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AN INNER-OUTER FACTORIZATION IN `p WITH
APPLICATIONS TO ARMA PROCESSES

RAYMOND CHENG AND WILLIAM T. ROSS

Abstract. The following inner-outer type factorization is ob-
tained for the sequence space `p: if the complex sequence F =
(F0, F1, F2, . . .) decays geometrically, then for any p sufficiently
close to 2 there exist J and G in `p such that F = J ∗ G; J is
orthogonal in the Birkhoff-James sense to all of its forward shifts
SJ, S2J, S3J, . . .; J and F generate the same S-invariant subspace
of `p; and G is a cyclic vector for S on `p.

These ideas are used to show that an ARMA equation with char-
acteristic roots inside and outside of the unit circle has Symmetric-
α-Stable solutions, in which the process and the given white noise
are expressed as causal moving averages of a related i.i.d. SαS white
noise. An autoregressive representation of the process is similarly
obtained.

1. Introduction

In this paper we begin to examine, under certain circumstances, a
possible “inner-outer” factorization for the class `pA of analytic functions
f on the open unit disk D whose Taylor coefficients belong to the
classical sequence space `p. When p = 2, the sequence space `2

A is the
classical Hardy space H2, and a theorem of Beurling says that every
f ∈ `2

A can be factored, uniquely up to unimodular constants, as

(1.1) f = JG,

where J is an inner function and G is an outer function. More specifi-

cally, the function J can be obtained by the formula J = f − f̂ , where

f̂ is the orthogonal projection of f onto S[f ], equivalently

(1.2) J ⊥ SkJ, k ≥ 1.

In the above, S is the unilateral shift operator Sg = zg on `2
A and [f ]

is the S-invariant subspace generated by f . Furthermore, the function
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2 CHENG AND ROSS

G satisfies [G] = `2
A, i.e., G is a cyclic vector for S, and the function

J satisfies [J ] = [f ]. The classic text [13] provides a full account of all
this.

When p 6= 2, the invariant subspaces of `pA can be quite complicated
and, especially when p > 2, can have many dramatic pathological
properties [1]. In short, the S-invariant subspaces for p 6= 2 are not
understood much at all. Even when p = 1, where `1

A is an algebra
of continuous functions on the closure D of D (known as the Wiener
algebra), the S-invariant subspaces, which turn out to be the ideals of
`1
A, still have delicate, but pathological, properties [18].

In this paper, we obtain a partial Beurling-type factorization as in
(1.1) by replacing the standard Hilbert space orthogonality in `2

A, used
in (1.2) to define the inner factor J , by the Birkhoff-James orthogonal-
ity relationship ⊥p in `pA (see (3.2) below). Our main theorem is the
following.

Theorem 1.3. If f is analytic in a neighborhood of D, then for any
p sufficiently close to 2, there exist functions G and J , analytic in a
neighborhood of D, such that

f = JG

where G is cyclic vector for S on `pA and J satisfies

J ⊥p SkJ k = 1, 2, 3, . . .

Furthermore, we have [f ] = [J ] in `pA. The functions J and G are
unique up to multiplicative constants.

As with Beurling’s theorem, notice that we have J ⊥p SkJ for all
k ≥ 1, which is an equivalent to J being inner when p = 2, and
[G] = `pA, which is equivalent to G being outer when p = 2. One
might expect that “inner” in this situation depends on p. Indeed, the
“inner” factor J when p = 2 is actually an inner function in the classical
sense (i.e., a bounded analytic function on D with unimodular radial
boundary values almost everywhere on the circle T), up to a constant
factor. When p 6= 2, one can have the condition J ⊥p SkJ for all k ≥ 1
but without J being inner in the classical sense (see the examples at
the ends of Sections 3 and 5, respectively).

The next section sets forth the notation used in this paper and re-
views the related function theory. Section 3 contains the development
of the main theorem. The analytical tools derived in Section 3 are ap-
plied in Section 4 to solve a problem concerning Autoregressive Mov-
ing Average (ARMA) processes. It is shown that an infinite-variance
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ARMA model has a causal stationary solution, even if its characteristic
polynomials have roots both inside and outside the unit circle.

The modest `p factorization given in Theorem 1.3 is sufficient to
solve the intended application to ARMA processes. However, one can
see that there is much work to be done to obtain, if possible, a general
“inner-outer” factorization for all f ∈ `pA, not necessarily smooth up to
the boundary. We invite the reader to join in the discussion.

2. Preliminaries

For 1 ≤ p <∞ define `p to be the set of sequences

a = (a0, a1, . . .)

of complex numbers for which

‖a‖p :=

(
∞∑
k=0

|ak|p
)1/p

<∞.

When 1 ≤ p < ∞, the quantity ‖a‖p defines a norm on `p which
makes `p a Banach space. In this paper, we will use the fact that when
1 < p <∞, the space `p is both uniformly convex and smooth [8].

For an a ∈ `p we will set

(2.1) a(z) =
∞∑
k=0

akz
k

to be the power series whose Taylor coefficients are a. Note the use of a
(bold faced) to represent a sequence and a (not bold faced) to represent
the corresponding power series. By Hölder’s inequality we see that if
p′ denotes the usual conjugate index, i.e., 1/p+ 1/p′ = 1, then

∞∑
k=0

|ak||zk| ≤

(
∞∑
k=0

|ak|p
)1/p( ∞∑

k=0

|z|kp′
)1/p′

= ‖a‖p
(

1

1− |z|p′
)1/p′

.

This implies that the above power series a determines an analytic func-
tion on the open unit disk D. If we define

`pA = {a : a ∈ `p}
then, norming a by ‖a‖p, `pA becomes a Banach space of analytic func-
tions on D. Furthermore, for each z ∈ D and a ∈ `pA we have

(2.2) |a(z)| ≤ ‖a‖p
(

1

1− |z|p′
)1/p′
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and so if a sequence of functions converges in the norm of `pA then it
converges uniformly on compact subsets of D.

For two sequences a and b the convolution a ∗ b is the sequence{
n∑
k=0

akbn−k

}
n≥0

.

By multiplying Taylor series coefficients, notice how a ∗ b corresponds
via (2.1) to the product a(z)b(z). The space `p is convolution algebra
(i.e., a∗b ∈ `p whenever a,b ∈ `p) only when p = 1, and `1 is called the
Wiener algebra. From here note that the corresponding function space
`1
A is a Banach algebra of analytic functions on D which are continuous

on D. Also observe that `1 ⊂ `p for all p ≥ 1 and recall Young’s
inequality [22, p. 37]

(2.3) ‖a ∗ b‖p ≤ ‖a‖p‖b‖1, a ∈ `p,b ∈ `1.

