tails in the logistic density and the large variances

in (16), the convergence can be slow, depending on how good the initial guess is.

In Table 1, we present summary results of the simulation comparing the performance of different

MLE/EM algorithms for mixtures of logistic components. Comparisons between varying degrees of

separation in the mixture distributions (complete separation, moderate overlap, and large overlap)

are illustrated in Figures 6 (a) - (c), respectively. In these simulations, the mixing proportion p
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takes on the values .20, .50, and .80. For a given mixture, the component distributions differ from

each other only by location and scale differences. For each set of parameter configurations, samples

of size n = 1, 000 were generated from the corresponding mixture of logistic distributions.

Data generation and parameter estimation for logistic mixture were executed using the mle pro-

gram [12], and for maximizing the likelihood function in the EM algorithm, four different methods

were used; simplex, direct, conjugate gradient, and simulated annealing (see [20] for details of the

four methods).

Each of the methods has strengths and weakness for different types of functions. In the case of

the logistic likelihood, they have peculiar differences; Table 1 shows a summary of the simulation

comparing the performance of MLE/EM algorithms for mixtures of logistic components. The

computation stopped when the relative errors ε, of all 5 parameters, Ψ ≡ (p, µ1, σ1, µ2, σ2)′ reached

10−4 · ε ≡ [Ψ(h+1) −Ψ(h)]/Ψ(h). The symbol (∗) represents result tends to a pathological solution

and the relative bias, |y − ŷ|/y is calculated over every parameter in parentheses. The direct and

simulated annealing methods provide better results than the other two methods for this parameter

estimation. However, simulated annealing requires longer process time for the annealing function.

In general, the estimation precision increases when the mixing proportion is neutral (p = 0.5).

One way of obtaining standard errors of the estimates of the parameters in a mixture model

is to approximate the covariance matrix of Ψ̂ by the inverse of the observed information matrix.

For mixture models, the sample size has to be very large to guarantee the asymptotic theory of

maximum likelihood, hence a resampling approach such as bootstrapping method can be considered

to construct standard errors of the estimates of the parameters. Standard error estimation of Ψ̂ can

implemented via a bootstrap procedure; Chapter 13 of [18] for an analogous resampling approach.

5 Discussion

Statistical models based on known physical principles (e.g., the power-rule model, the Arrhenius

rule, Eyring Model, etc.) have provided strong methods for parametric inference for various testing

14



problems in manufacturing. Nano-manufacturing will provide more twists to these traditional

models due to the nature of nano-defects and Heisenberg uncertainty. This paper provides basic

physical modeling for MOSFET devices based on the nano-level degradation that takes place at

defect sites in the MOSFET gate oxide. The distribution of hot-electron activation energies proves

to be more accessible than analogous measures of degradation or lifetime, and is derived as a logistic

mixture distribution using physical principles on the nanoscale. Although the inference problem

is ridden with computational challenges, the derivation of MLEs is straightforward using the EM

Algorithm.

6 Appendix

Proof of Theorem : For the true value of µ (denoted as µ0), Taylor expansion of l′(µ̂) about

l′(µ0) is

l′(µ̂) = l′(µ0) + (µ̂− µ0)l′′(µ0) +
1
2
(µ̂− µ0)2l′′′(µ∗),

where µ∗ lies between µ0 and µ̂. l′′′(·) exists for the three-times differentiable logistic likelihood

function with respect to µ, and it is bounded. Since the left side is zero for the MLE µ̂, we have

√
n(µ̂− µ0) = −

√
nl′(µ0)
l′′(µ0)

+ Rn,

where

Rn = −
√

nl′(µ0)
l′′(µ0)

[
1

1 + n
l′′(µ0)

1
2n(µ̂− µ0)l′′′(µ∗)

− 1

]
.

Analogously, Taylor expansion of l′(µ̃) about l′(µ0) can be represented as

l′(µ̃) = l′(µ0) + (µ̃− µ0)l′′(µ0) +
1
2
(µ̃− µ0)2l′′′(µ∗).

