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OPTIMAL SELECTION WITH HOLDING

John S. Rose

Department of Management Systems
E. Claiborne Robins School of Business
University of Richmond, VA 23173

ABSTRACT

The arrival times of what we shall call offers constitute a Poisson
process. The value of any offer is a nonnegative random variable with known
distribution. At an arrival epoch, we may select, reject, or hold the offer.
Rejected offers may not be recalled, but an offer on hold is available for
future consideration. However, cost accrues during the holding period. We
seek a holding and selection strategy that maximizes the expected value of
the offer selected less holding costs. The discrete time version of the

problem is also considered.

1. INTRODUCTION AND SUMMARY

What we shall call "offers" arrive randomly over time and the value of
an offer is itself a random quantity. After some time, t, there are no more
arrivals. A rejected offer is irrevocably lost and we perforce wait for the
next arrival, if there is one. As a hedge against the event that no better
offer occur in the future, we may purchase an option to hold an offer, thereby
keeping it available for our future consideration. Holding cost increases
proportionately with time and is nondecreasing with an offer’s value. At
some future time, a held offer will be accepted or rejected in favor of a
better one. We seek a decision policy which maximizes expected (net) return,
which is the value of the offer accepted, if any, minus holding costs.

Scenarios which conform somewhat to our model could include both the
acquisition and the disposition of assets: a prospector negotiating an option
to purchase a parcel of land, or its mineral rights, thereby keeping it off
the market while the search continues; or an enterprise aspiring to sell a

property and offering an incentive, such as free rent, to a would-be purchaser



for the privilege of later accepting the offer.

Our primary contribution is the notion of holding an offer to keep it
available for possible future acceptance. Furthermore, it is crucial that
the decision to hold be taken immediately after an offer’s arrival - a rejected
offer cannot be recalled. Were the holding action unavailable, we would
have a pure stopping problem (PSP).

Apparently Karlin [1962] was among the first to investigate such a PSP.

In his model, the arrival process could be a renewal process, but he later
assumes it to be Poisson; and the values of the offers are i.i.d. Allowing

for the possibility that t = =, Elfving [1967] considers a discounted version
of the PSP. The theory and a couple examples are nicely presented by Chow

et. al. [1971, pp. 113-118]. Problems in which multiple offers may be accepted
have been considered by, among others, Sakaguchi [1976] and Stadje [1987],

both of whom assume a Poisson arrival process.

A related but very specialized problem is the well-known secretary problem:
the number of offers is known; at any arrival time, what is observed is not
the offer’s value but rather its relative rank among those offers already
observed; and, finally, the objective is to maximize the probability of
selecting the best offer, i.e., the so-called best-choice criterion. Yang
(1974] suggested that we might attempt to recall a previously rejected offer,
whose availability is uncertain and may be decreasing stochastically with
time. A more general formulation of problems involving uncertain recall is
provided by Petruccelli [1984]. Samuels [1985] suggested that a rejected
offer could be recalled by paying a cost proportional to the time elapsed
since its arrival. The idea of purchasing a call option in order to hold an
arrival was introduced by Rose [1984]. Ferenstein and Enns [1988] employ
this concept when the offers’ values are observable i.i.d. random variables.
The secretary problem with random (Poisson) arrivals, but with no mechanism
for recall, was analyzed by Cowan and Zabczyk [1978]. Their work has been
generalized by Bruss [1987], who supposes that the arrival process is
nonhomogeneous Poisson. He also considers the inference problem associated
with unknown intensity parameter.

In the present paper, the arrival process is Poisson with known intensity

A. The amounts of the offers are independent random variables with common



distribution F. Assume that F is absolutely continuous and F(0) = 0. Holding
an offer incurs cost at the rate c¢ > 0.

The next section formalizes the model and introduces some notation.

The structure of the optimal policy is obtained in Section 3; it is intuitively
appealing. In Section 4, we obtain a surprisingly elegant expression for

the optimal return expected from holding an offer. This expression is obtained
by solving a renewal equation for its derivative. To evaluate the optimal
return expected from passing an offer, we must compute the (lower) critical
curve, the boundary between the optimal holding and rejecting support sets.

We obtain a nicely succinct but nonlinear differential equation describing

this boundary. As an approximation to the optimal policy, we propose the
one-stage look ahead (OLA) policy.

The solution to the discrete-time model is presented in Section 5. We
perceive a close relationship between it and the earlier results. Section 6
compares our optimal procedure to the optimal stopping rule for the equivalent
PSP. Finally, in Section 7, we allow the holding cost rate to increase with

the value of the offer held.