For 1 ≤ p <∞ the classical Hardy space Hp consists of the analytic
functions f on D for which

‖f‖Hp =

(
sup

0<r<1

∫
T
|f(reiθ)|pdλ(eiθ)

)1/p

<∞,

where dλ is normalized Lebesgue measure on the unit circle T. Func-
tions in Hp are known to have radial limits

f(eiθ) := lim
r→1−

f(reiθ), λ-a.e.

and the corresponding boundary function belongs to Lp(T, λ). When
p = 2, Parseval’s theorem shows that H2 is a Hilbert space with the
standard L2(T, λ) inner product.

We define the forward shift operator

S : `p → `p, Sa = (0, a0, a1, a2, . . .)

and observe that S is an isometry on `p. For a ∈ `p, let [a] denote the
S-invariant subspace generated by a, that is,

[a] =
∨
{a, Sa, S2a, . . .},

where
∨

denotes the closed linear span in `p. A vector a ∈ `p is said
to be cyclic if [a] = `p. It will be useful to write I = (1, 0, 0, 0, . . .) and
notice via (2.1) how this corresponds to the constant function 1.

One can view the shift S on `p as the operator

a(z) 7→ za(z)

of multiplication by the independent variable z on the corresponding
function space `pA. From this viewpoint, note that for a ∈ `pA, [a] is



INNER-OUTER 5

the `pA-closure of the set of all pa, where p is an analytic polynomial.
We will identify the shift operator on the sequence space `p with the
multiplication (by z) operator on the function space `pA, and denote
both by S .

If Θ is an inner function, then ΘH2 is a closed S-invariant subspace
of H2. Beurling showed that every S-invariant subspace of H2 takes
the form ΘH2 for some unique (up to multiplicatitive unimodular con-
stants) inner function Θ. Perhaps more relevant to this paper is the
well-known fact that every f ∈ H2 can be factored as

f = ΘF,

where [f ] = [Θ] and [F ] = H2, i.e., F ∈ H2 is an outer function [13].
Beurling’s Theorem and the inner-outer factorization carry over di-

rectly to all the Hardy spaces Hp, 1 < p <∞. However, for the spaces
`pA, the situation is quite unclear when p 6= 2. Indeed, it is known that
the invariant subspaces for `pA (especially when p > 2) are extremely
complicated and can have many pathological properties [1].

3. Inner-Outer Factorization in `p

A key concept in our factorization and its application to ARMA
processes is the notion of Birkhoff-James orthogonality. Some good
sources for this material are [2, 14]. Let X and Y be vectors belonging
to a normed linear space X. We say that X is orthogonal to Y in the
Birkhoff-James sense if

(3.1) ‖X + βY ‖X ≥ ‖X‖X
for all scalars β. In this situation we write X ⊥X Y . An easy exercise
shows that when X is a Hilbert space with inner product ⊥, then
X ⊥ Y ⇐⇒ X ⊥X Y . The relation ⊥X is generally neither symmetric
nor linear. In the special case X = `p (1 < p < ∞), let us write ⊥p in
place of ⊥`p . Of particular importance here is the following criterion
for the relation ⊥p:

(3.2) a ⊥p b ⇐⇒
∞∑
k=0

|ak|p−2ākbk = 0

[14, Example 8.1], where any occurrence of “|0|p−20” in the above ex-
pression is interpreted as zero. Note that ⊥p is therefore linear in its
second argument, and it makes sense to speak of a vector being orthog-
onal to a subspace of `p.

Birkhoff-James orthogonality arises in a natural way in the study
of p-stationary processes. These processes include α-stable processes
with 1 < α ≤ 2, Lp-harmonizable processes, and strictly stationary Lp
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processes. The orthogonality condition is connected to the associated
prediction problems, Wold-type decompositions, and moving-average
representations [7, 10, 11, 16].

In light of the orthogonality criterion in (3.2), let us write

a〈p−1〉 = {|ak|p−2āk}k≥0.

Thus, in accordance with our notational scheme in (2.1), a〈p−1〉(z) rep-
resents the power series

a〈p−1〉(z) =
∞∑
k=0

|ak|p−2ākz
k.

We remind the reader that for 1 < p <∞, p′ will denote the conju-
gate index for p, i.e., 1/p+ 1/p′ = 1.

Proposition 3.3. For any complex number b,

(3.4) (b〈p
′−1〉)〈p−1〉 = (b〈p−1〉)〈p

′−1〉 = b.

If b ∈ `p, then b〈p−1〉 ∈ `p′, and

(3.5) ‖b‖pp = ‖b〈p−1〉‖p
′

p′ .

Proof. By definition,

(b〈p
′−1〉)〈p−1〉 =

∣∣|b|p′−2b̄
∣∣p−2|b|p′−2b

= |b|(p′−2)(p−1)−(p−2)b

= |b|(p′−1)(p−1)−1b

= b.

This verifies part of (3.4). The other part is similar. The proof of (3.5)
comes from the identity

|b〈p−1〉
k |p′ = |bk|(p−1)p′ = |bk|p, k = 0, 1, 2, . . . �

Given f ∈ `p, we wish to describe the S-invariant subspace generated

by f . When p = 2, we set J = f−f̂ , where f̂ is the orthogonal projection
of f onto S[f ] (which is a closed subspace of `2 since S is an isometry).
It follows that

J ⊥ SkJ, k = 1, 2, . . .

Expressing this orthogonality in terms of L2(T, λ) functions, we get∫
T
|J(eiθ)|2e−ikθdλ(eiθ) = 0, k = 1, 2, . . . .

Taking complex conjugates of the above expression shows that all of
the Fourier coefficients of |J | (except the 0-th one) are zero. This
means that |J | must be a constant function on T, and hence inner, up
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to a constant factor. Since J ∈ [f ] we see that [J] ⊂ [f ]. The reverse
inclusion follows by observing that if g ∈ [f ]	 [J] then g ⊥ [J], which,
written in integral form, says that∫

T
g(eiθ)J(eiθ)e−ikθdλ(eiθ) = 0, k = 0, 1, 2, . . . .

But since g ∈ [f ] and J ⊥ S[f ] we also have, again writing this in
integral form,∫

T
J(eiθ)e−ikθg(eiθ)dλ(eiθ) = 0, k = 1, 2, . . . .

The above two integral identities show that the Fourier coefficients of
gJ vanish identically, which makes g the zero function. We may thus
conclude that

(3.6) [f ] = [J].

When p 6= 2, the orthogonality relationship is not given by an inte-
gral, but the infinite series expression in (3.2), and thus the powerful
tools of Fourier analysis used above (and by Beurling) are not at our
disposal. However, we can proceed with parts of the above proof but
we will eventually have to replace the tools of Fourier analysis with
something else.

