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Reliability Estimation Based on System Data with an Unknown

Load Share Rule ∗

Hyoungtae Kim

Paul H. Kvam

School of Industrial and Systems Engineering

Georgia Institute of Technology, Atlanta, GA 30332

Abstract

We consider a multi-component load-sharing system in which the failure rate of a given

component depends on the set of working components at any given time. Such systems can

arise in software reliability models and in multivariate failure-time models in biostatistics,

for example. A load-share rule dictates how stress or load is redistributed to the surviving

components after a component fails within the system. In this paper, we assume the load

share rule is unknown and derive methods for statistical inference on load-share parameters.

We consider components with (individual) constant failure rates in two environments: (1)

the system load is distributed evenly among the working components, and (2) only assume

the load for each working component increases when other components in the system fail.

Tests for these special load-share models are investigated.

KeyWords: Maximum Likelihood, Software Reliability, Order Restricted Inference, System

dependence.
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1 Introduction

Consider a system of k components in parallel, for which component failure rates change only

at the failure time of the other components within the system. For example, if the components

have identical distributions with initial (constant) failure rate θ, then after the first system

component fails, the failure rate of the remaining k − 1 components changes to γ1θ, for some
γ1 > 0. After the next component failure, the failure rates of the other k−2 components change
to γ2θ, and so on.

This is an example of a load share model, where component failure rates depend on the

working state of the other components in the system. Early applications of the load-share system

models were investigated by researchers in the textile industry [5] for studying the reliability of

composite materials. Yarns and cables fail after the last fiber (or wire) in the bundle breaks,

thus a bundle of fibers can be considered a parallel system subject to a constant tensile load. An

individual fiber fails in time with an individual rate that depends on how the unbroken fibers

within the bundle share the load of this stress. Depending on the physical properties of the

fiber composite, this load sharing has different meanings in the failure model. Yarn bundles or

untwisted cables tend to spread the stress load uniformly after individual failures (i.e., broken

fibers). This leads to an equal load share rule, which implies the existence of a constant system

load that is distributed equally among the working components. For the exponential model

described above, if a constant load is distributed uniformly among the surviving components,

then γi = k/(k − i), for i = 1, ..., k − 1. It is an interesting bi-product of the exponential
distribution memoryless property that the sample component lifetimes in the equal load share

model equate to an i.i.d. exponential distributed sample.

Load sharing models have been studied by Daniels [5], Rosen [14], Coleman [2], Birnbaum &

Saunders [1], and by Phoenix [13]. Daniels, Rosen, and Coleman each used this model to study

the strength behavior of fiber bundles. Birnbaum and Saunders adopted the load-share model

to derive a more general lifetime distribution of materials. Phoenix showed that the system

failure time is asymptotically normally distributed as the number of components grows large.

This extended Coleman’s research on the calculation of the asymptotic mean time to failure.

In some complex settings, a bonding matrix joins the individual fibers as a composite mate-

rial, and an individual fiber failure affects the load of certain surviving fibers (e.g., neighbors)

more than others. This characterizes a local load sharing rule, where a failed component’s load

is transferred to adjacent components; the proportion of the load the surviving components in-

herit depends on their distance to the failed component. A more general monotone load sharing

rule assumes only that the load on any individual component is nondecreasing as other items

fail. Harlow and Phoenix [8] first adopted this model to consider bundles with fibers in a cir-

2



cular arrangement. Lee, Durham, and Lynch [16] introduced the loading diagram to explicitly

compute the bundle strength survival distribution under this local load share rule.

This kind of model dependence is not limited to materials testing. The load-sharing frame-

work applies to more general problems of detecting members of a finite population. Suppose the

resources allocated toward finding a finite set of items are defined globally, rather than assigned

individually. That is, once items are detected, resources can be redistributed for the problem

of detecting the remaining items, and this action gives rise to a load sharing model. In most

cases, the items are identical to the observer, and an equal load share rule is appropriate for

characterizing the system dependence.

From this framework, potential applications for the load share model extend far beyond the

study of textile strength. In software debugging, the detection time for existing bugs in the

software can depend on the number of other bugs in the software that have already been found.

The discovery of a critical fault in the software might help reveal or conceal other yet undetected

bugs. In manufacturing, as another example, a part can be considered failed after the failure of

the entire set of welded joints that holds the part together. The failure of one or two welded

joints can cause the increase of stress on the remaining joints, inducing a load-share model.