2. THE CONTINUOUS MODEL

Suppose that an offer in the amount x (hereafter called an x-offer)
arrives with time t (or an (x,t)-offer) remaining. There are three actions:
pass (reject), hold, and stop (accept). Obviously, the return from stopping
is x. If the offer is passed, we merely wait for the next one, if there is
one, and decide anew. If there isn’t another offer, then the return is zero.
We shall denote by v(t) the maximum expected payoff that can be achieved by
waiting for the next offer. Suppose we decide to hold the offer. We incur
cost at a rate ¢ > 0. If this were the last offer, then our return would be
x - ct. If not, suppose the next offer arrives at time t - s and has value
y. Then, we have incurred cost cs and we are confronted with the same decision,
pass or hold or stop, for a (max(x,y},t-s)-offer. Note that holding ensures
a value at least x at the next decision point. Denote by w(x,t) the maximum
expected net payoff obtained by holding an (x,t)-offer. Thus, the maximal
return expected from the arrival of an x-offer at time t is

V(x,t) = max{x,v(t),w(x,t)},

assuming that no previous offer were currently being held.

g
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We shall employ the following notation:
V(t) = [QU(x,t)F(dx),

W(x,t) = F(V(X,t) + f:V(y,t)F(dy),
G(x) =1 - F(x), R(X) = f:yF(dy), and
T(x) = [(y-0F(dy) = R(x) - xG(x).

The symbol "«" as the upper limit of integration is used to denote the supremum
of the support of F.
By definition,

v(t) = AfgU(t-s)e s, (1)

Differentiating (1) results in

vi(t) = A[V(t)-v(t)], v(0) = 0. (2)

From (2), it is apparent that v is strictly increasing. Also by definition,

At

wix,t) = xe “Co(e/n)[1-e N 4 AfgW(x,t-s)e-Asds. (3)

The first term in (3) represents our accepting the held x-offer if none other
appears. The second term is the expected holding cost until the next arrival

or t = 0. Differentiate (3) with respect to each variable to obtain

wolx,t) = AW(x,t)-w(x,t)] - ¢, w(x,0) = x; (4)

w10, 0) = e M ARG [EV (x, tes)e s (5)
Finally, plugging x = 0 into (3) and noting that W(0,:) = V(:), we obtain

v(t) = w(0,t) + (e/3) [1-e7XF]. (6)

3. THE FORM OF THE SOLUTION

The optimal policy may be characterized by the support set of each action.
Let S¢ = (x:V(x,t) = x}, Pr = (x:V(x,t) = v(t))} - S¢, and He = (x:V(x,t) =
w(x,t)} - (PeUS¢). Note our tie-breaking convention that favors stop over

pass over hold. We also write S = (S} s0 and similarly for P and H. We refer

to S or S¢, P or P¢, and H or Hy as the stop, pass, or hold sets respectively.
The nature of the optimal policy is given by Lemmas 3, 4, and 5, but we first

need some technical results.



LEMMA 1 For all t, V(x,t)(w(x,t)) is nondecreasing (strictly increasing) on
x > 0.

PROOF By definition of V, it suffices to prove the assertion about w.

Let x > y and consider the difference, D, between holding an (x,t)-offer

rather than a (y;t)-offer. If there is no arrival in (0,t], then D = x-y >

0. Suppose the next offer occurs at time t-s. If it's a z-offer with z >

x, then D = 0. 1If z < x, then y, = max{z,y} < x. In this case, we shall employ
a suboptimal strategy for deciding about x: do whatever is optimal for a (y,,t-
s)-offer. If y, ¢ P,_,, then D = 0, and if y, ¢ S,_,, .then D = x-y, > 0. If
y; € H._g, then go to the next arrival (or time zero) and reapply the same
suboptimal strategy if necessary. We are assured that D = 0, and P(D > 0) >

0, so w(x,t)-w(y,t) 2 ED>0. W

LEMMA 2 On t >0, w;(x,t) < 1.

PROOF Use an argument very similar to that of Lemma 1. After holding at

(y,t), apply a suboptimal policy which will stop whenever stop is the optimal
action for the sample path starting at (x,t). Then, D < x-y and P(D=0) > O,

so w(x,t)-w(y,t) < x-y. R

It follows almost immediately that the stop and pass sets are value-
connected, with the stop set lying above the pass set. More precisely, we

state without proof

LEMMA 3 (a) If y ¢ P,, then x ¢ P, for x < y.
(b) If y ¢ S, then x ¢ S, for x > y.

The hold set, if it's not null, must lie between the pass and stop sets.
We shall refer to the locus of points separating the hold and stop (pass)
sets as the upper (lower) boundary, b (a), i.e., if H, = ¢, then b(t) (a(t))
is the unique solution of w(x,t) = x (w(x,t) = v(t)). Note that the uniqueness
follows from the first two lemmas. Note too that a(0) = O.

