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ABSTRACT 

The treatment of chronic diseases consumes 86% of U.S. healthcare costs.  While healthcare 
organizations have traditionally focused on treating the complications of chronic diseases, advances in 
information technology (IT) and analytics can help clinicians and patients manage and slow the 
progression of chronic diseases to result in higher quality of life for patients and lower healthcare costs. 
 
We build on prior research to introduce the notion of temporal displacement of care (TDC), in which IT 
and analytics create healthcare value by displacing the time at which providers and patients make 
interventions to improve healthcare outcomes and reduce costs.  We propose that healthcare value is 
created by strategic actions taken at specific points-in-time during the treatment process.  Our theoretical 
development identifies TDC mechanisms through which IT and analytics displace later high cost 
interventions in favor of earlier preventative procedures. 
 
We test our hypotheses using four years of data on 45,000 cardio-metabolic patients from the U.S. state of 
Vermont, which implemented a Patient-Centered Medical Home (PCMH) program.  Our study includes 
four cohorts with increasing levels of IT and analytics use: (i) non-PCMH practices, (ii) PCMH practices 
with basic IT systems installed, (iii) practices that completed data quality sprints (DQS) to increase use of 
IT systems, and (iv) practices that use analytics through the Vermont Healthcare Information Exchange 
(VHIE). 
 
Our results provide insights into how TDC effects develop over time.  In Year 1 after implementation, the 
DQS cohort demonstrates a marked increase in the use of preventative procedures such as eye exams and 
neuropathy screenings, the increase becomes more pronounced in Years 2 and 3, and the increase is even 
greater for the VHIE cohort.  As the use of preventative procedures increases, emergency department 
utilization decreases, with a more pronounced decrease for the VHIE cohort than the DQS cohort.  By 
Year 2, the DQS and VHIE cohorts experience a decrease in total healthcare costs, with a greater decrease 
for the VHIE cohort than the DQS cohort.  By Year 3, the healthcare outcomes indicator of Hemoglobin 
A1c (HbA1c) level is statistically significantly lower, with a greater decrease for the VHIE cohort than 
the DQS cohort.  The increased use of low-intervention healthcare treatments earlier in the process leads 
to a decrease in overall healthcare costs, which then leads to an improvement in healthcare indicators. 
 

INTRODUCTION 

 From the early days of computing, healthcare organizations have deployed information 

technology (IT) to capture treatment and patient data for administrative and clinical reporting.  Healthcare 

IT researchers have established that IT can play a role to reduce healthcare costs and improve healthcare 

outcomes (Devaraj and Kohli 2000; Shams, Ajorlou and Yang 2015).  With advances in digitization of 

clinical processes, availability of longitudinal data, and analytic tools, clinicians now have an opportunity 

to observe patterns in outcomes for the population of patients, not just individual patients.  The need to 

understand how clinical interventions affect a population’s health is most pressing in the treatment of 

chronic diseases, because chronic diseases consume 86% of U.S. healthcare costs (CDC.gov).  As chronic 
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diseases progress, patient conditions become debilitating and often irreversible.  IT combined with 

analytics can help providers coordinate and manage patient care at the population level, assist with more 

comprehensive screening, and support the increased use of preventive measures.  These capabilities 

enable providers to better manage chronic disease progression, so patients can live healthier and more  

productive lives (Adler-Milstein, Sarma, Woskie and Jha 2014). 

Diabetes, a cardio-metabolic disease that is one of the most prevalent chronic diseases, is 

characterized by the inability to process carbohydrates and maintain normal blood glucose levels, which 

results in gradual, progressive damage to the kidneys, blood vessels, eyes and heart.  The number of 

people with diabetes worldwide increased from 108 million in 1980 to 422 million in 2014.  Diabetes is 

the seventh leading cause of death in the U.S. (CDC.gov), and 68% of people over the age of 65 with 

diabetes die from complications related to heart disease.  The complexity of diabetes and other cardio-

metabolic diseases makes it difficult for healthcare organizations to identify and understand when to 

intervene or when to let patients manage the condition.  The need for understanding is also important for 

insurance companies and state governments, who bear a large portion of treatment costs and lost 

productivity for sick patients.  With early diagnosis, consistent treatment, and timely interventions, 

diabetes progression and the subsequent impact on organs is manageable.  IT combined with analytics can 

assist clinicians and patients to better manage chronic diseases by helping to identify and track patients 

who need screening, preventive treatments, medication review, and community health services. 