Indeed if f ∈ `p we can still examine the closed S-invariant subspace
S[f ] and, since `p is uniformly convex [8, Thm. 11.10], there exists a

unique f̂ ∈ S[f ] which is closest to S[f ] [8, Thm. 11.3(b)], i.e., the
metric projection of f onto S[f ]. The definition of the Birkhoff-James

orthogonality in (3.1) (and the fact that f̂ is the vector in S[f ] closest
to f) shows that

(3.7) (f − f̂) ⊥p S[f ].

As before, set J = f − f̂ and note that

(3.8) J ⊥p Skf , k = 1, 2, . . .

and, since the criterion for Birkhoff-James orthogonality ⊥p from (3.2)
is linear in the second argument, we also have

(3.9) J ⊥p SkJ, k = 1, 2, . . .

These two orthogonality relations will be useful later. The following
technical detail will also be useful.

Proposition 3.10. Let a ∈ `p and b ∈ [a]. If w ∈ D is a zero of a(z)
of multiplicity m, then w is a zero of b(z) with multiplicity no less than
m.
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Proof. Viewing everything in `pA, we see that

b ∈
∨
{zka : k ≥ 0}

and so there is a sequence of polynomials {pn}n≥1 so that pna → b in
`pA. By (2.2) we see that pkb → a uniformly on compact subsets of D,
and the claim follows from the Cauchy integral formula. �

Next we derive some structural information about the co-projection

J = f − f̂ , and the related sequence J〈p−1〉, in the important special
case when f is a polynomial with all of its roots inside the open unit
disk D.

Theorem 3.11. Suppose that the polynomial

f(z) =
d∏

k=1

1

rk
(rk − z)

has roots lying only in D\{0}. Let f be its coefficient sequence, and let

f̂ be the metric projection of f onto S[f ] in the norm of `p. Then the

co-projection J = f − f̂ satisfies

(3.12) J(eiθ) = f(eiθ)U(eiθ)

for some function U(z) with geometrically decaying Taylor coefficients.
Furthermore,

(3.13) J 〈p−1〉(eiθ) =
Q0e

idθ +Q1e
i(d−1)θ + · · ·+Qd

f0eidθ + f1ei(d−1)θ + · · ·+ fd

for some polynomial Q(z) = Q0 +Q1z+ · · ·+Qdz
d of degree exactly d.

Proof. As observed in (3.8) we have J ⊥ Skf for all k ≥ 1 and therefore
by (3.2),

(3.14)
∞∑
j=0

|Jj+k|p−2J̄j+kfj = 0, k = 1, 2, 3, . . .

The function J 〈p−1〉 is certainly analytic in D. Condition (3.14) tells us
that for all k ≥ 1, the meromorphic function f(1/z)J 〈p−1〉(z) satisfies∮

Tr

f(1/z)J 〈p−1〉(z)
dz

zk+1
= 0

where Tr is any circle of radius r ∈ (0, 1), centered at the origin. On
the other hand, the function

zdf(1/z)J 〈p−1〉(z)
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is analytic in D. As a result, the Laurent series of f(1/z)J 〈p−1〉(z) must
take the form

f(1/z)J 〈p−1〉(z) = Q0 +Q1(1/z) + · · ·+Qd(1/z
d)

for some polynomial Q. Since Qd = J
〈p−1〉
0 fd 6= 0, the degree of Q is

exactly d. We may therefore take limits as r ↑ 1, and conclude that

J 〈p−1〉(eiθ) =
Q0 +Q1e

−iθ + · · ·+Qde
−idθ

f0 + f1e−iθ + · · ·+ fde−idθ

=
Q0e

idθ +Q1e
i(d−1)θ + · · ·+Qd

f0eidθ + f1ei(d−1)θ + · · ·+ fd

which verifies (3.13). Note that all of the roots of f lie inside D, so
that this can be further expressed as

J 〈p−1〉(z) = (Q0z
d +Q1z

(d−1) + · · ·+Qd)
d∏

k=1

( ∞∑
j=0

rj−1
k zj

)
which has radius of convergence no less than

ρ = min{1/r1, 1/r2, 1/r3, . . . , 1/rd} > 1.

Thus the elements of the sequence J〈p−1〉 decay geometrically at the
rate 1/ρk and thus J 〈p−1〉(eiθ) is a bounded function on T. From
this and Proposition 3.3, it follows that the elements of the sequence
(J〈p−1〉)〈p

′−1〉 = J decay as 1/(ρp
′−1)k. Hence J is analytic in a neigh-

borhood of D as well.
Condition (3.9) can be written as

∞∑
j=0

|Jj+k|p−2J̄j+kJj = 0, k = 1, 2, 3 . . . ,

which can, in turn, be expressed in integral form as∫
T
J(eiθ)J 〈p−1〉(e−iθ)eikθ dλ(eiθ) = 0, k = 1, 2, 3, . . .

Note the use of the facts that J and J 〈p−1〉 are analytic in the neigh-
borhood of D and so their values on T are well defined. By the F. and
M. Riesz theorem [13, p. 41] J(eiθ)J 〈p−1〉(e−iθ) is some function K(eiθ)
in H∞ (the bounded analytic functions on D). Using (3.13), we find
that

J(eiθ) =
f(eiθ)

Q(eiθ)
K(eiθ)
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Since J ∈ [f ], all the zeros of f are zeros of J (by Proposition 3.10), so
all of the zeros of Q lying inside D must also be zeros of K, counting
multiplicities.

We may therefore speak of U = K/Q as an analytic function on the
disk of radius ρp

′−1 > 1. This proves (3.12). �

When p = 2, J is simply the finite Blaschke factor carrying the
roots of f . From this it is easy to see that G = f/J is analytic and
nonvanishing in a neighborhood of D, and hence G is cyclic in `2

A. For
p 6= 2, it is much more difficult to obtain information on the location
of the zeros of J . In the following lemma, we use the continuity of
zero sets to see that for p sufficiently close to 2, the resulting J has
the same zeros in D as f . However, our methods are unable to discern
whether or how this could extend to the full range of parameter values
1 < p <∞.

Lemma 3.15. Suppose that the polynomial f has exactly d roots, count-
ing multiplicity, all lying in D \ {0}. There exists δ > 0 such that

|2 − p| ≤ δ implies that the associated J = f − f̂ has exactly d zeros,
counting multiplicity, in D.

Proof. For the present proof only, let us adopt the notation f̂(p), J(p) and

Q(p) in place of f̂ , J and Q, respectively, to emphasize their dependence
on p. We will see that they are well behaved as p converges to 2. Fix
some p0 > 3. Let us also temporarily rescale f , if necessary, so that

‖f‖p < 1 for all p, 1 < p ≤ p0. This is harmless since f̂ and J also scale
linearly and their zero sets are unaffected.

