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Estimating Load-Sharing Properties

in a Dynamic Reliability System

Paul H. Kvam∗ Edsel A. Peña†

February 4, 2004

Abstract

An estimator for the load share parameters in an equal load-share model is derived based on
observing k-component parallel systems of identical components that have distribution function
F (·) and failure rate r(·). In an equal load share model, after the first of k components fails, fail-
ure rates for the remaining components change from r(t) to γ1r(t), then to γ2r(t) after the next
failure, and so on. On the basis of observations on n independent and identical systems, a semi-
parametric estimator of the component baseline cumulative hazard function R = − log(1−F ) is
presented, and its asymptotic limit process is established to be a Gaussian process. The effect
of estimation of the load-share parameters is considered in the derivation of the limiting pro-
cess. Potential applications can be found in diverse areas, including materials testing, software
reliability and power plant safety assessment.

Keywords and Phrases: Dependent systems, Nelson-Aalen estimator, proportional hazards.

1 Introduction

Most reliability methods are intended for components that operate independently within a system.

It is more realistic, however, to develop models that incorporate stochastic dependencies among

the system’s components. In many systems, the performance of a functioning component will

be affected by how the other components within the system are operating or not operating (cf.,

Hollander and Peña, 1995). Statistical methods for analyzing systems with dependent components

are not yet well developed. Real examples of dependent systems include fiber composites, software
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and hardware systems, power plants, automobiles, and materials subject to failure due to crack

growth, to name just a few.

In the nuclear power industry, for example, components are redundantly added to systems

to safeguard against core meltdown. If the failure of one back-up system adversely affects the

operation of another, the probability of core meltdown can increase significantly. If four to eight

motor operated valves can be employed to ensure the circulation of cooling water around the reactor,

the failure of one or two valves can induce a higher rate of failure of the remaining valves due to

increased water pressure, thus diminishing the effects of the component redundancy.

Unfortunately, analysts have few options for modeling dependent systems. Existing methods for

such systems studied in engineering and the physical sciences are typically based on two classes of

models: shock models and load-share models. Shock models, such as Marshall and Olkin’s (1967)

bivariate exponential model, enable the user to model component dependencies by incorporating

latent variables to allow simultaneous component failures.

Load share models dictate that component failure rates depend on the operating status of the

other system components and the effective system structure function. Daniels (1945) originally

adopted this model to describe how the strain on yarn fibers increases as individual fibers within

a bundle break. Freund (1961) formalized the probability theory for a bivariate exponential load

share model. In most applications, the shock model provides an easier avenue for multivariate

modeling of system component lifetimes. However, dynamic models such as the load-share model

are deemed more realistic in environments where a component’s performance can change once

another component in the system fails or degrades.

Perhaps the most important element of the load-share model is the rule that governs how

failure rates change after some components in the system fail. This rule depends on the reliability

application and how the components within the system interact, i.e., through the structure function.

For researchers in the textile industry who deal with the reliability of composite materials, a bundle

of fibers can be considered as a parallel system subject to a steady tensile load. The rate of failure

for individual fibers depends on how the unbroken fibers within the bundle share the load of this
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overall stress. The load share rule of such a system depends on the physical properties of the

fiber composite. Yarn bundles or untwisted cables tend to spread the stress load uniformly after

individual failures. This leads to an equal load-share rule, which implies the existence of a constant

system load that is distributed equally among the working components.

In more complex settings, a bonding matrix joins the individual fibers as a composite material,

and an individual fiber failure affects the load of certain surviving fibers (e.g., neighbors) more than

others. This characterizes a local load sharing rule, where a failed component’s load is transferred

to adjacent components; the proportion of the load the surviving components inherit depends on

their ‘distance’ to the failed component. A more general monotone load sharing rule assumes only

that the load on any individual component is nondecreasing as other items fail. Lynch (1999) char-

acterized some relationships between the failure rate and the load-share rule based on a monotone

load share rule. Relationships for some specific load share rules are studied in Durham and Lynch

(2000).

Past research has stressed reliability estimation based on Äknown load share rules. To our

knowledge, statistical methods have not been developed for characterizing systems with dependent

components by estimating unknown parameters of the load-share rule. In this paper, we consider

estimating the component baseline lifetime distribution based on observing dynamic systems of

identical components. Dependence between system components is modeled through a load-share

framework, with the load-sharing rule containing unknown parameters. Of primary interest in

the model is the baseline distribution, but the parameters of the load-sharing rule may also be

of importance such as when an estimate of the system reliability is desired, or they could just be

viewed as nuisance parameters. We focus on the equal load-share rule, where the failure rate of

the remaining functioning components within the system change uniformly after each component

failure, but with the magnitudes of change being unknown.
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2 Examples of Load-Share Systems

The load share rule has obvious potential for application in modeling systems with interdependent

components, as described in the preceding section. The load-sharing framework also applies to

problems of detecting members of a finite population. Suppose the resources allocated toward

finding a finite set of items are defined globally, rather than assigned individually. Once items are

detected, resources can be redistributed for the problem of detecting the remaining items, and this

action gives rise to a load sharing model. In most cases, the items are identical to the observer,

and an equal load-share rule is appropriate for characterizing the system dependence.

Unlike load-share models for fiber strength, these more general models give no indication of

how load share parameters might change as other components fail. In this case, inference based

on known load share parameters seems unrealistic and the problem of estimating those parameters

becomes crucial.

We have already discussed two examples for which the load-share rule might apply: risk as-

sessment in power plants, and the study of fiber strength in relation to fiber composites in textile

engineering. Other important examples include the following:

Software Reliability: The load-sharing model generalizes the dynamic model suggested by Jelin-

ski and Moranda (1972), among others, for software reliability. The most basic problem is to

assume that an unknown number of faults exist in the system (i.e., software). After a fixed time,

some number of faults are found, and the number of remaining faults is to be estimated. The load-

share model represents a more flexible and realistic method of predicting the detection of faults by

acknowledging the dynamic nature of fault detection when some faults have already been found.

For instance, in problems where the number of software bugs is relatively small, the discovery of a

major defect can help conceal or reveal other existing bugs in the software.

Civil Engineering: With a large structure supported by welded joints, the structure fails only

after a series of supporting joints fail. The failure of one or two welded joints in a bridge support,

for instance, might cause the stress on remaining joints to increase, thus causing earlier subse-
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quent failures. Static reliability models fail to consider the changing stress in this setting, which

constitutes a load-sharing model.

Materials Testing: Fatigue and material degradation is often characterized by crack growth,

especially in large structures such as an airplane engine turbine or a commercial airplane fuselage.