Until now, research involving load share models have emphasized the characterization of

system reliability under a known load share rule [7, 10, 15, 16]. For the exponential model

described above, this equates to assuming (γ1, ..., γk−1) are known constants. Methods for re-

liability analysis based on unknown load share rules have not been fully developed. In this

paper, we construct statistical methods for estimating the system and component lifetime dis-

tributions, and in addition, we seek to estimate the load share rule that dictates the system

interdependency. For simplicity, we limit our discussion to a simple parallel system of identical

components, and we focus on a load share rule where (working) component failure rates change

uniformly after each failure within the system, but the magnitude of the change is unknown.

This elementary model serves as an initial step toward drawing inference on more general load

share rules. Extensions to more general rules and more complicated system configurations can

be considered in subsequent research.

In Section 2, statistical methods for the load share model are derived based on the assump-

tions mentioned above. In Section 3, we consider systems with monotone load sharing, which

comprise a significant number of load-sharing examples of interest. In Section 4, we derive a

practical test of the load share rule. Specifically, we test to see if the load share parameters

are monotonic. The test is based on order restricted inference and utilizes isotonic regression

techniques.
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2 Inference for the Load Share Rule

We assume the component lifetimes for n parallel systems are observable, and the individual

component failure rates are constant and identical. Upon the first failures of the system, the

initial (nominal) failure rate θ of the surviving components changes to γ1θ, γ2θ, · · · , γk−1θ after
1st failure, 2nd failure, · · · , and (k − 1)th failures, respectively.

We seek maximum likelihood estimators (MLEs) of the k unknown parameters: θ and γ =

(γ1, γ2, · · · , γk−1). Suppose the random variable Xij represents the lifetime of the jth component
in the ith parallel system and that the random spacing Tij is the time between j

th failure and

(j − 1)th failure for the ith system. Here i = 1, · · · , n and j = 1, · · · , k. The likelihood function
for the ith system is

Li(θ,γ|ti1, ti2, · · · , tik) = k!θk
k−1

j=1

γjexp −θ
k

j=1

(k − j + 1)γj−1tij

where γ0 ≡ 1 and the likelihood function based on n samples is

L(θ, γ|T ) = (k!)n(θ)nk(
k−1

j=1

γj)
nexp −θ

n

i=1

k

j=1

(k − j + 1)γj−1tij (2.1)

where T = {tij ; 1 ≤ i ≤ n, 1 ≤ j ≤ k}, θ > 0 and γ > 0. The corresponding k log-likelihood

equations

∂logL

∂θ
=
nk

θ
−

n

i=1

k

j=1

(k − j + 1)γj−1tij = 0 (2.2)

and

∂logL

∂γj−1
=

n

γj−1
− θ

n

i=1

(k − j + 1)tij = 0 j = 2, 3, . . . , k (2.3)

provide no general closed form solutions for the MLEs (θ̂, γ̂). However, from (2.2) we obtain

θ =
nk

n
i=1

k
j=1(k − j + 1)γj−1tij

, (2.4)

which, on substitution in (2.3), yields

γj−1 −
n
i=1

k
j=1(k − j + 1)γj−1tij

k n
i=1(k − j + 1)tij

= 0, j = 2, 3, . . . , k. (2.5)

Any solution (θ,γ) of these equations in the space [0,∞)k must be in the k − 1 dimensional
subspace {(θ,γ) ∈ [0,∞)k|θ = nk/Ψ(γ)} where

Ψ(γ) =
n

i=1

k

j=1

(k − j + 1)γj−1tij .
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Because the k× k Hessian matrix {∂2/∂γi∂γj logL} is negative definite (see appendix), for any
fixed value of θ, there exists a vector γ in this subspace that yields a global maximum for (2.1),

viewed as a function of γ alone. The induced profile likelihood function Lp, displayed below in

(2.6), is obtained by replacing the parameter θ with nk/Ψ(γ) in the likelihood function L(θ,γ):

Lp(γ) = k!
n nk

Ψ(γ)

nk k

j=1

γj−1
n

exp(−nk). (2.6)

Any point which maximizes the likelihood function L(θ(γ),γ) must necessarily maximize Lp(γ).

The k − 1 estimating equations corresponding to (2.6) are

∂logLp
∂γj−1

= −nkTj
Ψ(γ)

+
n

γj−1
= 0, j = 2, 3, . . . , k, (2.7)

where Tj =
n
i=1(k − j + 1)tij . The MLE for θ is then deduced from (2.2). This leads to the

following theorem, with the proof listed in the appendix.