From Theorem 3.11 we know there exists ρ > 1 such that J
〈p−1〉
(p) is

analytic in {z : |z| < ρ} for all p, 1 < p < ∞. Thus J(p) is analytic in

{z : |z| < ρp
′−1} for all p, 1 < p < ∞. In particular, for 1 < p ≤ p0,

J(p) is analytic in the fixed disk {z : |z| < ρp
′
0−1}.

Choose r satisfying 1 < r < ρp
′
0−1. Let

A = {a : ‖a‖1 ≤ 1}.

For 1 < p ≤ p0, we have∣∣|ak|p − |ak|2∣∣ = |ak| ·
∣∣|ak|p−1 − |ak|

∣∣
≤ |ak| ·Mp

where Mp = max{|xp−1 − x| : 0 ≤ x ≤ 1}. It is easy to see that Mp

tends to zero as p approaches 2. Consequently,

‖a‖pp − ‖a‖2
2 ≤ ‖a‖1 ·Mp ≤Mp
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uniformly for all a ∈ A. By the continuity of elementary power func-
tions, it follows that

‖a‖p → ‖a‖2

uniformly for all a ∈ A.
Notice that if 1 < p ≤ p0, then

‖J(2)‖2 = ‖f − f̂(2)‖2 ≤ ‖f‖2 < 1

‖J(p)‖p = ‖f − f̂(p)‖p ≤ ‖f‖p < 1.

By Hölder’s inequality, each such J(p) belongs to A.
We have shown that for any ε > 0, there exists a δ > 0 so that

|2− p| ≤ δ =⇒
∣∣∣‖a‖p − ‖a‖2

∣∣∣ < ε ∀a ∈ A.

For p satisfying 2− δ < p < min{2 + δ, p0}, we have

‖f − f̂(p)‖p ≤ ‖f − f̂(2)‖p
= ‖f − f̂(2)‖2 + (‖f − f̂(2)‖p − ‖f − f̂(2)‖2)

≤ ‖f − f̂(2)‖2 + ε

and

‖f − f̂(2)‖2 ≤ ‖f − f̂(p)‖2

= ‖f − f̂(p)‖p + (‖f − f̂(p)‖2 − ‖f − f̂(p)‖p)

≤ ‖f − f̂(p)‖p + ε.

Due to the uniqueness of nearest points in `2, it follows that J(p) con-
verges to J(2) in `2. Their respective kth coefficients must also converge.

But from Theorem 3.11 we have

J
〈p−1〉
(p) (z) =

zdQ(p)(1/z)

zdf(1/z)
.

Each Q(p)(z) is a polynomial of degree d, and so the convergence of
zdQ(p)(1/z) to zdQ(2)(1/z), as p approaches 2, is uniform on any com-
pact set in the complex plane. Dividing by zdf(1/z) preserves uniform
convergence on all compact subsets of the disk {z : |z| < ρ}. This
is because division by zdf(1/z) amounts to multiplying by a factor∑∞

k=0 w
kzk for each root w of f . Indeed, the kth Taylor coefficients of

J
〈p−1〉
(p) are uniformly bounded by a constant times 1/ρk. Hence J

〈p−1〉
(p)

converges to J(2) uniformly on any compact subset of {z : |z| < ρ}.
Similarly, for 1 < p < p0, the kth Taylor coefficients of J(p) are

uniformly bounded by a constant times 1/ρ(〈p′0−1〉)k. From this we also
see that J(p) converges uniformly to J(2) on some closed disk {z : |z| ≤
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s}. The derivatives J ′(p) converge uniformly to J ′(2) on the {z : |z| ≤ s}
as well.

Finally, consider the contour integral∮
Γ

J ′(p)(z)

J(p)(z)

dz

2πi

where Γ is a circle of radius between 1 and s, centered at the origin,
traversed once counterclockwise. This is a continuous function of p at
p = 2. For p close to 2, J(p)(z) has no poles or zeros on Γ. It follows
from the Argument Principle, that for such p, J(p) and J(2) have the
same number of zeros, counting multiplicity, in D. Since J(2) is just the
finite Blaschke product carrying the roots of f , it has exactly d zeros
in D. �

This next result establishes (3.6) when p 6= 2. The proof has the same
flavor as the p = 2 case (it uses orthogonality), but the techniques need
to avoid Fourier analysis.

Proposition 3.16. Suppose that a polynomial f has roots lying only

in D\{0}, and let f̂ be the metric projection of f onto S[f ] in `p. If p is

sufficiently close to 2, then the co-projection J = f − f̂ has the property
[f ] = [J].

Proof. Lemma 3.15 furnishes a δ > 0 such that |2− p| < δ implies that
J has exactly d zeros in D. Assume p is in this range.

The inclusion [J] ⊆ [f ] is obviously true, and so it remains to establish
the reverse inclusion. Suppose that g belongs to [f ] and g ⊥p [J]. This
can be expressed as

(3.17)
∞∑
k=0

g
〈p−1〉
k+n Jk = 0, n = 0, 1, 2, . . .

Let us further interpret this in terms of functions. Recall that J is
analytic in an open disk with radius larger than 1. We may then speak
of the function J(1/z), analytic in an annulus A = {z : τ < z < 1}
for some τ < 1 (actually, from the proof of Theorem 3.11, we see that
τ ≤ 1/ρp

′−1 < 1).
The condition (3.17) can now be expressed as∫

T

∞∑
j=0

∞∑
k=0

g
〈p−1〉
j rjeijθ · Jkr−ke−inθ · r−ne−ikθ dλ(eiθ) = 0

1

2πi

∮
C

g〈p−1〉(z)J(1/z)(1/z)n+1 dz = 0
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for all n ≥ 0, where C is any circle centered at the origin, with radius
r between τ and 1, traversed once counterclockwise. (Indeed, since
these functions have geometrically converging coefficients, there is no
problem passing the integral and sums through each other.) In other
words, the function

R(z) = g〈p−1〉(z)J(1/z)

has Laurent series about the origin with only negative indices. In
particular, R0 = 0.

Next, we know that J = fU where U is analytic in a disk with radius
greater than 1. Note that because J has exactly d roots inside D, they
must coincide with the roots of f , and consequently U is nonvanishing
in D.

Suppose that

U(z) = V (z)
N∏
k=1

(vk − z)

where v1, v2,. . . ,vN are the zeros of U of unit modulus, repeated in
accordance with multiplicity. Then V is analytic and nonvanishing in
some neighborhood of D, hence we may now write

g〈p−1〉(z)J(1/z) = R(z)

g〈p−1〉(z)f(1/z)U(1/z) = R(z)

g〈p−1〉(z)f(1/z)zd
N∏
k=1

(vkz − 1) = zd+NR(z)/V (1/z)(3.18)

where d is the degree of the polynomial f . The left hand side is analytic
in a neighborhood of D, while R(z)/V (1/z) is analytic in an annulus
{z : σ < |z| < 1}, with τ ≤ σ < 1, and its Laurent series about the
origin is nonvanishing only for negative indices. This can only happen
if R(z)/V (1/z) is a finite sum of the form

R(z)/V (1/z) = cd(1/z)d+N + cd−1(1/z)d+N−1 + · · ·+ c1(1/z).