 In this paper, we address how IT and analytics play a defining role in the effective management 

of cardio-metabolic disease by introducing the notion of temporal displacement of care (TDC).  We build 

on prior research which indicates that organizations create business value based on the point-in-time at 

which actions take place (Lee and Tang 1997; Reed, Lemak and Montgomery 1996), to discuss the way 

IT and analytics create healthcare value by displacing the time at which providers and patients make 

interventions to improve healthcare outcomes and reduce costs.  We examine patient care for the chronic 

condition of cardio-metabolic disease using data for patients in the U.S. state of Vermont, which 
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implemented the Vermont Blueprint for Health (VBH) program with the objective to improve the health 

of its citizens while optimizing the state’s healthcare expenditures. 

 In traditional settings, healthcare is provided in spurts.  When a patient shows certain symptoms 

or complains of an illness, providers intervene by administering diagnostic exams, pharmaceutical 

therapies, surgical procedures, and rehabilitation.  This care is episodic.  Patients then take responsibility 

for their well-being and manage the condition until symptoms return.  Often, patients fail to recognize the 

progression of chronic diseases, which causes them to delay seeking preventive care.  If they delay too 

long, the treatments required after the onset of acute symptoms are intense, expensive, and could have 

irreversible and life-altering effects.  Using IT and analytics, healthcare providers can identify 

opportunities to displace the timing of treatment such that they match care resources with patient needs to 

produce healthcare outcomes that are higher quality and lower cost (Bardhan and Thouin 2013).  In this 

paper, we will show how this temporal displacement through IT and analytics creates a virtuous cycle to 

better match care resources with patient health conditions, to engage patients in the ownership of their 

healthcare (Oborn and Barrett 2016), resulting in continuous improvement of population health outcomes. 

BACKGROUND 
 
 After an individual is diagnosed with a chronic disease, the clinicians’ objective is to manage 

disease state progression because the underlying physiologic changes are often irreversible.  IT and 

analytics provide clinicians with insights into the patient’s condition that facilitates early intervention 

before the disease progresses to a stage where higher cost and more intensive treatments are required 

(Kohli and Tan 2016).  For example, most complications associated with diabetes are the cumulative 

effect of elevated blood glucose levels.  High levels of glucose cause gradual damage to blood vessels and 

nerves.  Numerous complications result from prolonged elevated blood glucose levels, high blood 

cholesterol, elevated inflammatory hormones and oxidants, and vascular damage that lead to high blood 

pressure.  High blood pressure can then lead to greater damage as the consistently elevated pressure 

damages the organs.  Once blood vessels and nerves are damaged, tissues lose their ability to function 

normally.  If not managed over time, the accumulated damage of these conditions leads to blindness, 
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kidney failure, heart attacks, stroke, and the amputation of limbs.  The cascading effect of diabetes on the 

heart and other organs is termed cardio-metabolic disease. 

 The need to proactively coordinate and manage patient care has spurred initiatives to develop 

innovative new healthcare delivery models, such as the patient-centered medical home (PCMH).  PCMH 

is a delivery model in which the primary care physician serves as both care coordinator and care provider 

(Rittenhouse and Shortell 2009).  The objective is to closely monitor the plan of care and patient 

condition so that high-cost interventions, such as emergency care and hospitalization, are replaced with 

low-cost interventions before patient conditions deteriorate to the point where high-cost interventions are 

necessary.  Although the PCMH model is conceptually simple, proactive patient surveillance and service 

integration require a complex IT infrastructure and analytics to achieve a lower cost and higher quality of 

clinical outcomes (Angst, Devaraj and D'Arcy 2012).  Bates and Bitton (2010) highlight the importance 

of IT in treating chronic diseases: “We believe that the development of electronic health records will be 

critical in seven major areas: telehealth, measurement of quality and efficiency, care transitions, 

personal health records, and, most important, registries, team care, and clinical decision support for 

chronic diseases” (p. 614). 

 While the PCMH model mandates that physicians adopt electronic medical records (EMRs) to 

achieve PCMH certification, EMR adoption alone is not sufficient to support effective management of 

chronic disease.  Although EMRs digitize data, they are still ‘encounter-oriented’ in that they record the 

activities, interventions, and assessments of each patient visit so the records can be retrieved for review 

during subsequent visits.  To achieve the objectives described by Bates and Benton (2010), additional 

layers of IT structure and integration are required.  Beyond the installation of IT such as EMRs, the next 

level of IT application is the use of IT for care management.  Data quality and data standards are the 

foundation for IT use.  In most EMRs, clinical encounter data and plan of care information are entered as 

unstructured text.  Establishing data standards and recording information in a structured format enable 

population-level querying of the EMR so that PCMH clinicians can use IT to achieve better outcomes for 

all patients under their care.  With data standards to enable system and data integration across providers, 
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the next level of IT involves information exchange among providers and the use of analytics to track 

patients across the care delivery cycle, identify patients to displace later intensive interventions in favor of 

earlier preventative interventions, evaluate physician and care plan effectiveness, and measure outcomes.  