It follows from (15) that

ζn = µ̃− 1
l′′(µ̃)

[
l′(µ0) + (µ̃− µ0)l′′(µ0) +

1
2
(µ̃− µ0)2l′′′(µ∗)

]
,

and by using the expansion l′′(µ̃) = l′′(µ0) + (µ̃− µ0)l′′′(µ∗),

√
n(ζn − µ0) = −

√
nl′(µ0)
l′′(µ0)

(
1 +

(µ̃− µ0)l′′′(µ∗)
l′′(µ0)

)−1

+ R′
n,
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where

R′
n =

√
n(µ̂− µ0)

[
1− l′′(µ0)

l′′(µ̃)
− 1

2
(µ̃− µ0)

l′′′(µ∗)
l′′(µ̃)

]
.

As n → ∞, Rn and R′
n tend to 0 in probability since µ̂ → µ0,

l′′(µ0)
l′′(µ̃) → 1, and µ̃ → µ0, and

additionally
(
1 + (µ̃−µ0)l′′′(µ∗)

l′′(µ0)

)
→ 1.
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Figure 1: Basic structure of a planar MOSFET: For 90 nm generation gate oxide, the thickness of

silicon oxide (SiO2) is less than 2 nm.
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Figure 2: Desorption procedure of hydrogens at Si-SiO2 interface.
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Figure 3: Energy to release hydrogen to different locations (courtesy of Tuttle et al [28]).
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Figure 4: (a)-Defects degradation model (3); (b)-Distribution of activation energies for interface

traps.

23



1 2 3 4 5

Time (t)

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

D
(t

)

p = 0.2
p = 0.4
p = 0.6
p = 0.8

(a)

Defects energy (eV)

E
ne

rg
y 

di
st

rib
ut

io
n(

eV
-1

)

1.5 2.0 2.5 3.0 3.5 4.0 4.5

0.
0

0.
5

1.
0

1.
5

2.
0

p = 0.2
p = 0.4
p = 0.6
p = 0.8

(b)

Figure 5: (a)-Defects degradation model (10) and (b)-Mixture distribution of activation energies

for defects.
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Table 1: Simulation results for mixtures of logistic components: (∗) result tends to a pathological

solution.
Simplex Direct Conjugate Gradient Simulated Annealing

p̂ 0.2135 (0.0676) 0.2000 (0.0000) 0.0623 (0.6887) 0.2024 (0.0118)

µ̂1 0.9798 (0.0202) 0.9845 (0.0155) 3.4516 (2.4516) 0.9846 (0.0154)

p = 0.2 σ̂1 0.0649 (0.3508) 0.0701 (0.2991) (*) 0.0701 (0.2986)

µ̂2 4.0297 (0.0074) 4.0326 (0.0081) 3.2261 (0.1935) 4.0324 (0.0081)

σ̂2 0.2558 (0.2790) 0.2459 (0.2294) (*) 0.2459 (0.2294)

p̂ 0.5380 (0.0759) 0.5000 (0.0000) 0.3000 (0.4000) 0.4988 (0.0025)

µ̂1 0.9899 (0.0101) 1.0077 (0.0077) (*) 1.0077 (0.0077)

Complete Separation: p = 0.5 σ̂1 0.1098 (0.0976) 0.1065 (0.0.0652) (*) 0.1065 (0.0654)

(µ1, σ1, µ2, σ2) = µ̂2 3.9789 (0.0053) 3.9793 (0.0052) 2.9987 (0.2503) 3.9793 (0.0052)

(1.0, 0.1, 4.0, 0.2) σ̂2 0.1686 (0.1570) 0.1878 (0.0609) (*) 0.1878 (0.0611)

p̂ 0.2365 (0.7043) 0.8000 (0.0000) 0.3000 (0.6250) 0.8013 (0.0016)

µ̂1 0.9227 (0.0773) 1.0036 (0.0036) (*) 1.0036 (0.0036)

p = 0.8 σ̂1 0.0336 (0.6638) 0.1037 (0.0367) (*) 0.1036 (0.0364)

µ̂2 1.4642 (0.6340) 4.1985 (0.0496) 2.9690 (0.2578) 4.1988 (0.0497)

σ̂2 (*) 0.2399 (0.1997) (*) 0.2399 (0.1993)

p̂ 0.1159 (0.4204) 0.1407 (0.2965) (*) 0.1401 (0.2994)