Let P be the polynomial

P (z) = zd+N [cd(1/z)d+N + cd−1(1/z)d+N−1 + · · ·+ c1(1/z)]

and observe that it has degree strictly less than d + N . Comparing
both sides of (3.18), we see that 1/v1, 1/v2,. . . ,1/vN must be roots of
P . Therefore

P0(z) = P (z)/
N∏
k=1

(vkz − 1)

is a polynomial of degree less than d.
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Consequently, it must be that∫
T
g〈p−1〉(eiθ)f(e−iθ)e−ikθ dλ(eiθ) =

∫
T

P0(eiθ)

eidθf(e−iθ)
f(e−iθ)e−ikθ dλ(eiθ)

=

∫
T
P0(eiθ)e−i(k+d)θ dλ(eiθ)

= 0

for all k ≥ 0. This is another way of saying that g ⊥p [f ]. But g ∈ [f ]
and so g ⊥p g. From the criterion for ⊥p in (3.2) we have

g ⊥p g ⇐⇒
∞∑
k=0

|gk|p = 0 ⇐⇒ g = 0.

This proves that [f ] = [J]. �

The next three propositions identify classes of cyclic vectors in `p,
which will be needed in the main theorem.

Proposition 3.19. If a is analytic and nonvanishing in a neighborhood
of D, then its coefficient sequence a is cyclic in `p.

Proof. In any case, a belongs to `p, since the coefficients converge geo-
metrically. The function 1/a is analytic in a (possibly smaller) neigh-
borhood D, and so it has a geometrically convergent coefficient sequence
b = (bk)

∞
k=0. With I = (1, 0, 0, 0, . . .), we have∥∥∥I− ∞∑

k=0

bkS
ka
∥∥∥
p

= ‖I− a ∗ b‖p =

∥∥∥∥1− 1

a
· a
∥∥∥∥
p

= 0. �

Proposition 3.20. If |w| = 1, then the vector a = (w,−1, 0, 0, 0, . . .)
is cyclic in `p.

Proof. It suffices to look at the case w = 1. Then we have∥∥∥I− ∞∑
k=0

rkSka
∥∥∥p
p

=
∥∥∥I− (I +

∞∑
k=1

(1− r)rk−1SkI
)∥∥∥p

p

= (1− r)p(1 + rp + r2p + r3p + · · · )

=
(1− r)p

1− rp
for any r with 0 < r < 1. One application of L’Hôpital’s Rule confirms
that this expression tends to zero as r increases to 1. �
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Remark 3.21. When p = 1 the above fact is no longer true since
a(z) = w − z and the zero of a lies on T. Since `1

A is an algebra of
analytic functions which are continuous up to D then a can not possibly
be a cyclic vector for S.

Proposition 3.22. If a and b are cyclic vectors in `p and b ∈ `1, then
a ∗ b is cyclic in `p.

Proof. First note that since a,b ∈ `1 and `1 is a convolution algebra
then

a ∗ b ∈ `1 ⊂ `p

(see (2.3)). Since a is cyclic, there exists a sequence of polynomials
{q1, q2, q3, . . .} such that a ∗ qk converges to I in `p. Then

‖b− a ∗ b ∗ qk‖`p =
∥∥∥ ∞∑
j=0

bjS
j(I− a ∗ qk)

∥∥∥
`p

≤

(
∞∑
j=0

|bj|

)
· ‖I− a ∗ qk‖`p

which tends to zero as k increases to infinity. This shows that the
subspace [a ∗ b] contains the vector b. By assumption, this vector is
cyclic, and therefore [a ∗ b] must be all of `p. �

We are now able to show that the coefficient vector for J/f is cyclic
in `p.

Lemma 3.23. Suppose that the polynomial f has roots lying only in

D \ {0}, and let J = f − f̂ be the co-projection of f onto S[f ] in `p. If
p is sufficiently close to 2, then U = J/f has the property that U is
cyclic in `p.

Proof. We already know from Theorem 3.11 that U is analytic in a
neighborhood of D. Proposition 3.16 assures that [f ] = [J] when p is
sufficiently close to 2. There exist polynomials q1, q2, q3, . . . such that

‖f + qk ∗ J‖`p −→ 0.

Since U is analytic in a neighborhood of D, it has at most a finite
number of zeros v1, v2, . . . , vN , repeated according to multiplicity, on
the circle T. Once again let

V (z) =
U(z)∏N

k=1(vk − z)
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Then V is analytic and nonvanishing in some neighborhood of D, and
its reciprocal is analytic is a (possibly smaller) neighborhood of D. Ac-
cordingly, the Taylor coefficients of V are absolutely summable, i.e.,
V ∈ `1

A. By the Wiener-Lévy Theorem [22, p. 245], the Taylor coeffi-
cients of 1/V are also absolutely summable. Thus, writing

1

V (eiθ)
=
∞∑
k=0

bke
ikθ,

we have

I =
∞∑
k=0

bkS
kV

The series converges in the norm of `p, since∥∥∥ n2∑
k=n1

bkS
kV
∥∥∥
p
≤ ‖V ‖p

n2∑
k=n1

|bk|

for all indices n1 ≤ n2, and the coefficients (bk)
∞
k=0 are absolutely sum-

mable. Thus V is cyclic. The cyclicity of U now follows from Propo-
sitions 3.20 and 3.22. �

Finally, here is the our main theorem with its proof.

Theorem 3.24. If F is analytic in a neighborhood of D, then for any
p sufficiently close to 2, there exist functions G and J , analytic in a
neighborhood of D, such that

F = JG

where G is cyclic vector in `p and J satisfies

J ⊥p SkJ, k = 1, 2, 3, . . . .

Furthermore, we have [F] = [J] in `p. The functions J and G are
unique up to multiplicative constants.

Proof. There is no harm in supposing that F (0) = 1, as any factor azk

of F (z) can be absorbed into J . Let all of the roots of F inside D
be removed by the polynomial f . Then the coefficient vector a of the
function a = F/f is cyclic. To see this, write

a(z) = H(z)

q∏
j=1

(z − ζj),

where ζ1, . . . , ζq are the (possible) zeros of a on T and H is analytic

and zero free in a neighborhood of D. Now apply Propositions 3.19
and 3.20.
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Next apply Theorem 3.11 to obtain J = fU , where J has the
claimed orthogonality property, and the terms of U decay geometri-
cally. Lemma 3.15 assures that U is zero free in an open neighborhood
of D for p in some interval [2−δ, 2+δ]. Consequently, 1/U is is analytic
in a neighborhood of D (and, of course, zero free). Thus by Proposition
3.19, the coefficient vector for 1/U is cyclic in `p for p ∈ [2− δ, 2 + δ].