At the microscopic level, these materials have an intractable number of cracks, with only a few

becoming large enough to be measurable, usually at stress centers such as edges, rivets, etc. It is

known that the largest crack in a (predefined) local area will inherit much of the test stress, and thus

will grow at a faster rate than the other measurable cracks; see Carlson and Kardomateas (1996)

for instance. This provides a platform for extending the load-share model to degradation data.

Certainly, the interdependence between crack growths cannot be modeled using simple physical

principles, thus a nonparametric load-share model has potential application.

A similar approach, used in modeling the incubation period for the Human Immunodeficiency

Virus (HIV) in Jewell and Kalbfleisch (1996), is based on marker processes. Rate changes can be

incorporated into the model via time-dependent stochastic markers that carry covariate information.

Marker processes are based on the shock model approach to describing component dependence, but

are closely related to load-sharing models. As an illustrative reliability example, a car’s odometer

serves as an obvious marker for the car’s chronological lifetime. This approach serves as a natural

one for modeling crack growth in materials using observed degradation (e.g., crack size) as a

stochastic marker.

Population Sampling: In wildlife studies, population sizes are estimated from relatively small

samples. Capture/recapture methods can be used for these estimation methods, and involve finding

previously tagged animals in order to deduce the sample’s size relative to the larger population.

In some cases, the detection of a tagged animal may affect the detection rate of the remaining

sample. When recapture probabilities are significantly nonzero, the load-share framework allows

the experimenter to modify the detection model after a recapture occurs.

Combat Modeling: The attrition of military hardware and personnel in combat situations is

highly dynamic, and the loss of one component in combat can easily change the success rate (or
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death rate) of the remaining components in the field; see Kvam and Day (2001). Specific load share

models could be used to model the natural dependence between components within the system as

well as their relative status within the group (e.g., even with combat machines, the components are

not generally identical in effectiveness or constitution).

3 Estimation of Load-Share Model Parameters

Consider a system with k identical components for which stochastic component dependencies are

induced via a load sharing model. Suppose we observe n independent and identical systems over an

observation period [0, τ ], where τ is possibly random and could be the time of the last component

failure among all nk components. We monitor the times of component failures of these systems.

For i = 1, 2, 3, . . ., let Si,1 < Si,2 < . . . be the successive component failure times for the ith system

whose values are less than or equal to τ , so that Si,j is the jth smallest component failure time

for the ith system. Denote by F the baseline component failure time distribution. The hazard

function (or cumulative hazard rate) corresponding to F is R(x) = − log(1−F (x)), and the hazard

rate is r(x) = f(x)/[1 − F (x)], where f(x) is the density of F . Thus, the hazard function can be

expressed as R(x) =
∫ x
0 r(u)du.

Inter-component dependencies are due to the fact that the system’s environment can possibly

become more or less harsh on the remaining functioning components upon failure of other compo-

nents. This framework is based on applications for which failure rates or detection rates of all items

within the system are equal, but the change in rate after a component failure depends on the set of

functioning components in the system. Note that upon a component failure, the effective system

structure function also changes (cf., Hollander and Peña, 1995). For the specific model considered

in the present paper, until the first component failure, the failure rate of each of k components

in the system equals the baseline rate r(x). Upon the first failure within a system, the failure

rates of the k − 1 remaining components jump to γ1r(x), and remain at that rate until the next

component failure. After this failure, the failure rates of the k − 2 surviving components jump to

γ2r(x), and so on. The failure rate of the last remaining component is γk−1r(x). The (equal) load
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share rule can be characterized by the k−1 unknown parameters γ1, γ2, . . . , γk−1 and the unknown

baseline distribution or hazard function. For example, a system with a constant load would assign

γj = k/(k − j), j = 1, ..., k − 1. In the sequel, we let γ = (γ0 ≡ 1, γ1, . . . , γk−1)
′. Estimating the

underlying baseline functions F or R may be of primary interest. In some situations such as when

estimation of the system reliability is desired, estimation of the load share parameters γ will also

be of interest; otherwise it may be viewed as a vector of nuisance parameters.

We approach the problem using point process theory. This will allow the establishment of

asymptotic properties of the estimator of R(·) and F (·) in a broader framework. For notation, we

sometimes write γ[j] for γj . Furthermore, for a function h, we define h(w−) = lima↓0 h(w − a)

and h(w+) = lima↓0 h(w + a). We also let I(A) denote the indicator function of event A, so that

I(A) = 1 if event A occurs, otherwise it equals zero. Define the counting processes

Ni(t) =
k∑

j=1

I(Si,j ≤ t), i = 1, 2, . . . , n.

Ni(t) represents the number of component failures for the ith system that occurred on or before

time t. We may then write γ[Ni(w)] =
∑k−1

j=0 γjI(Ni(w) = j). To express the likelihood in terms of

stochastic processes, we also define

Yi(w) = (k −Ni(w−)) I(τ ≥ w). (1)

Let Fit = σ {(Ni(w), Yi(w+));w ≤ t} be the filtration generated by the ith system up to time t,

and let Ft =
∨n

i=1Fit. The load-share model can be described by specifying the intensities of the

Ni(·)’s to be

Pr {dNi(t) = 1|Fit−} = r(t)Yi(t)γ[Ni(t−)]dt, i = 1, ..., n. (2)

If we denote by

Ai(t) =

∫ t

0
γ[Ni(u−)]r(u)Yi(u)du, (3)

thenM = {(Mi(t) = Ni(t)−Ai(t), 0 ≤ t ≤ τ) , i = 1, .., n} is a vector of orthogonal square-integrable

zero-mean martingales (cf., Andersen, et al., 1993). Following Jacod (1975), the full likelihood as-

sociated with the observed data {(Ni(w), Yi(w)), 0 ≤ w ≤ τ) : i = 1, 2, . . . , n} is given by the
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expression

L(R(·),γ) =
{

n∏

i=1

π
0≤w≤τ

[Yi(w)γ[Ni(w−)]dR(w)]dNi(w)

}
exp

{
−
∫ τ

0
Yi(w)γ[Ni(w−)]dR(w)

}
, (4)

where the second product in (4) denotes product-integral.