Theorem 1: Let (θ̂, γ̂) be the maximum likelihood estimator of (θ,γ) from (2.4) and (2.7) in

the exponential load-share model. The MLE exists and is unique. Furthermore, as n→∞, for
(θ,γ) > 0k, we have that

√
n{(θ̂, γ̂)I−(θ,γ)I)} converges to a k-parameter Gaussian distribution

with mean 0k and covariance matrix Σ, where

Σ =
θ2 −θγI
−θγI D(γ2) + γγI

and D(γ2) is defined as the diagonal matrix with diagonal elements equal to (γ1
2, ..., γ2k−1).

Compared to an ordinary sample of n i.i.d. exponential random variables, the asymptotic

variance for θ̂ in Theorem 1 is equal to that of the MLE based on the i.i.d. sample that is k times

smaller in size. Clearly, in a parallel system, an unknown load-share condition is detrimental to

any analysis of the system’s component lifetime distributions. On the other hand, for systems

that fail as a series system if not for the ability to transfer load (e.g., mechanical systems),

load sharing actually boosts reliability, but the unknown load-share condition still hinders the

statistical inference.

There are a variety of iterative methods designed for solving systems of nonlinear equations

in (2.7). The Gauss-Seidel method [12], is especially well suited for the log-likelihood equations

in this problem. The Gauss-Seidel iterations solve the k − 1 nonlinear equations
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Qj−1(γ1, γ2, · · · , γk−1) = n

γj−1
− nk (k − j + 1)tij

n
p=1

k
q=1(k − q + 1)γq−1tpq

= 0, j = 2, · · · , k.

The MLE can be solved using the following four steps:

1 Choose initial solutions γ
(0)
1 , · · · , γ(0)k−2 and solve Qk−1(γ(0)1 , · · · , γ(0)k−2, γk−1) = 0 for γk−1.

Denote the solution as γ
(1)
k−1.

2 Solve Qk−2(γ
(0)
1 , · · · , γ(0)k−3, γk−2, γ(1)k−1) = 0 for γk−2 denote the solution as γ(1)k−2.

3 Continue in this manner, solving for γj−1 by fixing the other variables at their last solution,

and finding γ
(1)
j−1 such Qj−1 = 0.

4 Repeat these steps in sufficient number of iterations until convergence to γ̂1, γ̂2, · · · , γ̂k−1
has been achieved. Then θ̂ is computed through (2.4).

Confidence statements and hypothesis tests, based on the likelihood ratio, can be constructed

for any combination of the failure rate parameter θ and load share parameters γ. The inverse

of the observed Fisher information matrix Io provides an estimate of the covariance in the large

sample normal distribution of β̂−β, where β ≡ (θ,γ) and β̂ is the MLE of β. For large samples,
the approximate (1− α) confidence ellipsoid for (θ,γ) ∈ (0,∞)k is

(β̂ − β)II−1o (β̂ − β) ≤ χ2k,α, (2.8)

centered at the MLE β̂. Here, χ2k,α is the upper α
th quantile of the chi-square distribution with

k degrees of freedom. The computation of I−1o is included in the appendix.

Consider the following example to illustrate uncertainty estimation for the load-share para-

meters. Sample data for 10 identical load-share systems were generated by using θ = 0.1, γ1 = 2

and γ2 = 4. For illustration, we simplify (2.8) to obtain a confidence region for γ rather than

β. The numerical method described above provides MLEs γ̂1 = 2.212, γ̂2 = 4.148, and a (1−α)
confidence region for (γ1, γ2), based on (2.8) is

1

n
(γ̂1 − γ1, γ̂2 − γ2) 2γ̂21 γ̂1γ̂2

γ̂2γ̂1 2γ̂22

γ̂1 − γ1
γ̂2 − γ2

≤ χ22(0.95)

or 81.825 + 0.979γ21 − 32.846γ2 + 3.441γ22 − 12.389γ1 + 1.943γ1γ2 ≤ 5.99. Contour lines of the
confidence regions for (γ1, γ2) at α equal 0.80, 0.90, 0.95 and 0.99 are displayed in Figure 1.

