














SPIN POLARIZATION IN QUANTUM WIRES: INFLUENCE...
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FIG. 4. (Color online) Spin-polarization contours, 5’2“(0, 1), for
the ground state for a cylindrical QWR with Dresselhaus strength
2mpBIH*=5 A. Here, we changed wavelength k, and radius a of the
QWR.

with reduced symmetry as compared to the cylindrical case.
We still may label the states according to the character in the
absence of the SOI, namely, |n,m;=*); however, the solu-
tions now require boundary conditions listed in Eq. (5) and
we want to study how many significant modifications are
introduced on the electronic spectrum and spin character of
the states under this lower symmetry. A first modification is
the twofold degeneracy, with eigenenergies 5,,.,,,=50u3,m at
vp=0 (without SOI) for every pair of spin-polarized state
|n,m; +), with n>0. From the Appendix, it is seen that the
matrix element for the linear-BIA term, g;‘;,, couples states

with opposite spins but n’ —n==*1 when n’ and n assume
odd and even numbers simultaneously [see Eqs. (A7) and
(A8)]. The same can be argued for the cubic or interspin,
ji,, and for the quadratic or intraspin, hg ., BIA coupling
elements. In this case the Hilbert space for the spinor |¢) is
not separable and the spin-up and spin-down components are
formed by all linear combinations of n >0 quantum numbers
for each spin orientation.

In Fig. 5(a), we have plotted the first ten energy levels of
a semicylindrical QWR, as a function of the dimensionless
parameter 7y, for a,=1.6. The mixing induced by Hp [see
Eq. (2)] breaks the twofold spin degeneracy of the ground
state |1,1;%), a result different from the obtained for 2D
nanostructure states or even in the fully symmetrical cylin-
drical QWRs as shown in Fig. 2(b). Note that the inclusion
of linear (H,p) and cubic (Hzp) BIA couplings does not
break the spin degeneracy of states in semicylindrical wires
but only shifts the energy level positions. Moreover, in Fig.
5(a), the crossing between energy levels is lacking, when
compared to the cylindrical QWR case, since all the states
are coupled by the SOIL All these facts are direct conse-
quences of the spatial asymmetry: the absence of states with
n=0, the selection of the independent wave functions nec-
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FIG. 5. (a) The first ten eigenenergies £ in units of &, for a
semicylindrical QWR as a function of the dimensionless spin-orbit
Dresselhaus parameter yp and a,=1.6. (b) Changes caused by the
addition of linear, quadratic, and cubic terms to the energy levels
€11+ and & ;... The same notation of Fig. 2 is used. Solid and
dashed lines denote, respectively, the full BIA Hamiltonian solu-
tions with quantum numbers |n,m;+) and |n,m;-).

essary to describe the semicylindrical QWR spinor state, and
the fact that there are only anticrossings (minigaps) between
two near energy levels.

For a further discussion, we are showing in Fig. 5(b) the
influences of the addition of linear, quadratic, and cubic BIA
terms on the value of the ground-state and first excited state
energies, &y 1;+) and &y ;;+). Note that the largest spin split-
ting of the levels &y ;4 is induced by the intraspin term
‘Hsp. whereas the interspin term Hjp is responsible for the
larger curvature of the state |1,1;+). The same observations
are valid for the excited states |[2,1; =) but here, the cubic
term is responsible for the strongest modifications. As in the
case of the cylindrical QWR, the contribution from the Hp
term to the energy of all semicylindrical QWR states is neg-
ligible, another remarkable contrast to the effects induced by
SOI linear-BIA term in 2D systems and in quantum dots. It is
possible to demonstrate that the structure of the matrix ele-
ments g, and the j::,, for semicylindrical QWR (see Ap-
pendix), produces twofold degeneracies of all states and,
thus, the energy splitting Af,',)” and Af?)n are identically zero.
This is clearly represented in Fig. 6 where the total values of
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FIG. 6. Energy splitting A, ; (solid line) and A, ; (dashed line)
for a semicylindrical QWR, in units of &, as a function of the
dimensionless wave vector a, for fixed yp=0.17. The effect of SOI
quadratic BIA terms is indicated by circles. The linear and cubic
Dresselhaus SOI contributions to the energy splitting are zero.

the spin splitting A; | and A, are compared with the split-
ting produced by the quadratic intraspin terms, A(lz} and A(ZZ%
for fixed Dresselhaus parameter, yp=1.7, as a function of a,.
The Zeeman-type quadratic contribution from H,p is always
additive, while the Hp and H;p terms, although inducing
mixtures of spinor components, still exhibit a negligible con-
tribution to the energy splitting for any value of the wave
vector k, or any Dresselhaus coupling parameter yp. The
enhancement of the spin-splitting energy is almost linear
with increasing a, %k, as can be expected from the defini-
tion of the H,p interaction Hamiltonian in Eq. (2).