In Table 1 we summarize the role of IT and analytics at each level of chronic disease management. 

 Business disciplines have approached the notion of temporal displacement from various 

perspectives that share a common thread – business value is created by the firm through a combination of 

actions and the point-in-time at which those actions are taken.  Temporality is an essential component of 

action-taking.  To ground the notion of TDC, we draw on two streams of operations management research 

– total quality management and delayed differentiation.1 

Total quality management 

 Total quality management (TQM) proposes that firms can achieve higher quality in products and 

services by taking strategic actions at an earlier point-in-time.  Firms can improve quality by building in 

quality during the production process, which reduces the need for inspection, rework and warranty costs 

(Deming 1986).  In other words, by displacing later activities such as inspection and rework to an upfront 

stage, firms can achieve cost reduction by doing work right the first time (Hackman and Wageman 1995). 

 The premise of TQM is that firms can create business value by taking certain actions, such as 

developing production processes, at an earlier point-in-time, just as healthcare providers can create value   

by taking certain actions at an earlier point-in-time.  TQM is consistent with the notion of TDC in this 

paper, where providers can deliver higher quality healthcare at lower cost by taking certain actions such   

as conducting regular diagnostic check-ups and ensuring adherence to prescription medications at an 

earlier point-in-time of the disease progression. 

  

                                                           
1 From the Business Strategy literature, first-mover advantage (FMA) is a stream of research that describes the 
impact of taking strategic actions as an earlier point-in-time (Lieberman and Montgomery 1988; Thietart and Vivas 
1984).  Because FMA is primarily associated with market entry rather than business processes, we believe that total 
quality management (TQM) literature provides a stronger foundation for TDC in this paper. 
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Delayed differentiation 
 
 In contrast to TQM-inspired actions that confer benefits on firms that take strategic actions at an 

earlier point-in-time, delayed differentiation confers benefits on firms that take strategic actions at a later 

point-in-time (Swaminathan and Tayur 1998).  The concept is to design the production process so the 

point of differentiation is delayed as much as possible.  Delayed differentiation is facilitated through 

standardization (using common components in multiple products) and modularization (ability to assemble 

submodules into a complete product) (Lee and Tang 1997).  Swaminathan and Tayur (1998) illustrate 

delayed differentiation through a case where a computer manufacturer has three different products that 

each contain some combination of four different components.  The computer manufacturer can maintain a 

set of semi-finished products, called ‘vanilla boxes,’ and then perform final assembly of the products once 

more accurate product or market information is received.  When demand is not perfectly correlated across 

the underlying products and when markets are not subject to significant demand shocks (Anupindi and 

Jiang 2008), delayed differentiation enables the firm to serve customers more effectively with higher 

product availability and more efficiently with lower costs.   

 Drawing upon this perspective, providers who treat chronic disease patients can better predict 

demand, pre-schedule services, and free resources to treat patients who need urgent care.  While TQM 

relates to the creation of business value by taking actions at an earlier point-in-time, delayed 

differentiation relates to the creation of business value by taking actions at a later point-in-time.  In both 

cases, business value is created by the action and the (earlier or later) timing of the action.  In this paper, 

we build on these two research streams and propose that IT and analytics create healthcare value at earlier 

and later stages of healthcare delivery.  Earlier in the patient care process, IT and analytics are used to 

identify patients who are ‘at-risk’ for chronic disease and present the highest opportunity for healthcare 

value.  Later in the process, IT and analytics are used to monitor, fine-tune and manage healthcare 

delivery (Bardhan, Oh, Zheng and Kirksey 2015), which frees resources to pursue the next set of 

opportunities for healthcare value. 
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 IT and analytics also play crucial roles to mitigate risk (Knight 1971) and increase coordination 

(Christensen, Grossman and Hwang 2009) in the temporal displacement of care.   In traditional 

healthcare, an individual provider is only willing to assume responsibility and risk to diagnose and treat a 

disease that is consistent with his/her professional credentials (Knight 1971).  When risk crosses 

boundaries across providers, no individual provider will be willing to assume the responsibility and risk, 

unless there is a mechanism to coordinate activities across providers.  IT and analytics provides the 

coordination mechanism for providers to arrange treatment and ensure that required services are 

performed at the appropriate location and time (Christensen et al. 2009).  This coordination optimizes 

care for the long-term prospects of all patients and reduces overall healthcare costs.  