µ̂1 3.1986 (0.0004) 3.2030 (0.0009) 3.7810 (0.1816) 3.2030 (0.0009)

p = 0.2 σ̂1 0.0269 (0.7313) 0.0317 (0.6829) (*) 0.0318 (0.6820)

µ̂2 3.8942 (0.0265) 3.9043 (0.0239) 3.8523 (0.0369) 3.9044 (0.0239)

σ̂2 0.2274 (0.1369) 0.2448 (0.2238) 0.2361 (0.1807) 0.2447(0.2233)

p̂ (*) 0.5354 (0.0707) 0.5994 (0.1989) 0.5358 (0.0717)

µ̂1 1.5640 (0.5112) 3.2309 (0.0097) 3.1778 (0.0069) 3.2310 (0.0097)

Moderate overlap: p = 0.5 σ̂1 0.0059 (0.9407) 0.1058 (0.0577) 0.0828 (0.1723) 0.1058 (0.0580)

(µ1, σ1, µ2, σ2)= µ̂2 3.5660 (0.1086) 4.0194 (0.0049) 4.0274 (0.0068) 4.0194 (0.0049)

(3.2, 0.1, 4.0, 0.2) σ̂2 0.2820 (0.4102) 0.1707 (0.1463) 0.1327 (0.3365) 0.1707 (0.1466)

p̂ 0.7890 (0.0138) 0.9900 (0.2375) 0.9132 (0.1415) 0.7380 (0.0776)

µ̂1 3.3924 (0.0601) 3.3168 (0.0365) 3.2198 (0.0062) 3.1909 (0.0028)

p = 0.8 σ̂1 (*) 0.0993(0.0070) 0.1679 (0.6794) 0.1038 (0.0383)

µ̂2 3.1957 (0.2011) 3.8810 (0.0297) 4.4663 (0.1166) 3.9269 (0.0183)

σ̂2 0.0469 (0.7654) 0.2503 (0.2515) 0.3196 (0.5981) 0.2224 (0.1120)

p̂ 0.0667 (0.6663) 0.0100 (0.9501) 0.0968 (0.5162) 0.1158 (0.4211)

µ̂1 3.3662 (0.0382) 3.7802 (0.0800) 3.7811 (0.0803) 4.6594 (0.3313)

p = 0.2 σ̂1 0.0784 (0.2161) 0.2193 (1.1930) (*) 0.1880 (0.8796)

µ̂2 3.9515 (0.0121) 3.9235 (0.0191) 3.8212 (0.0447) 3.8520 (0.0370)

σ̂2 0.2224 (0.1120) 0.2317 (0.1583) 0.3885 (0.9426) 0.1843(0.0784)

p̂ 0.6691 (0.3382) 0.5753 (0.1506) 0.6052 (0.2103) 0.5734 (0.1469)

µ̂1 3.5146 (0.0042) 3.6536 (0.0439) 3.4518 (0.0138) 3.4909 (0.0026)

Large overlap: p = 0.5 σ̂1 0.1309 (0.3085) 0.1124 (0.1240) 0.1227 (0.2269) 0.0892 (0.1078)

(µ1, σ1, µ2, σ2)= µ̂2 4.1835 (0.0459) 4.7028 (0.1757) 4.2314 (0.0578) 4.0164 (0.0041)

(3.5, 0.1, 4.0, 0.2) σ̂2 0.1309 (0.3457) 0.1957 (0.0215) 0.3010 (0.5048) 0.2492 (0.2462)

p̂ 0.7272 (0.0911) 0.8403 (0.0504) 0.8389 (0.0487) 0.8396 (0.0495)

µ̂1 3.6389 (0.0397) 3.5123 (0.0035) 3.5120 (0.0034) 3.5120 (0.0034)

p = 0.8 σ̂1 0.2027 (1.0274) 0.1011 (0.0107) 0.1009 (0.0090) 0.1009 (0.0087)

µ̂2 3.5063 (0.1234) 4.0418 (0.0105) 4.0389 (0.0097) 4.0378 (0.0095)

σ̂2 0.0405 (0.7973) 0.2912 (0.4558) 0.2907 (0.4534) 0.2904 (0.4521)
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