Define G = a/U and apply Proposition 3.22 to see that G is cyclic
in `p. Now observe that

F = af, F =
a

U
Uf, F = GJ.

The equality [f ] = [J] was established in Proposition 3.16. The coeffi-
cient vector for a = F/f cyclic in `p. Consequently, Young’s Inequality
(see (2.3)) assures that the expressions

‖f − F ∗ h‖p = ‖f ∗ (I− a ∗ h)‖p
≤ ‖f‖1 · ‖I− a ∗ h)‖p

can be made arbitrarily small by judicious selection of the polynomial
h. This gives [f ] ⊆ [F] and hence [J] ⊆ [F]. To see that [F] ⊆ [f ] (and
hence [J] = [F]) observe that F = af and so

‖F− h ∗ f‖p = ‖f ∗ (a− h)‖p
≤ ‖f‖1‖a− h‖p

which, as before, can be made arbitrarily small by a judicious selection
of the polynomial h (indeed, the N -th Taylor polynomial of a).

The uniqueness of the factorization, up to multiplicative constants,
follows from the uniqueness of J as the co-projection of f onto S[f ]. �

Note that Theorem 3.24 could equivalently be expressed in terms of
sequences. That is, if F is a geometrically decaying sequence, then for
p sufficiently close to 2 there exist G and J in `p such that F = J ∗G;
G is cyclic vector in `p; and J satisfies J ⊥p SkJ for all k ≥ 1.

Example 3.25. For a simple example, consider the polynomial f(z) =
1− z/w, where w ∈ D \ {0}. Then

J(z) =
1− z/w

1− w〈p′−1〉z

and

G(z) = 1− w〈p′−1〉z.

To see this, check that J ∈ [f ], and then straightforward calculation
shows that J ⊥p Skf for all k ≥ 1. Note that J really is just the
Blaschke factor for f when p = 2.
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The main theorem presents a sort of inner-outer factorization related
to `p. We would like to be able to extend its validity to the full pa-
rameter range 1 < p <∞, or show that this is impossible. This effort
would entail investigating more thoroughly the zero set behavior of J ,
and understanding the analytical behavior of the mapping a 7→ a〈p−1〉.
These matters are the subject of future projects.

4. A comment about the Hardy space

As mentioned in the introduction, the classical Hardy space Hp, p ∈
(1,∞), is the Banach space of analytic functions f on D for which the
norm

‖f‖Hp = sup
0<r<1

(∫
T
|f(reiθ)|pdλ(eiθ)

)1
p

is finite. Standard theory [13] says that for every f ∈ Hp

f(eiθ) := lim
r→1−

f(reiθ)

exists for λ-almost every eiθ and moreover,

‖f‖Hp =

(∫
T
|f(eiθ)|pdλ(eiθ)

)1
p

.

In other words, via radial limits, Hp is a closed subspace of Lp. In fact,
Hp can be characterized by the “vanishing negative Fourier coefficients”
criterion:

Hp =

{
f ∈ Lp :

∫
T
f(eiθ)eikθdλ(eiθ) = 0 ∀k > 1

}
.

Similar to the `p case, the Birkhoff-James orthogonality in Lp is

f ⊥Lp g ⇐⇒
∫
T
|f(eiθ)|p−2f(eiθ)g(eiθ)dλ(eiθ) = 0.

It is well known that every f ∈ Hp can be factored (uniquely up to
multiplicative unimodular constants) as

f = jg,

where j is an inner function, i.e., |j(eiθ)| = 1 for almost every eiθ, and
g is outer, i.e.,

[g] =
∨
{Skg : k = 0, 1, . . .} = Hp,

where (Sg)(z) = zg(z) is the unilateral shift on Hp.



INNER-OUTER 19

If P0 denotes the analytic polynomials which vanish at z = 0, then
for f = jg as above,

inf{‖f − p(S)f‖pHp : p ∈ P0} = inf{‖j(g − p(S)g)‖pHp : p ∈ P0}
= inf{‖g − p(S)g‖pHp : p ∈ P0}
= |g(0)|p

= ‖g(0)j‖pHp .

The above says that the co-projection of f onto S[f ] is a constant
multiple of j, which is consistent with what we obtained for `pA.

Furthermore, that j is orthogonal in the Birkhoff-James sense to all
of its forward shifts, i.e.,

j ⊥Hp Skj, k = 1, 2, . . . ,

follows from∫
T
j(eiθ)〈p−1〉eikθj(eiθ) dλ(eiθ) =

∫
T
|j(eiθ)|p−2j(eiθ)eikθj(eiθ) dλ(eiθ)

=

∫
T
|j(eiθ)|peikθ dλ(eiθ)

=

∫
T
eikθ dλ(eiθ)

= 0.

In summary, applying the Birkhoff-James orthogonality to obtain a
factorization in Hp, as was done for `pA, yields the classical inner-outer
factorization in Hp.

5. ARMA Processes

In this section we apply the analytical methods of the previous sec-
tions to solve a problem associated with certain stochastic processes.
We say that the real valued random process {Xk}∞k=−∞ is an Autore-
gressive Moving Average (ARMA) process if it is (weakly or strictly)
stationary and satisfies

(5.1) Xk − φ1Xk−1 − · · · − φnXk−n = Zk + θ1Zk−1 + · · ·+ θqZk−q

for all k, where {Zk}∞k=−∞ is a white noise. We speak of

φ(z) = 1− φ1z − · · · − φnzn(5.2)

θ(z) = 1 + θ1z + · · ·+ θqz
q(5.3)

as the characteristic polynomials. ARMA models are important and
widely used in statistical time series analysis. Throughout this section



20 CHENG AND ROSS

let us assume that φ and θ have real coefficients, they have no common
roots, and they have no roots on the unit circle T.

It is well known that the ARMA model (5.1) has a weakly stationary
solution of the form

(5.4) Xk =
∞∑
j=0

ajZk−j

if and only if φ has no roots in the closed unit disk D (see, for example,
Brockwell and Davis [5, Theorem 3.1.1]). In this case, the coefficients
{ak}∞k=0 are determined by the condition

∞∑
k=0

akz
k = θ(z)/φ(z)

for all z ∈ D. The series in (5.4) converges absolutely with probability
one, since the coefficients {ak}∞k=0 are absolutely summable.

An important feature of the solution (5.4) is that it is causal; that
is, the value of Xk depends only on the present and past values of the
noise, {. . . , Zk−2, Zk−1, Zk}. If φ does have some roots inside D, then a
solution of the form

(5.5) Xk =
∞∑

j=−∞

ajZk−j

exists, in which values of Xk may also depend on future values of the
noise. For that reason, however, this solution is unsuitable for many
practical uses.