TEMPORAL DISPLACEMENT OF CARE (TDC) 

 We propose that healthcare organizations can create value for individuals with chronic diseases 

by using IT and analytics to displace the time at which clinicians and patients make interventions.  

Healthcare value is then measured by improved clinical outcomes and lower costs.  Building on our 

discussion of the foundations of temporality, we propose that healthcare organizations must create IT 

infrastructure and processes to identify, track, and analyze patient conditions to make clinical 

interventions at appropriate points-in-time.  Temporality is a critical element in tracking resources and 

activities during treatment of a chronic condition. 

TDC addresses when and which resources and activities are consumed in the treatment setting of 

chronic care for a population, not how an individual patient is treated.  Our TDC assumptions are limited 

to the management of chronic disease conditions, so we do not make claims about curative treatment 

protocols or address how to make choices among treatment options.  We assume that patients with 

chronic conditions are willing to participate in their care program and will cooperate in the temporal 

interventions prescribed by clinicians.  We recognize that non-compliance among diabetes patients 

remains an issue (Brundisini, Vanstone, Hulan, DeJean and Giacomini 2015).  We also recognize that 

TDC will be viewed differently by providers for whom fee-for-service has been the predominant payment 
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model (such as in the U.S. and China), compared with the evolving value-based payment model in which 

providers share the responsibility for costs and patient outcomes. 

 To use IT and analytics to displace care, providers must be able to codify the time dimension, 

interventions, and associated cost and outcomes (we discuss interventions and outcomes in the next 

section).  Codification is the conversion of knowledge into forms that are suitable for transfer across 

economic agents.  Codification enables knowledge to be captured, instructions to be communicated, and 

data to be distributed, which expands the division of labor including coordination across stakeholders 

(Kotlarsky, Scarbrough and Oshri 2014; Mithas and Whitaker 2007).  Table 1 provides additional 

information on constructs for the study of TDC. 

Table 1.  Constructs for the Study of TDC 

Construct Description 
Temporal dimension Temporal dimension is a given point-in-time during the patient care process.  It must 

be possible to measure time to study TDC.  The temporal dimension must consist of at 
least one relatively earlier time period and one relatively later time period, in order to 
observe the movement of some interventions from one time period to another time 
period. 

Interventions Interventions are actions intended to improve health outcomes.  Interventions are 
initiated by clinicians or patients, and can involve medication, procedures, and/or 
lifestyle changes.  There must be at least two categories of clinical interventions that 
range in intensiveness of effort, expertise or capital required. 

Utilization Utilization is a measure of consumption of resources and services.  It must be possible 
to measure the utilization of a clinician or patient for an intervention, expressed as 
either how many times an intervention was utilized or the proportion of time an 
intervention is enacted compared to the number of times scheduled. 

Health outcomes Health outcomes are the change in health status resulting from an intervention.  The 
study of TDC requires a measurable and consistent record of patient health outcomes 
that go beyond whether a patient utilized a high- or low-intensity intervention.  For 
example, in this study Hemoglobin A1c (HbA1c) is a direct measure of average blood 
sugar levels over time.  The HbA1c level indicates the health status for a patient with 
cardio-metabolic disease. 

Cost outcomes Cost outcomes are financial measures that result from interventions (Devaraj, Ow and 
Kohli 2013).  It must be possible to measure the cost of high- and low-intensity 
interventions.  In most cases, the cost of high-intensity interventions is higher than the 
cost of low-intensity interventions. 

  

Improvements in EMR functionality, data quality, and practice connectivity results in changes to 

clinical practice procedures and better integration with ancillary and support providers. The changes 

transform care delivery from a set of activities that take place in a physician office and are dependent on 

proactive patient engagement, to a set of integrated activities and processes that take place across multiple 
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agencies. Prior research has described a similar hierarchy of primary care, in which individual providers 

can make some improvements to infrastructure and care activities within the practice, but where 

coordination and shared information across providers is necessary to maximize healthcare value (Rollow 

and Cucchiara 2016).  

To complement the theory development in this paper and illustrate these concepts in practice, in 

Table 2 we provide a brief overview of how increased use of IT and analytics changes the screening, 

diagnosis, and treatment of a patient with Type-II diabetes, and in Table 3 we provide a vignette to 

illustrate the experience of a diabetic patient and the clinical interventions used to treat the patient.  The 

vignette contrasts traditional diabetes care with treatment in various VBH settings.  We constructed the 

vignette based on interviews with practice managers, clinicians, and executives who had first-hand 

experience with chronic disease patients in VBH as well as traditional clinical settings.  Our interviews 

included three practicing physicians, a physician assistant, a diabetes nurse educator, CEO of a 

community health center, COO of a medical center, director of quality initiatives for a health service area, 

and a VBH project administrator.
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Table 2.  Application of IT and Analytics to Chronic Disease Management 

Dimension Description Capability Data Visibility Analysis Temporal Displacement of Care 

IT Infrastructure 
 
“What am I 
doing?” 