It turns out that the upper boundary is a straight line, b(t) = y,. At
the value y_ , the expected rate of incremental return, AT(x), and the cost
rate, ¢, are in balance. See Chow et. al. [1971, p. 118, example (a)] for
an identical result for a PSP with infinite horizon and discounted returns.
The final lemma shows that the hold set is also time-connected. Obviously,
it follows that a(-) is nondecreasing. Let’s denote the mean offer amount
by pu = EX, where X is a random variable with distribution F.
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LEMMA 4 If ¢ 2 A, then H = ¢. If H, # ¢, then b(t) = y,, the unique solution
of AT(x) = c.
PROOF By definition, w(b(t),t) = b(t), so

b’ (t) = w,(b(t),t) + b’'(t)w, (b(t),t). (7)
Now, V(b(t)) = b(t) and W(b(t),t) = E max{X,b(t)}, which we substitute into
(4) to get w,(b(t),t) = AT(b(t)) - c¢. Thus, b(t) =y, is a solution to (7).
Plugging this solution into (3) gives us w(y,,t) = y,, which establishes the

second part. If ¢ = Au, the preceding argument gives y, < 0, so H, = ¢. I

LEMMA 5 If x ¢ H,, then x ¢ H,, s < t.
PROOF By Lemma 4, x ¢ S,. Let r = max{s < t : v(s) = w(x,s)}. If we agree
that max ¢ = 0, then r is well-defined and r = 0. By continuity we have w(x,s)

x > v(0) = 0. Therefore, if

>v(s) ons > 1r. From (6), x > 0, so w(x,0)
the lemma were false, we must have r > 0. With x ¢ S, and w(x,r) = v(r), it
follows that W(x,r) < V(r). From (4) and (2), we obtain w,(x,r) < v'(r) - ¢
< v'(r). It must follow that v(s) > w(X,s) in an interval with s > r. This

contradiction implies that r = 0. §

4. THE SOLUTION

If x ¢ H,, then Lemma 5 allows w to replace V in (5) which, except for
the factor F(x), would be a renewal equation for w,(x,-). Multiply both
sides of (5) by exp(AG(x)t) to get

-AF(x)t -AF(x)sds

+ fSu(t-s)AF(x)e

a proper renewal equation for u(t) = exp(AG(x)t)-w,(x,t). Its solution is

u(t) = e

u(t) = 1 or

wy (x,t) = AT (8)
Integrating (8) yields
w(x,t) =y, 'fzo e-AG(y)tdy, X € H, . (9)

Now, substitute (9) into (3) to verify w.
On the lower boundary, w(a(t),t) = v(t), H, # ¢. Given a(t), use (9)
to compute

v(t) =y, - fZ?t)e-AG(y)tdY- (10)

It remains to compute a.



Differentiate (10) and then integrate by parts, recalling that w(y,,t)

=y, and w(a(t),t) = v(t), and we obtain v’ (t) = AY,G(y,) - Av(t)G(a(t)) +

a'(t)exp(-AG(a(t))t) + AfZ?t)w(y,t)F(dy). From (2), v’'(t) = Av(t)F(a(t))

+ Afi?t)w(y,t)F(dy) + AR(y,) - Av(t). Equating these two expressions for

v’ yields a’(t)exp(-AG(a(t))t) = AR(y,) - Ay,G(y,) = AT(y,) = ¢,so

ar(ty = ceilalet

(11)
We are unable to solve (11). Note that a’(0) = ¢ and a’'(t) > c,t > 0.

If t is large enough, there is no incentive to hold. Define t, =

inf{t:H, ~4}. At the point (y,,t. ), we have v(t,) = a(ty) =y, = w(y,,t,) -
- we are indifferent among all three actions. For the moment, let’s define
a new time origin at t, and let u(t) = v(t, + t), t > 0. For this PSP, modify
the argument in Chow et. al. [1971, pp.115-117], to show that u is the unique
solution of

u’ (t) = AT(u(t)), u(0) =y, . (12)
The first offer (x,t) with x = u(t) should be accepted.

Return now to t < t,;. In principle we should be able to compute v(t)
by solving (11) and using (10). At first glance, the relation (6) looks
promising, but w(0,t) is just as difficult to compute as v(t) itself. Out
of frustration, we might use (9) as a lower bound for w(0,t), even though x
= 0 ¢ H,. Another approach is to solve for an attractive suboptimal policy.
Hence, we shall obtain the so-called one-stage look ahead (OLA) policy, which
is itself optimal for a large class of stopping problems. As we shall see,
these two approaches are equivalent.