A standard approach to obtaining a semiparametric estimator of R(·) from (4) is to first fix

γ, and then to obtain an ‘estimator’ of R denoted by R̂(·;γ). This R̂(·;γ) is plugged into (4) to

obtain the profile likelihood Lp(γ) for γ, which is then maximized in γ to obtain the estimator

γ̂. The semiparametric estimator of R(·) is then R̂(·) = R̂(·; γ̂). To implement this estimation

procedure, we first introduce the process J(w) = I(
∑n

i=1 Yi(w) > 0). In particular, J(w) = 0

indicates all nk components have already failed at time w−. Note also that J(·) is a predictable

and bounded process. If γ is known, by using the zero-mean property of the martingale
∑n

i=1 Mi(·)

and analogously to the derivation of the Nelson-Aalen estimator (Aalen (1978)), we immediately

obtain the estimator of R given by

R̂(s;γ) =

∫ s

0

J(w)dN(w)∑n
i=1 Yi(w)γ[Ni(w−)]

. (5)

The estimator in (5), which is a generalized Nelson-Aalen estimator, is similar in structure to the

hazard function estimator for tensile strengths derived by Ryden (1999). To obtain the estimator

of R(·) for the more general case where γ is unknown, we first obtain the profile likelihood for γ

by plugging in R̂(·;γ) given in (5) into the likelihood function in (4). From (4) and (5) we obtain

this profile likelihood to be

Lp(s;γ) =
n∏

i=1

π
0≤w≤s

[
Yi(w)γ[Ni(w−)]∑n
l=1 Yl(w)γ[Nl(w−)]

]dNi(w)

, (6)

This profile likelihood may also be viewed as a partial likelihood process. This profile likelihood

is maximized with respect to γ to obtain γ̂, which is then plugged in into R̂(·;γ) to obtain the

semiparametric estimator of R given by

R̂(s) = R̂(s; γ̂). (7)

By virtue of the product representation of F̄ = 1 − F given by F̄ (s) =π0≤w≤s[1 − R(dw)], we
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then obtain an estimator of F̄ via

ˆ̄F (s) = π
0≤w≤s

[
1− R̂(dw)

]
. (8)

To facilitate the presentation of asymptotic properties of the estimators R̂ and γ̂, we introduce

the following notation:

• Qi,j(t) = Yi(t)I(Ni(t−) = j), 1 ≤ i ≤ n, 0 ≤ j ≤ k − 1;

• Qi(t) = (Qi,0(t), ..., Qi,k−1(t))
′, 1 ≤ i ≤ n;

• Q(t) = (
∑n

i=1 Qi,0(t), ...,
∑n

i=1 Qi,k−1(t))
′;

• δi(t) = (δi,0(t), ..., δi,k−1(t))
′, with δi,j(t) = I(Qi,j(t) > 0), 1 ≤ i ≤ n;

• γ−1 ≡ (1/γ0, ..., 1/γk−1);

• q(s) = (q0(s), . . . , qk−1(s)), where by invoking the assumed iid property of the n systems, we

have

qj(w) = E(Qi,j(w)) = (k − j)P (τ ≥ w, N1(w−) = j);

• ρ̂(t;γ) =∑n
i=1 γ ∗Qi(t)/γ

′Q(t);

• ρ(t;γ) = E[
∑n

i=1 γ ∗Qi(t)]/E[γ ′Q(t)] = γ ∗ q(t)(γ′q(t))−1.

Here, ∗ represents component-by-component multiplication. With the aforementioned notation,

R̂(·,γ) becomes

R̂(s;γ) =

∫ s

0
J(w)(γ ′Q(w))−1dN(w),

while the profile log-likelihood process becomes

`p(s;γ) = logLp(s;γ) =
∑n

i=1

∫ s
0 log[γ ′Qi(w)]dNi(w)−

∫ s
0 log[γ ′Q(w))]dN(w).

The corresponding profile (partial) score process for γ is

Ũ(s;γ) ≡ ∇γ`p(s;γ) =
n∑

i=1

∫ s

0

[
Qi(w)

γ ′Qi(w)
− Q(w)

γ ′Q(w)

]
dNi(w) (9)
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and the profile information matrix process is

Ĩ(s;γ) ≡ −∇γ′∇γ`p(s;γ) =

n∑

i=1

∫ s

0

[
Qi(w)Qi(w)′

(γ ′Qi(w))2
− Q(w)Q(w)′

(γ ′Q(w))2

]
dNi(w). (10)

If we ignore differentiation by the known constant γ0 = 1, Ũ is a vector of length (k − 1), and Ĩ is

a (k−1)× (k−1) matrix. Using the notation defined earlier, (9) and (10) can be further simplified

by noting that

Qi(w)(γ ′Qi(w))−1 = γ−1 ∗ δi(w) and Q(w)(γ ′Q(w))−1 = γ−1 ∗ ρ̂(w;γ).

In terms of ρ̂,

Ũ(s;γ) = γ−1 ∗
n∑

i=1

∫ s

0
[δi(w)− ρ̂(w;γ)] dNi(w).

We let the symbol D(η) represent a diagonal matrix with diagonal elements η. Because

Qi(w)Qi(w)′ = D(Q2
i,j(w)), j = 0, ..., k − 1,

the first term in the integrand in (10) can be written as D(γ−1)D(δi(w))D(γ−1), and the second

term as D(γ−1)ρ̂(w;γ)ρ̂(w;γ)′D(γ−1). Therefore, equations (9) and (10) become

Ũ(s;γ) =D(γ−1)
∑n

i=1

∫ s
0 [δi(w)− ρ̂(w;γ)] dNi(w),

Ĩ(s;γ) =D(γ−1)
(∑n

i=1

∫ s
0 [D(δi(w))− ρ̂(w;γ)ρ̂(w;γ)′] dNi(w)

)
D(γ−1).

Solving the set of k − 1 nonlinear equations

Ũ(τ ;γ) =
n∑

i=1

∫ τ

0

[
Qi(w)

γ ′Qi(w)
− Q(w)

γ ′Q(w)

]
dNi(w) = 0 (11)

does not lead to a closed form solution for the MLE of γ. However, solving the set of equations is

not a difficult numerical problem. For instance, a Newton-Raphson method could be implemented,

which has the iterations γnew ← γold + Ĩ(τ,γold)
−1Ũ(τ ;γold). In our computer implementation

using the R language, which we used in the computer simulation studies, the R object optim was

invoked as a preliminary step to obtain good seed values for the Newton-Raphson procedure.

This two-step approach lead to a more efficient computational implementation, and also lead to

convergence in almost all cases considered in the simulations. Other approaches could also be
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used to solve (11); a similar set of equations is in Kvam and Samaniego (1993) for solving the

likelihood equations in an exponential factorial model, and as in that paper, applying Theorem

2.1 of Mäkeläinen, Schmidt and Styan (1981) establishes that there exists a unique solution γ̂ ≥ 0

satisfying Ũ(τ ; γ̂) = 0. In Kvam and Samaniego (1993), a nonlinear Gauss-Seidel iterative method

(see Ortega and Rheinboldt (1970), for example) was applied to solve the set of equations.