The figure also conveys the strong negative correlation between γ̂1 and γ̂2.
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3 Monotone Load Sharing

In many practical applications, 1 ≤ γ1 ≤ γ2 ≤ · · · ≤ γk−1 (or monotone load sharing) might

be a reasonable assumption; a component failure can cause the increase in the work-load of the

other components, which can equate to an increase of failure rate. We consider estimation of the

load-share parameters under this order restriction as well as a corresponding test of hypothesis.

After the jth failure in the system, the conditional failure rate of the k− j remaining compo-
nents is γjθ, so the conditional likelihood between the (j− 1)th and jth failure can be computed
as Lj(αj) = (k − j + 1)αj exp(−(k − j + 1)tjαj) where αj = γj−1θ, j = 1, · · · , k. Then

α = (α1, · · · ,αk), where α1 ≡ θ, is isotonic if and only if γ is. The full log-likelihood, in terms

of α, is

logL(α) = n
k

j=1

log(k − j + 1) + n
k

j=1

logαj −
n

i=1

k

j=1

(k − j + 1)tijαj . (3.9)

The problem of maximizing (3.9) subject to α1 ≤ α2 ≤ · · · ≤ αk is equivalent to maximizing the

log-likelihood

logL = n
k

j=1

logαj −
n

i=1

k

j=1

(k − j + 1)tijαj

=
k

j=1

n logαj
(k − j + 1) n

i=1 tij
− αj (k − j + 1)

n

i=1

tij

subject to α1 ≤ α2 ≤ · · · ≤ αk.

Robertson, Wright and Dykstra (Chapter 1.5) [18] showed that the restricted least squares

estimate coincides with the maximum likelihood estimate from this log-likelihood function. For

brevity, further references to their book will denoted by RWD. By applying Theorem 1.4.4 of

RWD, the order restricted MLE can be solved as an isotonic regression. Specifically, if we let

f(j) = αj , g(j) = n/
n
i=1 tij(k − j + 1) and w(j) = (k − j + 1) n

i=1 tij , the solution α̂1, α̂2,

· · · , α̂k is the isotonic regression g∗ of g and is given by

g∗(j) = maxs≤jmint≥j
t
u=s g(u)w(u)
t
u=sw(u)

= maxs≤jmint≥j
n(t− s+ 1)

t
u=s(k − u+ 1) n

i=1 tiu
. (3.10)

The order restricted MLE of γj−1 is γ̃j−1 = g∗(j)θ̃−1 where θ̃ = g∗(1).

To illustrate the order restricted estimation we generated n = 20 failure times from two

systems comprised of three components. The first system is characterized by the parameters
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(θ = 0.1, γ1 = 1.5, γ2 = 3) and the second system by (θ = 0.1, γ1 = 3, γ2 = 1.5). The simulated

data are listed in Table 1 and the load-share parameter estimators are listed in Table 2. For

System 1, the unrestricted MLEs are already isotonic and thus have the same values as the

order-restricted MLEs. For system 2, the corresponding unrestricted MLEs are not isotonic so

they do not match the order restricted MLEs.

4 Hypothesis Testing for Unknown Load Share Rules

In this paper, three load sharing rules have been discussed: equal load-sharing, local load-sharing,

and monotone load-sharing. Equal load sharing dictates that at any moment a constant total

system load is distributed equally to each working component. As components fail, the total

system load remains unchanged, so that the load increases for each of the remaining components

according to the rule γi = k/(k − i), i = 1, 2, · · · , k − 1. As reported in Section 1, for the
exponential model, this generates another sample of system data that are also i.i.d. exponential.

The memoryless property actually preserves the i.i.d. failure data distribution.

A more practical test for reliability applications is for detecting an increasing load within

the system: H0 : γ1 = γ2 = · · · = γk−1 versus H1 : γ1 ≤ γ2 ≤ · · · ≤ γk−1. Consistent with

the likelihood approach used in estimation, we consider a test based on the likelihood ratio

statistic (supH0 L(β))/(supH1 L(β)) = L(β̂)/L(β̃), where β̃ = (θ̃, γ̃) are the order restricted

MLEs computed in Section 3. In the likelihood function for the monotone load share model, it

will be more convenient to work with the notation ηj = (θγj)
−1 and η0 = 1/θ, so an equivalent

set of hypotheses is H0 : η0 = η1 = η2 = · · · = ηk−1 versus H1 : η0 ≥ η1 ≥ η2 ≥ · · · ≥ ηk−1.