In the present context, the OLA policy is defined as follows. We say
that an offer is "captured" if it is held or accepted. If an offer is held,
then any subsequent better offer must also be captured. Now, suppose that
an x-offer arrives at time t. Obviously, if x > y , we stop, so assume that
x < y,. Let w(x,t) denote the expected return from holding, and let g(t) be
the expected return from rejecting the current offer and capturing the next
arrival, whatever its value, provided there is another. Then, the OLA policy
prescribes hold if w(x,t) > g(t) and pass otherwise.

According to Lemma 5, the OLA policy and the optimal policy behave

identically once they have already held an offer. Hence, wix,t) = w(x,t) if



X ¢ H, . Note too that the derivation of (9) is still applicable if the
condition x ¢ H, is dropped and we substitute the functions w for w. Thus,
w(x,t) equals the RHS of (9) for all x < y,.

We can now write

g(t) = fo xe “ds(fYo w(x,t-s)F(dx) + R(yy)).

We omit the details but outline the order of the calculations. Substituting
from (9) for w, we need to integrate w.r.t. y, say. Reverse the order of
integration between y and x, obtaining an integral w.r.t. y alone. Now,
reverse the order between y and s to obtain again an integral w.r.t. y alone
and which is exactly the integral in (9) with x = 0. It turns out that

g(£) = w(0,8) + (c/) (1-e7*F].
Note the similarity to (6). Thus, to use the lower boundary of the OLA policy
as a substitute for a(t) is equivalent to substituting w for w. The resulting

lower bounds for a(t) and v(t) might be fairly good if t isn‘t too large.

5. THE DISCRETE MODEL

Assume now that the number, n, of offers is known and that they occur
at regular intervals, t =1, ... , n. (We shall now be counting forward
with the discrete time parameter, t.) The only other notational changes are
that ¢ is the single period holding cost and that implicitly A = 1 -- one
arrival per period w.p.l. We can employ discrete analogues of our earlier
(continuous) methods to attack this problem. That n is known and the
opportunity to invoke inductive arguments make the work easy. Consequently,
we omit the analysis altogether.

The form of the solution is intact. In particular, if H, = ¢, then b(t)

= y,, where T(y,) = c. Also, if x ¢ H,,
-t
w(x,t) =y, - fi°F(y)n dy. (13)
Note the close resemblance between (9) and (13). The integrand in (9) is the

probability of no more offers greater than y, and that is exactly the integrand

of (13). For t < n-1 and H, # ¢, the lower boundary satisfies

a(t) n-t
fa(t+1)F(x) dx = c. (14)
For some a(t+l) < x, < a(t), we get a(t) - a(t+l) = cF(xo)-(n't), or the

8



difference equals cost times (approximately) the inverse of the probability
that no more offers will exceed the boundary. The prosaic description of
(11) is identical, except for the derivative in lieu of the difference.

At t =n - 1, only one offer remains. Obviously, v(n-1) = g and the

lower boundary satisfies v(n-1) = w(x,n-1) or -
b=y, - fZ?n_l)F(x)dx.
Because n is known, the lower boundary doesn’t drop to zero.

6. THE PURE STOPPING PROBLEM

We employ the tilde symbol, ., over notation from Sections 2 through 4
to represent the corresponding element from the associated PSP, i.e., no
holding action available. It is known that

vi(t) = AT(v(t)), v(0) = O,

as we indicated in (12) with different initial condition. Differentiating
again shows that v is strictly concave. Unless H = ¢, v(t) < v(t) on t > 0.

We want to compare v and a. Note first that v/ (0) = AT(0) = Ap > ¢ =
a’(0), from (11). Differentiating (11), we find that a is strictly convex
in an open neighborhood of the origin. (Indeed, if we assume that F is an
increasing failure rate distribution, then it can be demonstrated that a
possesses a single point of inflection.) It follows that a(t) < v(t) on t
< t,, for some t; > 0. By the definition of t,, a(t,) =y, = v(t,), so there
is t, < t, such that a(t) > v(t), t, <t < t,.

Suppose that a(t) < x < v(t) (v(t) < x < a(t)) for 0 <t <t; (t, <t
< ty). Then, according to the pure stopping rule, an (x,t)-offer should be
rejected (accepted), but it should be held (rejected) by our policy. Obviously,
if v(t) < x < v(t) for t > t,, the pure stopping rule accepts while we reject.
Thus, when t is large enough, we can afford to be more demanding than the
pure stopping procedure. (Originally, we had anticipated that, if H, = ¢,
then a(t) < v(t); or, equivalently, an offer accepted by the pure stop rule
would be captured by our rule.) For small t, we can afford to spend (a maximum

of ct) as a hedge against the prospect of no future arrivals, even though

the pure stop rule would reject the offer.