4 Asymptotic Properties

For purposes of examining the properties of the estimators, note that if we define the ‘alternative’

score process

U(s;γ) ≡D(γ)Ũ(s;γ) =
n∑

i=1

∫ s

0
[δi(w)− ρ̂(w;γ)] dNi(w), (12)

then the estimator γ̂ is also the solution of the equation U(τ ;γ) = 0. To obtain the asymptotic

properties of the estimator γ̂ which solves the preceding equation, we re-express the martingale M

in terms of {Qi,Q}. First, note that from (3), the compensator of Mi is

Ai(s) =

k−1∑

j=0

γj

∫ s

0
Qi,j(w)dR(w) =

∫ s

0
γ ′Qi(w)dR(w), (13)

so the quadratic variation process of Mi is 〈Mi(·;γ)〉(s) =
∫ s
0 γ

′Qi(w)dR(w).

Lemma 1 The process U(·;γ) in (12) satisfies U(s;γ) =
∑n

i=1

∫ s
0 [δi(w)− ρ̂(w;γ)] dMi(w).

The proof of this result is presented in the Appendix. This simplification leads us to the

following asymptotic properties for the alternative score process. The proofs of these results are

also relegated to the Appendix.

Lemma 2 If {(Ni(·), Yi(·)), i = 1, ..., n} are iid, and inf0≤w≤τ
∑k−1

j=0(k − j)γjP (N1(w−) = j) > 0,

then the alternative score function in (12) is a square-integrable martingale with quadratic variation

process 〈U(·;γ)〉(s). Furthermore,

1

n
〈U(·;γ)〉(s) pr−→ Υ(s;γ) ≡

∫ s

0

[
D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′

]
γ ′q(w)dR(w).

and n−1/2U(·;γ) converges weakly to a zero-mean Gaussian process with covariance matrix function

Υ(·;γ).
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We now state the major asymptotic properties of the estimators γ̂ and R̂(s).

Theorem 1 Under the conditions of Lemma 2, γ̂
pr−→ γ; and

√
n(γ̂ − γ) d→ N(0,Σ(τ,γ)), where

Σ(τ,γ) = D(γ)Υ(τ,γ)−1D(γ) and

Υ(τ,γ) ≡
∫ τ

0

[
D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′

]
γ ′q(w)dR(w).

Theorem 2 If the conditions of Lemma 2 hold, and if τ satisfies γ ′q(τ) > 0, then

{√
n(R̂(s)−R(s)) : 0 ≤ s ≤ τ

}

converges weakly to a zero-mean Gaussian process with variance function

Ξ(s;γ) ≡
∫ s

0
{γ ′q(w)}−1dR(w) + %(s;γ)′[Υ(τ ;γ)]−1%(s;γ),

where %(s;γ) =
∫ s
0 ρ(w;γ)dR(w).

Corollary 1 Under the conditions of Theorem 2,
{√

n( ˆ̄F (s)− F̄ (s)) : 0 ≤ s ≤ τ
}
converges weakly

to a zero-mean Gaussian process {Z(s) : 0 ≤ s ≤ τ} whose variance function is Var{Z(s)} =

F̄ (s)2 Ξ(s;γ).

We attempt to provide an explicit expression for the limiting variance functions. To try to do

so, an expression for Pr{N1(w−) = j} is needed in order to get an expression for

qj(w) = E{Qj(w)} = (k − j) Pr{τ ≥ w, N1(w−) = j} = I{τ ≥ w}(k − j) Pr{N1(w−) = j}

when τ is fixed. Observe that

Pr{N1(w−) = j} = Pr{N1(w−) ≥ j} − Pr{N1(w−) ≥ j + 1}

= Pr{Sj < w} − Pr{Sj+1 < w} = Pr{Sj+1 ≥ w} − Pr{Sj ≥ w}.

Invoking Theorem 5.1 of Hollander and Peña (1995), we obtain an expression for Pr{Sj ≥ w}.

Introducing the notation

ζi,j(γ, k) =

j∏

l=0;l 6=i

[
γl(k − l)

γl(k − l)− γi(k − i)

]

12



for i ≤ j and i, j ∈ {0, 1, 2, . . . , k − 1}, with the convention
∏
∅ = 1, from Hollander and Peña

(1995) we have

Pr{Sj ≥ w} = I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}. (14)

Consequently, for j = 0, 1, . . . , k − 1,

qj(w) = I{τ ≥ w}(k − j)

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)R(w)}−

I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}
}

.

Unfortunately, this does not yield a simple expression for Ξ(s;γ). For instance, the first term of

this limiting variance function is given by

∫ s

0

dR(w)
∑k−1

j=0 γjqj(w)
=

∫ s

0


I{τ ≥ w}

k−1∑

j=0

γj(k − j)

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)R(w)}−

I{j ≥ 1}
j−1∑

i=0

ζi,j−1(γ, k) exp{−γi(k − i)R(w)}
}]−1

dR(w)

=

∫ R(s∧τ)

0


k exp(−kv) +

k−1∑

j=1

γj(k − j)×

{
j∑

i=0

ζi,j(γ, k) exp{−γi(k − i)v} −
j−1∑

i=0

ζi,j−1 exp{−γi(k − i)v}
}]−1

dv.

Note that this expression is at most equal to

Ξ∗(s) =
∫ R(s∧τ)

0

dv

k exp(−kv)
=

1

k2

(
1− exp{−kR(s ∧ τ)}
exp{−kR(s ∧ τ)}

)
,

which is the asymptotic variance function of the Nelson-Aalen estimator of R(s) which utilizes only

the first component failure for each system. This estimator is given by

R̃(s) =
1

k

∑

{i: Si1≤s}

[
1∑n

j=1 I{Sj1 ≥ Si1}

]
. (15)

This particular result demonstrates that if γ is known, then the estimator R̂(s) is more efficient

than the estimator R̃(s), certainly not a surprising result. However, since γ is not known and is

estimated to form the estimator R̂(s), the second term in Ξ(s;γ) given by

(∫ s

0
ρ(w;γ)dR(w)

)′
{Υ(τ ;γ)}−1

(∫ s

0
ρ(w;γ)dR(w)

)
,

13



must be taken into account in comparing the asymptotic variances of R̂(s) and R̃(s). Recall that

this term is the effect of the estimation of γ by γ̂.

We now prove that indeed, for two-component parallel systems, i.e., k = 2, the estimator R̂(·)

improves on the estimator R̃(·) by showing that the asymptotic variance of the former is at most

that of the latter. We have as yet been unsuccessful in establishing whether this domination result

also hold for the case k > 2.