Installed base 
level of IT 

Non-VBH  
Paper charts or basic 
electronic medical records 
(EMR). 

Clinical data of individual patients 
for each provider. Often 
supplemented with non-searchable 
copies of fax documents. 
Incomplete medical record.  

Paper charts: minimal analysis 
capability. EMR: Providers can 
evaluate only what is entered by the 
practice. Limited to patient-level 
trend analyses. 

No ability to proactively displace 
care. 

VBH  
Practice certified as a PCMH. 
Meets meaningful use criteria 
for EMR capabilities. 

Clinical data from individual 
patient visits in a standardized 
structure. Data from other 
providers still missing and/or 
poorly integrated. 

Provider can conduct aggregate 
analyses of patients in his/her 
clinical practice. Providers within 
the same practice can share and 
aggregate data across patients. 

No ability to proactively displace 
care. Provider accesses patient 
records as needed but will receive 
alerts from the EMR when certain 
events occur, such as a missed 
appointment or an abnormal lab 
result. 

Use of IT 
 
“Am I doing things 
right?” 

Data quality, 
processes and 
procedures are 
coded and 
structured to 
enable increased 
use of IT 
 
 

Non-VBH  
Paper charts or basic EMR. 

None, or limited EMR use of 
decision support tools to support 
evidence-based medical 
management. 
 

Provider can analyze individual 
historical patient progress using 
tools provided by EMR vendors.  
No integration with external 
entities. Incomplete medical record. 

Displacement of care based on 
conventional treatment protocols, 
often in response to patient 
complaint.  

VBH 
Compare ‘best practices’ and 
clinical and cost outcomes 
within the area and statewide. 

Provider has visibility to internal 
practice data from actual patient 
visits, ability to identify additional 
patient visits that should have 
occurred, and ability to compare 
data across patients. 

Provider can comprehensively 
evaluate PCMH patients, such as 
overall status of prescribed 
interventions and how well patients 
adhere to prescribed plan of care. 

Moderate ability to displace care 
because provider can monitor 
patient outside of scheduled 
appointments to ensure the patient 
is refilling prescriptions, keeping 
appointments, and adhering to 
other maintenance procedures. 

Use of analytics 
 
“Am I doing the 
right things?” 

Access to external 
data for analytics, 
clinical 
assessment, and 
outcome 
measurement. 

Non-VBH 
No integration with claims 
data.  Sophisticated clinical 
practices use ad hoc 
technology to interface 
population management data. 

Provider visibility limited to those 
included in vendor reporting tools. 
Cannot identify gaps in care. 

Provider can evaluate self-reported 
patient adherence. No information 
about patient compliance with 
prescriptions, eye exams and flu 
vaccine. 

Limited and local displacement by 
adjusting dosage, and alternative 
treatment plans. 

VBH 
Longitudinal analysis with 
ability to compare various 
treatments and outcomes. 

Provider has visibility to internal 
practice data on patients, external 
data such as prescription refills and 
hospital visits, and benchmarking 
data from other practices on 
patients with similar conditions. 

Provider can evaluate PCMH 
patients with a holistic view, such 
as a comparison of patient 
treatments and outcomes with other 
PCMH practices. 

High ability to displace care 
because provider can draw from 
internal best practices and from 
other providers to optimize the 
treatment plan to minimize costs 
and maximize desirable health 
outcomes. Greater predictive ability 
to displace care and to refine ‘best 
practices.’ 

 



12 
 

Table 3.  Improved Patient Prognosis from Temporal Displacement of Care 
Scenario:  John is a 35-year-old male with a family history of diabetes.  He has not seen a physician since his senior year in high school. While his body weight is within recommended 
range, John eats poorly and consumes substantial amounts of fast food, soda, and alcoholic beverages. He has a history of sporadic employment and is frequently laid off and unemployed 
for a few months at a time. John recently found a new job. His employer requires a physical and drug screening prior to beginning work, so John has scheduled a doctor visit. 

Traditional primary care Certified Patient Centered Medical 
Home (PCMH) 

PCMH after Data Quality Sprint (DQS) PCMH after DQS, with connectivity to 
the Vermont Health Information 
Exchange (VHIE) 

The physician conducts a physical primarily 
focused on completing the form required by 
John’s employer. The physician does not 
take a health history, and orders blood and 
urine drug screens as the only lab work. 
 