It is also well known that there is an inverse or autoregressive repre-
sentation

Xk = Zk −
∞∑
j=1

πjXk−j

with absolutely summable coefficients {πk}∞k=0 if and only if θ has no
roots in the closed disk D [5, Theorem 3.1.2]. In this case, the coeffi-
cients can be determined from

∞∑
k=0

πkz
k = φ(z)/θ(z).

Both the solution and inversion carry over to infinite variance sta-
ble processes with essentially the same proofs; see Samorodnitsky and
Taqqu [20], p. 376ff.

It could happen in practice, however, that the polynomials φ and
θ are determined by fitting to a data set, and there is at least one
resulting characteristic root inside D. In this situation, the extant
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methods described above do not apply. Instead, using analytical tools
from the previous section, we shall derive a Symmetric-α-Stable (SαS)
solution to (5.1), involving a second white noise process {εk} which is
an i.i.d. SαS process. In this solution, both the process {Xk} and the
given noise {Zk} are expressed as causal moving averages of {εk}. A
similar approach is taken to obtain an autoregressive representation for
{Xk}. Simple examples then conclude this paper.

The books [5, 3, 19] cover weakly stationary ARMA models and
their extensions. The analogous infinite variance case is handled in
[20], and their asymptotic dependence structure is studied in [15]. For
more general prediction problems associated with infinite variance pro-
cesses, see [7, 12, 17]. The rates of convergence of SαS moving averages
and autoregressive series are explored in [9]. In [6], strictly stationary,
possibly non-causal solutions are obtained for ARMA equations with
characteristic roots inside and outside of T. This was extended to the
multivariate case in [4], and the infinite-dimensional case in [21]. All
of the solutions presented here satisfy the causality requirement.

Let us present some background on SαS processes. We defer the
elaborate definition to [20], since ultimately all we need is a Banach
space isomorphism between a certain linear space of random variables
onto `α. Suffice to say that SαS distributions are a family of distribu-
tions that are stable under independent sums and scalar multiplication;
when α = 2 we have the Gaussian distribution; when 0 < α < 2 the
density function is bell-shaped but has heavy tails.

Fix 1 < α ≤ 2, and let X be a linear space of (real) SαS random vari-
ables. A norm is defined on X in the following manner. If Y1, Y2, . . . , Yd
belong to X, then there exists a symmetric finite measure ΓY1,Y2,...,Yd on
the unit sphere Sd in Rd such that

E exp{i(θ1Y1 + · · · θdYd)}

is equal to

exp
{
−
∫
Sd

|θ1t1 + · · ·+ θdtd|α dΓY1,Y2,...,Yd(t1, . . . , td)
}

The measure ΓY1,Y2,...,Yd is the spectral measure of the random vector
(Y1, Y2, . . . , Yd). Given any pair of random variables X and Y in X, the
covariation of X and Y is then defined to be

[X, Y ]α =

∫
S2

t1|t2|α−1 sign(t2) dΓX,Y (t1, t2)
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This generalizes the notion of covariance to infinite variance stable
variables. The covariation norm of X in X is now given by

‖X‖α = [X,X]α

This is indeed a norm on X, and it turns out that for every X in X

we have ‖X‖α = σX , the scale parameter of X [20, Sections 2.3, 2.4,
2.7 and 2.8]. (We exclude the parameter range 0 < α ≤ 1, for then,
the covariation is not defined). The closure of X under the covariation
norm is a Banach space.

If X is spanned by an i.i.d. sequence {εk}∞k=−∞ of SαS random vari-
ables with unit scale parameter, then this space is isometrically iso-
morphic to the space `α of real sequences over the index set:

(5.6)
∥∥∥ ∞∑
k=−∞

akεk

∥∥∥
α

=
( ∞∑
k=−∞

|ak|α
)1/α

for all sequences of real constants {ak}∞k=−∞. This isomorphism enables
us to bring in the results for `p spaces established above. Indeed, the
notions of metric projection and Birkhoff-James orthogonality carry
over in a straightforward way from `α to X. We are primarily in-
terested in real one-sided sequences. Given a = (a0, a1, a2, . . .) and
b = (b0, b1, b2, . . .) in `α, we have

∞∑
k=0

akε−k ⊥α
∞∑
k=0

bkε−k

in X if and only if a ⊥α b in `α. This, in turn, occurs precisely when

∞∑
k=0

a
〈α−1〉
k bk = 0

It should be noted that restricting the scalars from the complex field
to the real field presents no difficulties when utilizing the `p results of
previous sections. This is because if f has real coefficients in Theorem
3.11, then so do the associated functions J , J 〈p−1〉, K and Q.

Let us say that a sequence {Yk} in X is an orthogonal sequence if
Yj ⊥ Yk whenever j > k; that is, each Yj is orthogonal to its past.
We emphasize that orthogonality here is very much a one-sided affair:
such Yj need not be orthogonal to its future. In this section the term
white noise refers to a SαS orthogonal sequence with a common nonzero
scale parameter σ. It may or may not be i.i.d. This is not standard
terminology; however, when α = 2 a white noise is orthogonal in the
usual (Hilbert space) sense.
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Now with the ARMA equation (5.1) given, we will construct a causal
solution based on an i.i.d. SαS white noise {εk}. We write B for the
backward shift operator

Bεk = εk−1

defined on the closed linear span of {εk}.
Let Φ be the infinite sequence

(1,−φ1,−φ2, . . . ,−φn, 0, 0, . . .)

in `α (the index set is {0, 1, 2, . . .}). Let the roots of φ in D be removed
by the polynomial f1, with f1(0) = 1. Apply Theorem 3.11 to obtain
functions J and U , analytic in a neighborhood of D, such that J = fU
and J is orthogonal in `α to all of its forward shifts.

With these ingredients, here is our generalized solution to (5.1) for
infinite variance processes.

Theorem 5.7. Let 1 < α ≤ 2, and let {εk} be an i.i.d. SαS white
noise. The ARMA equation (5.1) has a stationary SαS solution of the
form

Xk =
∞∑
j=0

ajεk−j(5.8)

Zk = J(B)εk(5.9)

where the coefficients {ak}∞k=0 are determined by

(5.10)
∞∑
k=0

akz
k = θ(z)U(z)

f(z)

φ(z)
.

The representations (5.8) and (5.9) converge in covariation norm, and
the process {Zk} is an SαS white noise.

Proof. The function φ/f is analytic and nonvanishing in a neighbor-
hood of D; therefore its reciprocal is an analytic function in the same
domain and has geometrically decaying Taylor coefficients. It follows
that the series in (5.10) is absolutely summable. Hence the moving
average (5.8) converges in covariation norm.