For notation, let us define ∆(s; τ) = Ξ∗(s) − Ξ(s). Since Ξ∗(s) =
∫ s
0 {q0(w)}−1dR(w), then it

follows that

∆(s; τ) =

∫ s

0

(
γ ′q

q0(q0 + γ ′q)

)
dR−

(∫ s

0
ρdR

)′
{Υ(τ)}−1

(∫ s

0
ρdR

)
. (16)

Theorem 3 For k = 2, ∆(s; τ) ≥ 0 for s ≤ τ , implying that the estimator R̂(·) is asymptotically

never less efficient than the estimator R̃(·).

Proof: First we note that when k = 2, and since ρ1 = γ1q1/(q0 + γ1q1), then

Υ(τ) =

∫ τ

0
ρ1(1− ρ1)(q0 + γ1q1)dR =

∫ τ

0

(
γ1q1

q0 + γ1q1

)(
q0

q0 + γ1q1

)
(q0 + γ1q1)dR

=

∫ τ

0

(
γ1q1

q0 + γ1q1

)
q0dR ≥

∫ s

0

(
γ1q1

q0 + γ1q1

)
q0dR.

Therefore, when k = 2,

∆(s; τ) =
∫ s
0

(
γ1q1

q0+γ1q1

)
dR
q0
−

(∫ s
0

(
γ1q1

q0+γ1q1

)
dR

)2

Υ(τ) ≥
∫ s
0

(
γ1q1

q0+γ1q1

)
dR
q0
−

(∫ s
0

(
γ1q1

q0+γ1q1

)
dR

)2

∫ s
0

(
γ1q1

q0+γ1q1

)
q0dR

.

But by Cauchy-Schwartz Inequality, we have for positive functions f, g and measure ν,

(∫
fdν

)2

=

(∫ √
fg
√

f/gdν

)2

≤
(∫

fgdν

)(∫
f

g
dν

)
.

Applying this result, we have

(∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

)2

≤
(∫ s

0

(
γ1q1

q0 + γ1q1

)
q0dR

)(∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0

)

so that (∫ s
0

(
γ1q1

q0+γ1q1

)
dR
)2

∫ s
0

(
γ1q1

q0+γ1q1

)
q0dR

≤
∫ s

0

(
γ1q1

q0 + γ1q1

)
dR

q0
,

14



from which it follows that ∆(s; τ) ≥ 0, thereby completing the proof of the theorem. ‖

For practical purposes, we need consistent estimators of the variance functions of these limiting

processes. An obvious estimator of Υ(τ,γ) is provided by

Υ̂(τ ; γ̂) =
1

n

n∑

i=1

∫ τ

0

[
D(ρ̂(w; γ̂))− ρ̂(w; γ̂)ρ̂(w; γ̂)′

]
γ̂ ′Qi(w)dR̂(w).

To estimate the limiting covariance matrix for γ̂, we can use Σ̂(τ, γ̂) = D(γ̂)Υ̂(τ, γ̂)−1D(γ̂). An

estimator of the limiting variance function of
√

n(R̂−R) is provided by

Ξ̂(s; γ̂) =
1

n

n∑

i=1

∫ s

0

{
γ̂ ′Qi(w)

}−1
dR̂(w) + %̂(s; γ̂)′[Υ̂(τ ; γ̂)]−1%̂(s; γ̂) (17)

where %̂(s; γ̂) =
∫ s
0 ρ̂(w; γ̂)dR̂(w). Finally, an estimator of the limiting variance function of

√
n( ˆ̄F −

F̄ ) is given by V̂ar{Z(s)} = ˆ̄F (s)2 Ξ̂(s; γ̂).

The results in Theorem 2 and Corollary 1 are analogous to the asymptotic results in Andersen

and Gill (1982) which consider the estimation of the baseline hazard and distribution functions

in the multiplicative intensity model. The Andersen and Gill model subsumes the Cox (1972)

proportional hazards model. The difference between the load share problem and the regular set up

is that the data structure and the stochastic model under load sharing is more complicated; they

arise from observing several components in a system combined with the evolution of the failure

rates of the components being governed by the component histories.

5 Simulations and Examples

5.1 A Simulation Study

To examine the small sample properties of the estimator of γ and of the the baseline survivor

function F̄ , a modest simulation study was undertaken to determine the biases, standard errors, and

root-mean-squared-errors (rmses) of the estimators. Two values of k, the number of components,

were chosen: (i) k = 2 with γ = (1, 1.25); and (ii) k = 4 with γ = (1, 1.25, 1.5, 1.75). Three sample

sizes were chosen: n ∈ {30, 50, 100}. The baseline distribution was chosen to be a Weibull with

shape parameter of 2 and scale parameter of 1. For each combination of k and n, 1000 replications

of the simulation were performed. The empirical bias and standard error of γ̂ were then computed,
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and also the empirical bias, standard error, and rmse curves of the estimator ˆ̄F were also computed

at pre-specified values of time. Table 1 contains a summary of the bias and standard errors of γ̂

and Figure 1 contains the bias, standard error, and rmse curves of ˆ̄F for the six simulation cases.

Examining Table 1, we note that as the sample size increases, the biases and standard errors of

γ̂ decrease. The biases are almost negligible when n = 100. It is not clear whether the estimators

γ̂j ’s are positively biased since some of the empirical biases turned out negative. We also observe

that when k > 2 the standard errors of γ̂j increase with increasing j. This could be due to the

fact that for the larger j’s there are less information owing to the failure of the other components.

Furthermore, comparing the standard errors of γ̂1 for the case with k = 2 and k = 4, we note that

the latter has smaller standard errors for all n. This could be explained again by the fact that the

effective sample size for k = 4 is greater than the effective sample size for k = 2. Examining Figure

1, the shapes of the bias, standard error, and rmse curves of ˆ̄F (·) for all the cases considered are

generally similar: negative bias in the middle portion of the distribution and then positive bias in

the tail. The standard error dominates the bias in forming the rmse, except sometimes in the right

tail of the distribution. As the sample size increases, the bias, standard error, and rmse curves all

become closer to the zero horizontal line, as is to be expected.

5.2 Some Applications

As an example of load-sharing in manufacturing, we consider life testing of light displays such as

Plasma Display Devices (PDPs). In product tests, degradation is measured in luminosity (measured

in candela) and PDP failure is declared when luminosity decreases to 50% of its initial value. While

some units degrade slowly, sudden pixel failures are also a problem in test items. A similar problem

with laser degradation is discussed in Example 13.5 of Meeker and Escobar (1998).