7. GENERAL HOLDING COST

We allow the holding cost rate to depend on the value of the offer held.
Equations (3) and (4) remain intact if ¢ is replaced by c(x), but (5) becomes

w (x,t) = e L (er(x) /M) [1-e M)+ F(x)fgxe-xsvl(x,t-s)ds. (15)

We have assumed that ¢ € C![0,») with c’(x) > 0. Lemma 2 is proved as before
and Lemma 3(b) follows immediately. However, without Lemma 3(a), we cannot
assert that H lie between P and S, so Lemma 4 needs modification. Let y,

solve AT(x) = c(x) and redefine t, as the solution of v(t) =y, .

LEMMA 4" If t < t,, then S, = [y,,») and there exists y, < y, such that

(Ve .¥o) CH . 1f t >t , then S, = [v(t),») and H,NS, = ¢.

PROOF If we ignore the passing action and pretend the decision is between
only stop and hold, then the proof of Lemma 4 shows that x(t) = y, is the
critical curve. Let t < t_ , so v(t) <y,. We know w(y,,t) =Yy,, so continuity
implies that (y,y,) ¢ H, for some y <y . If t > t,, then v(t) > y,, Lemma

2 ensures that w(v(t),t) < v(t), and the lemma is proved. |

As before, then, b(t) = y, is the boundary between H and S. Finally,
the proof of Lemma 5 holds, assuming c(x) > 0. However, if c(x) = 0 for
some X > 0, then w(x,s) > v(s), so r = 0 at the outset. Thus, the time-
connectedness of H is maintained.

If x ¢ H,, then Lemma 5 again gives V,(x, ) = w,(x,-) on (0,t] and (15)
would also be a renewal equation were the factor F(x) absent. Using the

method of Section 4, we get the solution

wy (x,0) = e MCE ey e (1 - e M (16)
Lemma 3(a) is not generally true. Instead, we offer the following.
LEMMA 6 A necessary and sufficient condition for yeP, to imply xeP,, x <
y, is that w;(x,t) = 0 for all x ¢ ﬁb.
PROOF The proof relies heavily on the continuity of the return functions.

Lemmas 4' and 5 imply that H.Nn{y,,~) = ¢. For any 0 < x <y,, there exists

t(x) > 0 such that w(x,t) > (<) v(t) on t < (=) t(x). Clearly a N.A.S.C. for

P, to be value-connected for all t is that t(x) be nondecreasing. Suppose

x ¢ H, and w,(x,t) < 0. From (16), w,(x,s) < 0 for all s > t, and in particular

wy (x,t(x)) < 0. It follows that v(t(x)) > w(y,t(x)) for y ¢ (x,x+¢), for

10



some ¢ > 0. In turn, given y € (X,X + ¢), there exists § > 0 such that v{t)
> w(y,t) for t ¢ (t(x)-6,t(x)). Hence t(y) < t(x) and necessity is

established. Sufficiency is trivial. [

The condition w, (x,t) = 0 is equivalent to

-AG(x)t e-AC(X)t

c’(x) € AG(X)e

/(1 - ), x € H. (17)

The RHS of (17) decreases in t, so it is sufficient that it hold for t = t_.
We don’t know t,, but we could use t,, the solution to v(t) =y, from the
PSP, for t, > t,. More easily yet, we can bound t, as follows. By concavity,
vi(t) > v'(t,) = AT(V(t,)) = AT(y,) = c(y,), so let £ > t, be given by
c(y,)t, = yo. An easy sufficient condition, then, is to use t =y, /c(y,) in
(17).

Assume that (17) holds. Then, H lies between S and P and the function t
introduced in the proof of Lemma 6 is the inverse of the lower boundary
function, a; i.e., a(t(x)) = x. As before, differentiate w(a(t),t) = v(t)
to get

a'(t)wy (a(t),t) = c(a(r)),
which reduces to (11) when c(x) = c.

As a simple example, consider the discrete problem with n = 2 and F(x)
=x, 0 £ x =1. The corresponding discrete analogue of (17), with t = 1, is
c’(x) = x. This condition is also easy to verify directly, but we omit it.
Obviously, v(1l) = 1/2 and w(x,l) = 1/2 + x2/2 - c(x), so x € H; iff c(x) <
x2/2. Certainly c(x) can be contrived to oscillate about x?/2, even up to

countably many times, and H, will then be the union of disjoint intervals.
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