John’s physician uses information 
technology in the form of electronic 
medical records (EMR) that meet 
meaningful use criteria. 
During John’s visit, the physician performs 
a complete physical including health and 
family history. John’s family history 
prompts the physician to perform baseline 
lab work. 
The physician notices that despite his young 
age, John’s serum glucose levels are high. 
The physician  prescribes a medication to 
lower his blood sugar, and examines his 
feet and cardiovascular system to determine 
whether any damage has already occurred. 
John is scheduled to return in six months. 
John does not keep his appointment, his 
record is flagged by the EMR, and the 
office contacts him to schedule a new 
appointment. 
 

John’s physician uses an EMR that adheres 
to a set of standardized data structures. 
John’s initial treatment begins much as it 
would in a certified PCMH, but clinical and 
outcome data are submitted to VHIE and 
integrated with claims data. 
Practice profiles show cost of care and 
outcomes. John’s physician is now able to 
see that costs and outcomes of her diabetic 
patients are worse than the Vermont state 
average, so she implements a quality 
improvement initiative for her practice. 
As a result of the quality improvement 
initiative, John is asked to come back four 
months after his initial visit for an 
Hemoglobin A1C (HbA1C) test, which is a 
better measure of long-term blood glucose 
control. 
Lab results are automatically sent to the 
practice EMR, and show that John’s 
HbA1C has increased to 9.8, indicating very 
poor control of blood glucose levels. 
John admits having difficulty adhering to 
the plan of care, because he again recently 
lost his job and health insurance. The 
physician refers John to a care coordinator 
who works with John to secure insurance 
coverage and obtain medications through a 
Vermont state program. John is schedule to 
return for another follow-up visit three 
months from now. 

John’s physician uses an EMR that adheres 
to a set of standardized data structures and 
is directly connected to the VHIE. 
Clinical and outcome data are aggregated 
and transferred to VHIE, integrated with 
claims data, and accessible by care delivery 
partners. Those care delivery partners also 
have the ability to transfer data directly to 
John’s physician. 
John’s physician is now able to determine 
whether he is complying with the treatment 
plan. The practice is directly connected with 
Community Health Team (CHT) partners 
that are working with John to remove any 
barriers he may face that might prevent him 
from adhering to the plan of care. 
John’s physician receives an EMR update 
from a CHT member. During a wellness 
check, John stated he had stopped taking his 
oral anti-hyperglycemic because it was 
making him feel nauseous, and he could not 
afford the cost of the foods for the diet 
recommended to him. A quick field test 
revealed that John’s blood glucose was far 
too high, and the CHT member scheduled 
an appointment for John to meet with the 
physician the following week. 
During the visit, John’s physician changes 
his medication and sends referrals through 
the EMR to a dietician and community 
health counselor to help John find a diet that 
fits his income and lifestyle. 

Physician’s perspective: The physician 
can only see what is in the individual 
patient record during the visit. The patient 
is responsible for adhering to the plan of 
care and following up with the physician. 

Physician’s perspective: The physician 
can more proactively manage care, but is 
not able to assess patient adherence to the 
plan of care. The practice can better manage 
quality and costs because it receives 

Physician’s perspective: The physician can 
more proactively manage care, using 
comparative data that enable her to manage 
costs and benchmark against other PCMHs. 
The ability to aggregate and share data is a 

Physician’s perspective: The physician can 
now more proactively manage care, 
coordinate activities with CHTs, manage 
costs, and share best practices by 
benchmarking against other PCMHs. EMR 



13 
 

There are no organized community support 
services. The physician practice cannot 
evaluate or manage costs, because it can 
only obtain information related to claims 
submitted by their own practice, and is 
unable to obtain claims information from 
other providers. 
 

aggregate reports of total costs and 
outcomes relative to other practices across 
the state. 
 

precursor to a ‘learning health system’ 
where physicians are able to identify 
practices achieving the best outcomes and 
emulate their strategies. By connecting with 
community partners, physicians are able to 
treat the whole patient, not just the medical 
condition. However, their EMR does not 
contain the details of the community-based 
efforts, and depends on phone calls and fax 
reports. 

is a fully integrated system that incorporates 
all care partners. 
 