The coefficients of J are absolutely summable, and hence J(B)εk
converges in covariation norm. The fact that J ⊥ S[J] in `α implies
that {Zk} is an SαS white noise.

Finally, define

Xk =
(f
φ

)
(B)θ(B)U(B)εk.
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These functions of B are summable series, and hence they converge in
operator norm. Now observe that

Xk =
(f
φ

)
(B)θ(B)U(B)εk(φ

f

)
(B)Xk = θ(B)U(B)εk(φ

f

)
(B)f(B)Xk = θ(B)f(B)U(B)εk

φ(B)Xk = θ(B)J(B)εk

φ(B)Xk = θ(B)Zk. �

An autoregressive representation of Xk can be achieved in a similar
way. Let the zeros of θ in D be removed by the polynomial F (z), with
F (0) = 1. Invoke Theorem 3.11 once again to obtain functions Ψ(z)
and W (z), analytic in a neighborhood of D, such that

Ψ(z) = F (z)W (z)

and Ψ ⊥ S[Ψ] in `α.

Theorem 5.11. Let 1 < α ≤ 2 be fixed, and let {εk} be an i.i.d. SαS
white noise with unit scale parameter. The solution from Theorem 5.7
of (5.1) admits the autoregressive representation

(5.12) Xk = ηk −
∞∑
j=1

πjXk−j

where

(5.13) ηk = Ψ(B)Zk = Ψ(B)J(B)εk

the coefficients {πj} derive from

(5.14) 1 +
∞∑
j=1

πjz
j = W (z)φ(z)

F (z)

θ(z)
.

The series in (5.12) converges absolutely with probability one, and the
representation (5.13) converges in covariation norm.

Proof. Since θ/F is analytic and nonvanishing in a neighborhood of
D, its reciprocal is also analytic on that domain and has geometrically
decaying Taylor coefficients. It follows that the sequence {πk} in equa-
tion (5.14) is absolutely summable, and thus the representation (5.12)
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converges absolutely with probability one. We now have

θ(B)Zk = φ(B)Xk( θ
F

)
(B)F (B)θ(B)Zk = φ(B)Xk

F (B)θ(B)Zk =
(F
θ

)
(B)φ(B)Xk

W (B)F (B)θ(B)Zk = W (B)
(F
θ

)
(B)φ(B)Xk

θ(B)Ψ(B)Zk = W (B)
(F
θ

)
(B)φ(B)Xk

θ(B)ηk = W (B)
(F
θ

)
(B)φ(B)Xk

which confirms (5.12). Both representations in (5.13) converge in co-
variation norm since the coefficients of Ψ and J converge geometri-
cally. �

We have obtained in this section causal moving average and autore-
gressive representations for ARMA processes, in terms of related white
noise processes, when an infinite variance phenomenon is proposed or
in evidence. Because the characteristic roots may lie in D, this extends
existing methods. All of the results of this section hold true when
α = 2, in which case the processes are Gaussian; the conclusions are
then consistent with the results of Theorem [5, Theorem 3.5.2].

One limitation of Theorem 5.11 is that in contrast to the finite vari-
ance case, {Ψ(B)J(B)εk} is generally not an orthogonal process un-
der the covariation norm with index α. However, both {Ψ(B)εk} and
{J(B)εk} are orthogonal white noise processes. Thus, if either θ or φ
has no roots inside (D), then the left side of the autoregressive repre-
sentation (5.12) is an SαS white noise. Another limitation is that the
above methods depend heavily on the isometry (5.6) between a linear
space of SαS random variables and the sequence space `α. Other classes
of infinite variance processes would require a different approach.

We conclude with two simple examples. Let r be a real number with
0 < |r| < 1. First, the complete solution is provided for φ(z) = 1− z/r
and θ(z) = 1. Then the autoregressive representation is obtained when
φ(z) = 1 and θ(z) = 1− z/r.

Proposition 5.15. Fix a real number r, with 0 < |r| < 1. Suppose
that {εk} is an i.i.d. SαS white noise. Then

Zk = Xk −
1

r
Xk−1
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has a solution

Xk =
∞∑
j=0

r〈α
′−1〉jεk−j

Zk = ε0 −
(1

r
− 1
) ∞∑
j=1

r〈α
′−1〉jεk−j

where {Zk} is an SαS white noise. The finite variance case is obtained
by taking α = 2.

Proof. Following the definitions and calculations leading to Theorem
5.7, we find that

φ(z) = f(z) = 1− z

r

J(z) =
1

r

r − z
1− r〈α′−1〉z

J 〈α−1〉(z) = 1−
(1− |r|α′

|r|α′
)α/α′ rz

1− rz

U(z) =
1− rz

1− r〈α′−1〉z

Indeed, it is clear that the proposed J lies in the span of φ. Note that
J(0) = 1. To see that J ⊥ Skf for all k = 1, 2, 3, . . ., we need only
check

J
〈α−1〉
k f0 − J 〈α−1〉

k+1 f1

= −
(1− |r|α′

|r|α′
)α/α′

r · rk · 1 +
(1− |r|α′

|r|α′
)α/α′

r · rk+1 · 1

r

= 0

for all k = 1, 2, 3, . . .. This affirms that J = f − f̂ . The rest is routine
algebra. In the finite variance (α = 2) case, this simplifies to

J(z) = J 〈α−1〉(z) =
1

r

r − z
1− rz

U(z) = 1 �

Proposition 5.16. Let {Zk} be an i.i.d. SαS white noise. Fix a real
number r, with 0 < |r| < 1. Then the process {Xk} satisfying

Zk −
1

r
Zk−1 = Xk
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has an autoregressive representation

Xk = ηk −
∞∑
j=1

r〈α
′−1〉jXk−j

where

ηk =
(1

r
− 1
) ∞∑
j=1

r〈α
′−1〉jZk−j

is an SαS white noise. The finite variance case is obtained by taking
α = 2.

Proof. Straightforward calculation yields the identifications

φ(z) = 1

θ(z) = 1− z/r

F (z) = 1− 1

r
z

Ψ(z) =
1

r

r − z
1− r〈α′−1〉z

Ψ〈α−1〉(z) = 1−
(1− |r|α′

|r|α′
)α/α′ rz

1− rz
Q(z) = (−1/r)z + [1 + (1− |r|α′)α/α′ |r|−α]

W (z) =
1

1− r〈α′−1〉z
.

Indeed, we have already established that Ψ = f − f̂ . In the finite
variance case this simplifies to

Ψ(z) = Ψ〈α−1〉(z) =
1

r

r − z
1− rz

Q(z) =
1

r2
(1− rz)

W (z) =
1

1− rz
. �

The ARMA(1,1) case can be handled using the above results. How-
ever, if the characteristic polynomials have two or more roots in D,
then the calculation of J(z) can be very challenging.
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