The spin polarization of energy levels, a.(1,1) [7,(n,m)

= WS ) || Y )1 i depicted in Fig. 7 as contour
plots of k, versus the radius of semicylindrical QWR, a. As
mentioned, states subjected to SOT are invariant under simul-
taneous inversion operations, k< -k, and o,& -0, being
the mirrorlike images for the ground state shown in Fig. 7.
Thus, according to Figs. 5 and 7, the ground state |1,1;-)
has k,>0, while for k,<O the state with lower energy is
|1,1;+). These states represent electrons that travel freely
along positive (k,>0) and negative (k,<0) z directions,
with average spin polarizations parallel and antiparallel to
the wire axis or, more specifically, a1, l)|(+kz)
=—6'z(1,l)|(_kz). As it was stated above, the Zeeman-type
‘H,p intraspin term does not mix spin components of spinor
states but produces the largest spin splitting, Af,z_,)n The Hp
and H3p interspin terms couple spin-up and spin-down com-
ponents of spinor, thus affecting @,(n,m), although they pro-
duce exactly no contribution to spin splitting, Afll?"EA?,)n
=(). Therefore, we are able to obtain almost pure spin
ground state for almost all relevant values of the radius a,
which show spin polarization near or larger than 99% in a
broad interval of k, € (-0.02,0.02) A~!, as shown in Fig. 7.
For the range |k,/>0.05 A and increasing values of a, the
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FIG. 7. (Color online) Spin-polarization contours (k, versus ra-
dius a), a(1,1), for the ground-state for a semicylindrical QWR
with Dresselhaus strength 2mﬂ/ﬁ2=5 A. For k,>0 (kz<0) the
ground state corresponds to the state |1,1;=) (|1,1;+)).

ground states of semicylindrical QWRs exhibit a percentage
increasing mixtures of spin-up and spin-down pure states and
thus, the spin polarizations *&,(1,1) reach values below
90% (see Fig. 7).

IV. SUMMARY AND CONCLUSIONS

The Dresselhaus SOI in semiconductor QWRs shows
strong dependence on the geometry of the confinement and
the BIA-induced effects on the energy eigenvalues, spin-split
energy levels, and spin polarizations that can be tracked for
linear, quadratic, and cubic terms or Hp, Hsp, and H3zp in
Eq. (2), respectively. We have studied the importance of con-
sidering full BIA contributions in cylindrical and semicylin-
drical cross-section QWRs. In both cases, the most important
contribution to spin-polarized states, |1,l :*+), comes from
the H,p term which is responsible for the gap opened be-
tween the twofold spin-degenerate levels. The Hsp interac-
tion has particularly significant effects on the excited states
|2,1; ). In contrast, the linear-BIA term affects the spin
polarization, &,(n,m), but has negligible effects to the energy
levels and their spin splitting. Although the intraspin Hyp

term vanishes in systems where (IEZ)EO (QW and QD), for
QWRs the wave vector k, is a good quantum number and its
effect on spin polarization and spin splitting of states be-
comes more significant than the effects produced by Hp and
‘Hsp terms. Moreover, H;p is independent of k, and Hp
depend on st thus, the effects produced by these interspin
SOI terms may reach similar magnitudes; however the value
of k, where both terms have comparable values will depend
on the state under consideration (see Fig. 3 for the QWR
case).!” These observations are also dependent on the geom-
etry. Cylindrical QWR ground level is twofold degenerate
with planar angular momentum quantum number n=0 and

155306-6



SPIN POLARIZATION IN QUANTUM WIRES: INFLUENCE...

m=1, whereas the semicylindrical QWR symmetry, fulfilling
the boundary conditions in Eq. (5), forbids the presence of
states with n =0. Therefore, under this geometry neither H;p
nor H;p contributes to the energy spin splitting besides leav-
ing the states twofold degenerate. As seen in Fig. 5(b), their
effects produce only small shifts to the energy levels.