Interview quotes: 
“We were expected to see a patient every 15 
minutes, and most of that time was spent 
collecting data that didn’t require an MD to 
gather.” Primary care provider, 
independent practice 
“We have patients come back to us even 
though we are not the closest provider. We 
have patients tell us they come back 
because the MD at the [prestigious medical 
center] spends 10 minutes with them and 
doesn’t check anything.” Diabetes educator 
and practice manager, medical center 
 

Interview quotes: 
“Reporting forced us to look at specific 
measures and be honest with ourselves.” 
Chief operating officer, medical center 
“Population management is emphasized, so 
there is more outreach and patients are more 
likely to receive preventive care and better 
control of health drivers.” Internist, medical 
center 
“Blueprint statewide data reports are 
important. They allow us to identify 
improvement opportunities and change how 
we do things.” Physician assistant and 
EMR director 

Interview quotes: 
“We see patients more often. If HbA1C is 
greater than 9.0, we schedule appointments 
every three months and follow-up if the 
patient misses the appointment.” Diabetes 
educator and practice manager, medical 
center 
“We are no longer dependent on the patient 
to follow up. The panel coordinator is able 
to follow all patients.” Chief operating 
officer, medical center 
“Social needs can be paired with other non-
healthcare resources.” Internist, medical 
center 

Interview quotes: 
“Role of VHIE was to integrate holistic 
care. A care coordinator is able to exchange 
information with agencies to help secure 
food, housing, medical insurance, even 
employment opportunities.” Director of 
quality initiatives, health service area 
“Integrated medical record is a one-stop 
shop. I can see what all care partners are 
doing and they can send me messages.” 
Internist, medical center 
“If HbA1C levels are sustained over 9.0, 
then there is a much higher risk of 
neuropathy, retinopathy, decline in renal 
function, and damage to the circulatory 
system. Spending more time with patients 
before they progress saves money and 
improves the quality of their lives.” Chief 
executive officer, community health center 
“The ‘healthcare network’ is not just 
healthcare providers. A typical EMR 
doesn’t let you integrate social and 
community support services.” Chief 
executive officer, community health center 

John’s prognosis: While John does not feel 
any negative effects now, his diabetes is 
progressing. Irreversible damage is 
gradually occurring to his circulatory 
system, nervous system, kidneys and eyes. 

John’s prognosis: More proactive case 
management with emphasis on screenings 
enabled the physician to detect John’s 
diabetes early. With effective management 
of blood glucose levels, John will 
experience slower disease progression, 
better health and well-being, and be a more 
productive member of society if he adheres 
to the plan of care. 

John’s prognosis: John has a better 
prognosis, due to proactive case 
management, patient engagement, and 
attempts to remove societal barriers that can 
prevent adherence to the plan of care. John 
is no longer left alone to adhere to the plan 
of care, and he is paired with additional 
non-healthcare resources to help him 
achieve clinical goals. 

John’s prognosis: With the entire care 
team integrated, communicating, and 
coordinating their efforts to help John, his 
prognosis is very good. The health system is 
proactive and responsive to any barriers 
John may face. Information flows in real 
time, enabling more rapid response to any 
potential medical or societal complications. 
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Theoretical Underpinning 
 

Theoretical underpinning for the hypotheses includes the notions of risk developed by Knight 

(1971) and disruptive innovation developed by Christensen et al. (2009) and applied to the healthcare 

industry.  We begin with the application of disruptive innovation to the healthcare industry (Christensen 

et al. 2009), and then incorporate theoretical risk considerations.  According to Christensen et al., service 

firms fall into one of three categories -- 

(i) Solution shops (SS) diagnose a problem and then recommend a plan to solve the problem.  
Consulting firms or financial advisors are examples of SS outside the healthcare industry, 
and physicians are an example of SS in the healthcare industry. 

 
(ii) Value Added Providers (VAP) take components and transform these components into 

complete products.  Auto repair shops are an example of VAP outside the healthcare 
industry, and hip replacement surgical centers are an example of VAP in the healthcare 
industry. 

 
(iii) Facilitated networks (FN) enable transactions between producers and consumers.  eBay 

is an example of FN outside the healthcare industry, and WebMD is an example of FN in 
the healthcare industry. 

 
We argue that when a consumer engages in a transaction for service, the consumer transfers the 

responsibility to the service provider.  The service provider, in exchange for a fee, takes on the risk to 

return quality, complete and accurate service (Knight 1971).  The provider is willing to undertake the risk 

only to the extent that the fee compensates for the risk. 