The Samsung Plasma Display Device Team in Cheonan City, Korea has conducted accelerated

degradation tests on PDPs with multiple measurements at key locations on the PDP’s surface.

While it is clear that different areas of the PDP surface can degrade at different rates, it is not

known how sudden pixel failures indicated by one sensor would affect the degradation at other

parts of the PDP (whether caused by stress changes or common causes that affect different areas of
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the test surface). See Bae and Kvam (2003) for further discussion of statistical modeling for PDPs.

With k sensors spaced evenly across the test device, the failure times can be modeled using load

sharing. PDP failure data are not available for this analysis, and in initial tests at Samsung, most

tests were stopped after the first indication of failure, and the remaining lifetime measurements were

censored. Here, we present a simulated example to illustrate the load-share model characterizing

the test data. We assume n=20 test items are tested with k=3 sensors, and lifetimes are recorded

for the three sensors on each of the twenty test items. The sample sizes and failure probabilities

are consistent with those in Bae and Kvam (2003); Table 1 contains degradation measurements

(in hours) generated from the random coefficients model from that paper, which is similar to a

longitudinal data model in Vonesh and Chinchilli (1997).

The estimated distribution for failure time is plotted in Figure 1, and Figure 2 contains confi-

dence regions for the load-share parameter estimates, which were (γ̂1 = 1.64, γ̂2 = 1.11). Although

the data indicate an increased failure frequency after the first observed failure, the evidence is not

overly strong (the 90% confidence region contains the point (1,1)).

Examples in other fields of application can be analyzed and illustrated in the same manner. One

fundamental conjecture would be that the system is under constant load, or H0 : γi = k/(k− i), i =

1, ..., k − 1. In other applications, 1 ≤ γ1 ≤ γ2 ≤ . . . ≤ γk−1 might be a reasonable assumption.

This is the monotone load share rule mentioned in Section 1.

Because of the flexibility offered in a nonparametric estimator with dynamic failure rate changes,

this load share model may be found to adequately fit dependent lifetime data even if no “true”

load share quality is exhibited between system failures. As an example, the model can be fit

to the Danish twins survival data from Anderson, et al. (1992), where lifetimes for 111 female

monozygotic twins (born between 1870 and 1880) obtained from the Danish Twin Registry were

analyzed with time-dependent measures of association. With a fitted load-share model, the γ

parameter is estimated γ̂ = 1.8 with a significance value less than 0.10 for the test H0 : γ ≤ 1

versus H1 : γ > 1. While the dependence reflected in γ̂ is not spurious, it tends to ignore the age

dependence of the bivariate survival distributions.
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A Appendix: Some Technicalities

Proof of Lemma 1: The alternative score function in (12) can be decomposed into two parts:

U(s; γ) = U 1(s; γ) +U 2(s; γ)

=

n∑

i=1

∫ s

0
[δi(w)− ρ̂(w;γ)] dMi(w) +

n∑

i=1

∫ s

0
[δi(w)− ρ̂(w;γ)] (γ ′Qi(w))dR(w). (18)

It turns out that the second term in (18) is

U2(s;γ) =

∫ s

0

(
n∑

i=1

δi(w)(γ ′Qi(w))− ρ̂(w;γ)
n∑

i=1

(γ ′Qi(w))

)
dR(w) = 0.

This is true because Qi,j(w) > 0 implies Qi,j′(w) = 0, j 6= j′, so that

n∑

i=1

δi(γ
′Qi(w)) =

n∑

i=1

(γ0Qi,0(w), ..., γk−1Qi,k−1(w))′ =D(γ)Q(w).

But ρ̂(w;γ)(γ ′
∑n

i=1Qi(w)) = D(γ)Q(w), so that U 2(s;γ) = 0. ‖

Proof of Lemma 2: By stochastic integration theory, the score process {U(s;γ) : 0 ≤ s ≤ τ} is

clearly a square-integrable martingale with quadratic variation process

〈U(·;γ),U(·;γ)〉(s)

=
n∑

i=1

∫ s

0
(δi(w)− ρ̂(w;γ))(δi(w)− ρ̂(w;γ))′(γ ′Qi(w))dR(w)

=
n∑

i=1

∫ s

0
(D(δi(w))− 2δiρ̂(w;γ)′ + ρ̂(w;γ)ρ̂(w;γ)′)(γ ′Qi(w))dR(w)

=
n∑

i=1

∫ s

0

[
D(γ ∗Qi)− 2D(γ)Qi(w)ρ̂(w;γ)′ + ρ̂(w;γ)ρ̂(w;γ)′(γ ′Qi(w))

]
dR(w)

=

∫ s

0

(
D(γ)D(Q(w))− 2D(γ)Q(w)ρ̂(w;γ)′ + ρ̂(w;γ)ρ̂(w;γ)′(γ ′Q(w)

)
dR(w)

=

∫ s

0

(
D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′

)
(γ ′Q(w))dR(w).

It follows from the Glivenko-Cantelli type strong law of large numbers that if {(Ni(w), 0 ≤ w ≤

τ), i = 1, ..., n} are independent and identically distributed, then for j = 0, ..., k − 1,

sup
0≤w≤τ

∣∣∣∣∣
1

n

n∑

i=1

Qi,j(w)− qj(w)

∣∣∣∣∣
Pr−→ 0,
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Therefore, provided that inf0≤w≤τ
∑k−1

j=0(k − j)γjP (N1(w−) = j) > 0, then

sup
0≤w≤τ

|ρ̂(w;γ)− ρ(w;γ)| Pr−→ 0,

where the jth element of ρ(w;γ) is γjqj(w)/
∑k−1

j′=0 γj′qj′(w) for j = 0, ..., k − 1. By Robolledo’s

martingale central limit theorem (see Andersen, et al. (1993), Theorem II.5.1), it follows that

n−1/2U(·;γ) converges weakly to a zero-mean Gaussian process with covariance matrix function

Υ(s;γ). ‖

Proof of Theorem 1: The establishment of the consistency of γ̂ follows the usual route of

consistency proofs for partial likelihood MLEs. We therefore refer the reader to such standard

proofs in Andersen, et. al. (1993). With consistency of γ̂ established, observe first that for all η > 0,

D(η) has full rank, and from (12), we have U(s;γ)−U(s; γ̂) =
∑n

i=1

∫ s
0 (ρ̂(w; γ̂)− ρ̂(w;γ))dNi(w).