Here H0 indicates that there is no actual “load”; the component failure rates remain un-

changed after failures within the system. Let Tij to be the time between (j−1)th failure and jth
failure in ith sample. Then Tij ∼ exponential with failure rate (k − j + 1)/ηj−1. Under H0, the
MLEs are η̂0 = (

n
i=1

k
j=1(k− j +1)tij)(nk)−1 and, for j > 1, η̂j−1 = n−1 n

i=1(k− j +1)tij .
The likelihood ratio statistic is computed by plugging

L0 = sup
H0

L(η) = L(η̂) = (k!)n
k

j=1

1

η̂0

n

exp −
n
i=1

k
j=1(k − j + 1)tij

η̂0

into the numerator. If we define functions p1(ηj) = −1/ηj , p2(θ) = 1, K(tj |θ) = (k − j + 1)tj ,
S(tj |θ) = ln(k − j + 1) and q(βj |θ) = − ln ηj , then regularity conditions 1.5.7, 1.5.8, and 1.5.9
from RWD are satisfied for their Theorem 1.5.2, which proves that under H1, the MLE η̃ is

solved as the isotonic regression in (3.10) with weights w(xi) = n. For the denominator of the

likelihood ratio, we have
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L1 = sup
H1

L(η) = L(η̃) = (k!)n
k

j=1

1

η̃j−1

n

exp −
k
j=1(k − j + 1)tij

η̃j−1
.

Due to the order restrictions, we lack the regularity conditions to guarantee the likelihood

ratio statistic will have a Chi-square distribution. However, for this particular order restriction,

Theorem 4.1.1 of RWD holds and we can approximate the distribution of the test statistic as a

mixture of Chi-square distributions. Specifically, if T01 = −2(logL0 − logL1), then

T01 = 2
k

j=1

n(− log η̃j−1 + log η̂0) + 2
k

j=1

nη̂j−1 − 1

η̃j−1
+
1

η̂0
.

Under H0, the asymptotic distribution function of T01 is

P (T01 ≤ c) = 1−
k

l=2

P(l , k)P(χ2l−1 > c). (4.11)

The level probability P (l , k) denotes the probability that given k groups under H0 the isotonic

regression will result in l level sets. Level sets are sets of constancy of isotonic functions, and
k
l=1 P(l , k) = 1.

For example, with Sample 1 in Table 1, T01 = 14.33 and the P-value = P (T01 > 14.33) =

0.00023, which strongly suggests the ordering described by H1 is present in the data. For the

second sample, we have T01 = 3.7089 with P-value = 0.053. In this case the evidence of load-

share parameter ordering is less convincing. For the cases of k ∈ {3, 4, 5}, Table 3 lists upper
quantiles for the null-distribution for this test of hypothesis.

5 Discussion

In terms of model uncertainty, there is a slight disadvantage to estimating system or component

lifetime distributions in a load share system when the load share rule is assumed to be known.

An accelerated lifetime model with known acceleration levels is a suitable analog. The inference

is more elaborate than inferences for regular lifetime models. However, if the load share rule

cannot be assumed exactly, the load sharing property severely hinders statistical inference on

the system. This was seen in the results of Theorem 1, where it was shown that the variance of

the lifetime model parameter estimates was k times larger than the variances in a regular i.i.d.

sample.

This fact can have important ramifications in practical examples in which the failure rates

of system components can change after a failure event occurs within the system. If the load
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share model is appropriate for a software reliability problem (discussed in Section 1), the more

traditional modeling and analyses are likely to lead to inference that grossly underestimates

parameter uncertainty. For example, in problems where the number of remaining bugs in a

piece of software is being estimated, upper bounds for this unknown number of bugs will be too

small.

As mentioned in Section 2, load sharing can also serve to benefit system reliability. The

ability to transfer a load after a key component failure can save a system that would otherwise

fail, such as a system of support structures. The event of the World Trade Centers’ collapse

actually serves as an example. For primary support, the towers relied on interior columns as

well as pinstripe columns running up each tower’s facade, which were turned into additional

load-bearing supports. As an afterthought, a system of supports put on the top of the building

bound the exterior columns to the core. The structure, called a hat truss, was originally installed

to hold up antennae, but after the impact of the speeding commercial jet, the hat truss served

to spread the load of the damaged columns onto undamaged columns. This load-sharing, as

reported in the New York Times [6], helped prevent the instantaneous collapse of the towers

after the plane impact events.

This paper represents an important first step in drawing inference on load sharing properties

for basic systems. Extending the load share model to more general lifetime distributions (e.g.,

Weibull, lognormal, normal) will be problematical in likelihood based inference, undoubtedly.