Finally, the spin polarization of ground states of a semi-
cylindrical QWR, &,(1,1), is qualitatively different from the
cylindrical case due to different contributions induced by
Dresselhaus SOIL. For any level, there is not spin-degeneracy
for a fixed value of k, in contrast to the cylindrical case
where there are always twofold spin-degenerate levels at any
fixed value of k,, regardless its propagation direction (*z).
The semicylindrical confinement has given rise to an energy
splitting of twofold degenerate levels of QWRs produced by
the H,p term, a dominant process that preserves spin polar-
ization at small values of k,. This opens the possibility of
using low velocity (v,= *#k,/m") transport measurements
to explore preferential spin channels according to the sign
(propagation direction) of induced spin-polarized currents in
these quasi-1D nanostructures. Moreover, using this peculiar
symmetry for the ground state in semicylindrical QWRs we
can expect the formation of robust spin-filter devices. If elec-
trons with energy E/E,=<17 are injected along the z axis of
semicylindrical ensemble of parallel QWRs, this device can
only transmit a high degree of spin-up current in direction +z
and opposite spins in the —z direction. A dominant spin-up or
spin-down character of the current depends on the sign of the
0, and the current density is directly linked to the interplay
between the radius a and the wave vector k_, as seen in Fig.
7. The ratio 2m,3/ﬁ2=5 A, used in Fig. 7, corresponds to
totally realistic values for InAs semiconductors.'® For cylin-
drical radius 30=a=60 A and 0<k,<0.5 A7, it is pos-
sible to get more than 90% degree of spin-polarized currents
in the independent spin-up and spin-down channels. These
results are based solely on the spatial symmetry properties of
the quasi-one-dimensional nanostructures and enable realiza-
tion of spin filters and tuned spin-polarized current densities
in both parallel QWR directions. Also, combination of par-
allel wires may be used to generate logical gates, necessary
for quantum information transmission and spintronic de-
vices.

It is worth commenting on another SOI contribution pro-
voked by the structural inversion asymmetry in nanostruc-
ture, the so-called Rashba interaction. The Rashba spin-
splitting Hamiltonian, Hy=ak X VV-0,'? in a material with
coupling parameter « is associated to spatial asymmetries of
the lateral confinement potential, V(x,y). This contribution is
linear on k components and presents the same mathematical
structure as the Hp term. It is clear that eigenstates of H,
+Hy, are also eigenstates of Hy+H;p. The effect of this term
adds to the linear Dresselhaus SOI, (for more detailed dis-
cussion see Ref. 11). For fixed SO-coupling constant, the
spin splitting induced by H,, is positive (see Figs. 3 and 6),
whereas for Hy the splitting A;ll)n has negative values. There-
fore, the net effect of Hp+Hjp is to minimize the contribu-
tion from H;p and decrease the values of Aﬁ:r)n.“ Moreover,
the efficiency of the proposed spin-filter devices should de-
cline for high impurity concentration or under strong current
density injection where the electron-electron interaction be-
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comes important. The validity of our proposition is directly
linked to the conservation of the wave vector k,. In this
sense, these two effects break translational invariance along
the z axis and the single-particle problem based on k, con-
servation would require another formulation.
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APPENDIX: SPIN ORBIT TERMS

. + Paat .
The matrix elements g_,, hy o, and j, are necessary in
order to build the Hamiltonian matrix (9) for the BIA SOI. In
polar coordinates the operators lgi are written as

. o ia
ko=— ieiw(— + 1—). (A1)

1. Cylindrical confinement

Using the wave functions [Eq. (6)] it is straightforward to
show that

g =alslkels'y= F 20T 8y 1, (A2)
where s=(n,m) and s'=(n',m’),
hg g = a¥(s|k> + K2|s")
=4[(n+1)8y o= (1= 18,1, 1T, (A3)
with
lim {*(n+ DT, Y =240 .80 (A4)

n—x1

and for the cubic contribution we have

.+ YY) — ., 2
]s,s’ :a3<s|{kt,(k+_k—)}|s,> =+ lTZfl?;'{zﬂn’mfﬁn’,nil

+[40n" = D) £2) =4, 180 473l (A5)
where
m lu’n,m/lu'n’,m’
n”,m’ (A6)

- (:u’n,m//*l’n’,m’)2 -1 .

2. Semicylindrical confinement

Following Eq. (6) for the semicylindrical case we have
that

g::s, =isgn(n—-n")T"" ifn'=nx1, (A7)

n*xlm'?
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. 2n 1=
gs,s’_

/J’s’w‘]n’+l(lu‘s’)‘]n'+l(ﬂs)

F" iftn #n=*1,

(A8)

where sgn(x)=+1 if x>0 and sgn(x)=-1if x<0 and F,, are
numbers ruled by

Hs! Jur-1(2) Jur41(2)
F;r=f Z-]n(ﬁ )|: ,12 P *,'12 P dZ
0 pg JL(1=n")"=n" (1+n')"-n

(A9)

In the particular case where s=s’ Eq. (A9) can be reduced to
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2n Bs | d
Fi = (Zn)—z—ljo {Zd_z[-/n(z)]z + [Jn(Z)]z}dZ

2n Ks d
= (Zn)—zlf d—z{z[ln(z)]z}dz =0. (A10)
—1Jo
Also, it follows the relation
g;s,=(_ 1)n/+n+1g:’5,. (All)

The other matrix elements for the semicylindrical QWR, A,
and jf‘v,, are evaluated numerically using Egs. (A7)-(Al1)

and the matrix identity (s|AB|s')==(s|A|[p)(p|B|s’).
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