Since U(τ ; γ̂) = 0, we can therefore write U(τ ;γ) =
∑n

i=1

∫ τ
0 (ρ̂(w; γ̂) − ρ̂(w;γ))dNi(w). A first-

order Taylor series expansion of ρ̂(·; γ̂) about γ yields ρ̂(w; γ̂) = ρ̂(w;γ)+ [∇γρ̂(w;γ)|γ=ξ] (γ̂−γ),

where ξ lies in the line segment connecting γ̂ and γ, and the (j, j ′)th element of ∇γρ̂(w;γ) is

∇γρ̂(w;γ)(j,j′) =

{
ρ̂j(w;γ)(1− ρ̂j(w;γ))/γj for j = j′

−ρ̂j(w;γ)ρ̂j′(w;γ)/γj′ for j 6= j′
.

Here ρ̂j is the jth element of ρ̂. This matrix simplifies to

∇γρ̂(w;γ) =D(ρ̂(w;γ))D(γ−1)− ρ̂(w;γ)ρ̂(w;γ)′D(γ−1).

Since U(τ ; γ̂) = 0, then (γ̂ − γ) =
(∫ τ

0 ∇γρ̂(w; ξ)dN(w)
)−1

U(τ ;γ). Because ξ = γ + op(1), and

by continuity considerations,

√
n(γ̂ − γ) = n−1/2D(ξ)

(
1

n

∫ τ

0

(
D(ρ̂(w; ξ))− ρ̂(w; ξ)ρ̂(w; ξ)′

)
dN(w)

)−1

U(τ ;γ)

= n−1/2D(γ)

(
1

n

∫ τ

0

(
D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′

)
dN(w)

)−1

U(τ ;γ) + op(1).
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The matrix whose inverse is taken converges to Υ(τ,γ) because

1

n

∫ τ

0

(
D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′

)
dN(w)

=
1

n

∫ τ

0

(
D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′

)
[dM(w;γ) + γ ′Q(w)dR(w;γ)]

= Op(
√

n) +
1

n

∫ τ

0

(
D(ρ̂(w;γ))− ρ̂(w;γ)ρ̂(w;γ)′

)
γ ′Q(w)dR(w;γ)

Pr−→
∫ τ

0

(
D(ρ(w;γ))− ρ(w;γ)ρ(w;γ)′

)
γ ′q(w)dR(w;γ) = Υ(τ,γ).

This result establishes Theorem 1. ‖

Proof of Theorem 2: Recall that

R̂(s) =

∫ s

0
J(w)(γ̂ ′(Q(w))−1dN(w). (19)

We seek a representation of R̂ by expanding (γ̂ ′Q(w))−1 around γ using a first-order Taylor series.

First note that ∇γ(γ
′Q(w))−1 = −Q(w)(γ ′Q(w))−2 = −D(γ−1)[γ ′Q(w)]−1ρ̂(w;γ). It therefore

follows that, for some ξ between γ and γ̂,

(γ̂ ′Q(w))−1 = (γ ′Q(w))−1 −
(
D(ξ−1)ρ̂(w; ξ)(ξ′Q(w))−1

)′
(γ̂ − γ). (20)

We have the decomposition

√
n(R̂(s)−R(s)) =

√
n
∫ s
0 (J(w)− 1)dR(w) +

√
n
(

R̂(s)−
∫ s
0 J(w)dR(w)

)
. (21)

¿From (19) and because of (20),

R̂(s) =
∫ s
0 (γ

′Q(w))−1J(w)dN(w)−
(∫ s

0 (ξ
′Q(w))−1ρ̂(w; ξ)′D(ξ−1)J(w)dN(w)

)
(γ̂ − γ).

The first term of
√

n(R̂(s)−R(s)) in (21) goes to zero in probability. Using the above representation

for R̂, the second term in (21) becomes

√
n
(∫ s

0
J(w)dN(w)
γ′Q(w) −

∫ s
0 J(w)dR(w)

)
= −√n

(∫ s
0 ρ̂(w; ξ)′D(ξ−1)J(w)dN(w)

ξ′Q(w)

)
(γ̂ − γ).

To further simplify our notation, let us define

• Ψ1(s;η) =
∫ s
0 ρ̂(w;η)′J(w)(η′Q(w))−1dN(w),
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• Ψ2(s;η) =
1
n

∫ s
0 (D(ρ(w;η))− ρ(w;η)ρ(w;η)′)dN(w),

• Ψ3(s,γ) =
√

n
∫ s
0 J(w)(γ ′Q(w))−1dM(w) where M =

∑n
i=1 Mi.

Then, in terms of these processes,

√
n(R̂(s)−R(s)) = Ψ3(s;γ)−

√
n
(
Ψ1(s; ξ)D(ξ−1)D(γ)Ψ2(τ ;γ)

−1U(τ ;γ)
)
+ op(1).

We now describe the limit of
√

n(R̂(s)−R(s)) in terms of the limits of Ψi, i = 1, 2, 3. We have

1

n
Ψ1(s;γ)

Pr−→
∫ s

0
ρ(w;γ)′

γ ′q(w)dR(w)

γ ′q(w)
=

∫ s

0
ρ(w;γ)′dR(w) = %(s;γ)′.

¿From the proof of Theorem 1, we also have that Ψ2(τ ;γ)
Pr−→ Υ(τ,γ), and by Rebolledo’s martin-

gale central limit theorem, if γ ′q(w) > 0, then Ψ3(s;γ) converges to a zero-mean Gaussian process

on [0, τ ] with variance function s 7→
∫ s
0 {γ ′q(w)}−1dR(w). From (18), we have that

1√
n
U(τ ;γ)

d−→ N(0,Υ(τ,γ)).

Because D(ξ−1)D(γ)
Pr−→D(1) and

√
n
∫ s
0 (J(w)− 1)dR(w) is asymptotically negligible, it fol-

lows that
√

n(R̂(s)−R(s)) = Ψ3(s,γ)−%(s;γ)′Υ(τ,γ)−1
[

1√
n
U(τ ;γ)

]
+ op(1), which converges to

a Gaussian process by virtue of the Gaussian process limits of Ψ3(·,γ) and n−1/2U1(·;γ). The lim-

iting variance function of
√

n(R̂(s)−R(s)) now immediately follows from the above representation

by observing that the covariance process between Ψ3(·,γ) and n−1/2U1(·,γ) is

〈Ψ3(·;γ),U 1(·;γ)〉(s) =
1

n

n∑

i=1

∫ s

0

J(w)γ ′Qi(w)
1
nγ

′Q(w)
[δi(w)− ρ(w;γ)]dR(w)

=

∫ s

0

J(w)
(

1
n

∑n
i=1 δi(w)γ ′Qi(w)