On-going research includes a nonparametric lifetime model under unknown equal load sharing.

In many applications, basic systems of identical components can be modeled adequately by the

exponential load-share model if component failure rates remain approximately constant between

component failures. In large systems with several components, this is sometimes a common

assumption.
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Table 1: Failure times for load-share samples

n
Sample 1 Sample 2

ti1 ti12 ti3 ti1 ti2 ti3

1 1.94 0.37 6.93 3.85 6.49 0.36

2 7.44 0.06 2.42 0.32 0.14 7.57

3 0.14 0.20 0.20 8.29 0.12 5.98

4 2.14 1.62 2.34 0.86 6.12 3.43

5 1.91 5.70 1.96 2.42 1.19 6.00

6 8.23 2.25 4.60 1.53 0.20 6.26

7 1.40 2.50 0.09 2.50 1.18 1.01

8 0.79 2.44 7.27 1.30 1.19 9.13

9 0.92 0.12 0.06 4.32 2.08 3.62

10 0.73 0.79 8.61 2.89 0.49 6.28

11 2.78 7.22 1.38 3.25 3.88 6.22

12 0.85 2.81 5.05 17.87 4.18 0.03

13 8.50 4.13 0.52 8.99 0.46 27.63

14 12.93 5.67 1.11 4.08 2.17 15.02

15 4.46 0.96 3.54 1.93 6.81 10.18

16 3.50 7.16 2.38 2.70 0.37 5.04

17 19.59 0.32 1.89 0.34 0.97 2.47

18 4.98 7.32 1.54 5.16 2.64 5.43

19 10.29 2.58 8.61 4.03 0.10 2.38

20 2.22 1.73 1.22 0.16 3.98 2.26

Table 2: MLE vs order restricted MLE

Sample 1 Sample 2

γ1 γ2 γ1 γ2

MLE 1.7875 3.2393 2.2337 1.5837

ORDERED MLE 1.7875 3.2393 1.8534 1.8534
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Table 3: Upper α-quantiles for the mixture distribution in (4.11)

k α = 0.20 α = 0.10 α = 0.05 α = 0.025 α = 0.01

3 3.047 4.487 5.927 7.363 9.273

4 3.446 4.977 6.491 7.990 9.870

5 3.748 5.345 6.907 8.461 10.486

Figure 1: Confidence regions (80%, 90%, 95%, 99%) for (γ1, γ2)

APPENDIX

Proof of Theorem 1: For the load-share model, the computation of the covariance, based on

the information matrix Iθ = Σ
−1 is straightforward if we write
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Iθ = Σ
−1 =

I11 I12

I21 I22

where I11 = nk/θ
2, I12 = I21I = nθ−1γI, and I22 = nD(1/γ1, · · · , 1/γk−1). If we define

Σ = I−1θ =
Σ11 Σ12

Σ21 Σ22
,

then the inverse solution is a common matrix identity and we have Σ11 = n
−1θ2, Σ12 = Σ21I =

−n−1θγI, and Σ22 = n−1(D(γ2 + γγI)).

Proof that matrix H is negative definite: The components of the Hessian matrix H in are

given by

Hj,j =
∂2

∂γ2j−1
logL =

nkT 2j+1
Ψ(γ)2

− n

γ2j
, j = 1, . . . , k − 1, and

Hj,l = Hl,j =
∂2

∂γjγl
logL =

nkTj+1Tl+1
Ψ(γ)2

, 1 ≤ j W= l ≤ k − 1.

Here we establish that H is negative definite, thus the MLE in (2.6) exists and is unique.

To show that H is negative definite, we need ZIHZ < 0, where Z represents a k − 1 vector,
Tj =

n
i=1(k − j + 1)tij , Ψ(γ) = k

j=2 γj−1Tj , and

ZIHZ =
k

i=2

k

j=2

nkTiTjZi−1Zj−1
Ψ(γ)2

− n
k

j=2

Z2j−1
γ2j−1

.

From (2.7), 1/γj−1 = kTj/Ψ(γ), and we can write

ZIHZ =
nk

Ψ(γ)2

k

j=2

TjZj−1
2−k

k

j=2

T 2j Z
2
j−1

= − nk

Ψ(γ)2

k

iW=j
TjZj−1 − TiZi−1 2

< 0,

which establishes that H is negative definite.
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