)
1
nγ

′Q(w)
dR(w)−

∫ s

0
J(w)ρ(w;γ)′dR(w).

Since n−1
∑n

i=1 δi(w)γ ′Qi(w) = n−1
∑n

i=1

∑k−1
j=0 γjQi,j(w) = n−1D(γ)Q(w), then

〈
Ψ3(·;γ),

1√
n
U1(·;γ)

〉
(s) =

∫ s

0

J(w)
(

1
nD(γ)Q(w)

)
1
nγ

′Q(w)
dR(w)−

∫ s

0
J(w)ρ(w;γ)′dR(w)

=

∫ s

0
J(w)ρ(w;γ)′dR(w)−

∫ s

0
J(w)ρ(w;γ)′dR(w) = 0.

This fact completes the proof of Theorem 2. ‖
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Proof of Corollary 1: This follows by applying the functional delta-method and invoking the

asymptotic result in Theorem 2. Since ˆ̄F (·) = φ(R̂)(·) ≡ π
0≤w≤·

[
1− dR̂(w)

]
, then

√
n
[
ˆ̄F (·)− F̄ (·)

]
=
√

n
[
φ(R̂)(·)− φ(R)(·)

]
.

By the functional delta-method (cf., Andersen, et. al. (1993)), it follows that the limiting process

is dφ(R) ·W where, with W being the Gaussian limiting process in Theorem 2,

dφ(R) ·W (s) =

∫

w∈[0,s]

{
π
[0,w)

(1− dR)

}
W (dw)

{
π
(w,s]

(1− dR)

}
= F̄ (s)W (s). ‖

References

[1] Aalen, O. (1978), “Nonparametric inference for a family of counting processes,” Annals of

Statistics, 6, 701–726.

[2] Andersen, P. and Gill, R. (1982), “Cox’s regression model for counting processes: A large

sample study,” Annals of Statistics, 10, 1100–1120.

[3] Anderson, J. E., Louis, T. A., Holm, N. V. and Harvald, B. (1992), “Time-dependent as-

sociation measures for bivariate survival distributions,” Journal of the American Statistical

Association, 87, 641–650.

[4] Andersen, P. K., Borgan, Ø., Gill, R. D. and Keiding, N. (1993), Statistical Models Based on

Counting Processes, Springer-Verlag, New York.

[5] Bae, S. J. and Kvam,P. H. (2003), “A Nonlinear Random Coefficients Model for Degradation

Testing,” Georgia Institute of Technology ISyE Technical Report 2003-41.

[6] Carlson, R. L. and Kardomateas, G. A. (1996), An Introduction to Fatigue in Metals and

Composites, Chapman & Hall, London.

[7] Cox, D. R. (1972), “Regression models and life tables (with discussion),” Journal of the Royal

Statistical Society, B, 34, 187–220.

22



[8] Daniels, H. E. (1945), “The statistical theory of the strength bundles of threads,” Proceedings

of the Royal Society, London, A, 83, 405–435.

[9] Durham, S. D. and Lynch, J. D. (2000), “A threshold representation for the strength distri-

bution of a complex load sharing system,” Journal of Statistical Planning and Inference, Vol.

83, 25–46.

[10] Freund, J. E. (1961), “A bivariate extension of the exponential distribution,” Journal of the

American Statistical Association, Vol. 56, 971–977.

[11] Hollander, M. and Peña, E. (1995), “Dynamic Reliability Models With Conditional Propor-

tional Hazards,” Lifetime Data Analysis, 1, 377–401.

[12] Jacod, J. (1975), “Multivariate point processes: Predictable projection, RAdon-Nikodym

derivatives, representation of martingales,” Z. Wahrsch. Geb., 31, 235–253.

[13] Jelinski, Z. and Moranda, P. (1972), “Software reliability research,” Statist. Comp. Perform.

Evaluation, 45–484.

[14] Jewell, N. P. and Kalbfleisch, J. D. (1996), “Marker processes in survival analysis,” Lifetime

Data Analysis, Vol. 2, 15–19.

[15] Kvam, P. H. and Samaniego, F. J. (1993) “Life testing in variably scaled environments,”

Technometrics, Vol. 35, No. 3, 306–314.

[16] Kvam, P. H. and Day, D. (2001) “The multivariate Polya distribution in combat modeling,”

Naval Research Logistics, Vol. 48, No. 1, 1–17.

[17] Lynch, J. D. (1999) “On the joint distribution of component failures for monotone load sharing

systems,” Journal of Statistical Planning and Inference, Vol. 78, 13–21.
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n k = 2, γ1 = 1.25 k = 4, (γ1, γ2, γ3) = (1.25, 1.5, 1.75)
Bias StdErr Bias StdErr

30 .0281 .4033 (.0103, -.0059, .0005) (.3723, .4951, .6571)

50 .0355 .3163 (.0171, -.0134, -.0005) (.2770, .3767, .4912)

100 -.0046 .2062 (.0118, .0094, .0165) (.2007, .2725, .3554)

Table 1: Bias and Standard Error of γ̂ = (γ̂1, . . . , γ̂k) based on 1000 replications and when the true
baseline survivor function is Weibull with shape parameter of 2 and scale parameter of 1.

Si,1 Si,2 Si,3 Si,1 Si,2 Si,3

1286.54 1647.9 1763.22 1100.4 1412.26 1664.37
860.441 1345.05 1751.84 825.547 1125.41 1417.22
1194.75 1617.76 2719.27 427.758 1004.59 2181.77
350.698 782.61 1926.68 1768.23 1796.08 2727.01
169.722 766.904 988.569 904.204 1335.02 1803.59
732.044 1911.16 2593.06 315.753 732.8 1283.59
337.713 803.275 994.759 650.034 954.343 3415.51
472.796 531.578 788.641 562.689 772.21 1232.09
747.868 824.309 1806.99 53.7681 1405.06 2357.47
915.552 1849.6 1872.03 1376.24 1879.17 2150.99

Table 2: Time (in hours) until failure for n = 20 plasma display devices using k = 3 luminosity
sensors.
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n k = 2, γ1 = 1.25 k = 4, (γ1, γ2, γ3) = (1.25, 1.5, 1.75)
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Figure 1: Bias, Standard Error, and RMSE Curves of ˆ̄F based on 1000 replications and when the
true baseline survivor function is Weibull with shape and scale parameters of 2 and 1, respectively.
The red (solid) curve is the bias curve, the blue (dash) curve is the standard error curve, and the
green (dot-dash) curve is the rmse curve.
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Figure 2: Estimated Cumulative Distribution Function for PDP lifetime.
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Figure 3: PDP Example: Confidence Regions (50%, 90%, 95%) for (γ1, γ2)
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