In a SS, a physician takes the responsibility and the risk to diagnose and treat a disease that is 

consistent with his/her professional credentials.  For example, a dermatologist will not take the 

responsibility to diagnose or treat allergies because this would introduce excessive risk beyond what the 

dermatology practice credentials can accommodate.  When transaction risk crosses the boundaries of 

responsibility from a SS to a VAP, there must be a mechanism to coordinate activities to ensure that 

required services are performed at the appropriate location and time.  For chronic disease patients, their 

health conditions can change daily, there is a critical need for a coordinating entity to monitor health 

conditions, assess severity, redirect care, educate patients, and arrange for follow up care.  In the absence 

of such a coordinating entity, patients must invest resources to coordinate their own activities.   
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This is when an FN would emerge.  However, in the U.S. healthcare system, most hospitals are 

SS, VAP or a hybrid SS/VAP.  As an SS, VAP or hybrid SS/VAP, a hospital will coordinate patient care 

only to the extent that it helps reduce the hospital’s risk.  For example, a hospital (VAP) may request 

records from a physician’s office (SS) to reduce the hospital’s risk in treating the patient for a specific 

condition or event.  This mixed SS/VAP model results in a reduction of patient care, because the SS and 

VAP coordinate primarily to reduce their own risk, not to take on more responsibility for the patient.  

Simultaneously, this mixed SS/VAP model and the resulting coordination result in an increase in cost, as 

shown in our empirical results. 

Figure 1 illustrates how the lack of coordination between SS and VAP results in increased costs.  

In this figure, the patient is responsible to arrange for his/her own care.  The patient begins by going for a 

doctor’s appointment (SS) and picking up a prescription from a pharmacy (SS).  However, if the patient 

feels fine when the prescription expires, the patient may not make it a priority to contact the doctor’s 

office or the pharmacist to renew the prescription.  Without an FN neither the doctor’s office nor the 

pharmacist would contact the patient to renew the prescription.  If the patient does not treat the chronic 

disease through medication for a duration of time, the disease may manifest as a negative event that 

requires an emergency room visit (VAP.1 in Figure 1).  Of course, the cost of an emergency room visit 

would be much higher than the cost of a doctor’s office visit or a medication prescription.  And the cycle 

would repeat, when the patient has a ‘new beginning’ after a rehab (SS.2 in Figure 1), receives another  

prescription and gets lab tests (SS.2 and SS.4 in Figure 1), but loses momentum again and eventually 

needs to have an even more expensive inpatient hospital admission (VAP.2 in Figure 1). 
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Figure 1.  Cost and Treatment Pattern for SS and VAP (non-VBH) 
 

 
 Note:  There are two reasons why this treatment pattern has a high cost.  First, this treatment pattern 

involves six different providers (4 SS and 2 VAP) that do not coordinate with each other.  Second, the 
lack of coordination leads to at least two types of high-cost interventions (emergency room visit and 
hospital admission). 

 
An important feature of our research setting is that VBH is a FN that coordinates chronic disease 

patient care.  As described above, the norm for U.S. healthcare is for patients to coordinate their own 

healthcare.  Given the range of awareness and commitment across patients, management of chronic 

diseases is often sporadic and seldom effective.  This is because neither SS nor VAP has the incentive to 

take on more patient care responsibility than is required for the fee.  Their incentive to reduce risk puts 

onus on the patient to bridge the gap between SS and VAP. 

 To bridge the timing and knowledge gap between SS and VAP, VBH takes responsibility by 

optimizing care not just for an episode but for the long-term health prospect of all patients.  The state of 

Vermont is a payer and bears fiduciary responsibility for the well-being of its citizens. VBH, a FN created 

by Vermont with legal safeguards, aims to lower overall risk instead of merely transferring risk to SS and 

VAP (Knight 1971 p. 254).  Risk theory proposes that firms can lower risk by ‘grouping’ instances and 

by understanding differences among individuals in relation to uncertainty.  This measurability is essential 

to grouping and requires the ability to empirically identify which instances are similar and then find the 

proportion of members that are expected to show one of the expected outcomes (Knight 1971, pp. 245-

246). 

Figure 2 shows how the coordination role of a FN helps to reduce overall cost.  In this figure, 

VBH plays an important role to coordinate treatment for the patient.  Through intervention by the FN, the 

patient is reminded to attend follow-up appointments with the doctor (SS.1), renew prescriptions with the 
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pharmacy (SS.2), and have tests conducted at the lab (SS.3).  As the higher-cost VAP treatments are 

displaced in favor of lower-cost SS treatments, the cost of treatment declines and patient condition 

improves. 

 Figures 1 and 2 directly tie with the theoretical model and constructs used in this paper (see Table 

1 above).  The temporal dimension is shown in the horizontal axis, and cost outcomes are shown in the 

vertical axis.  Low-intervention treatments are shown in the regular size boxes, and high-intervention 

treatments are shown in the large boxes.  High utilization is indicated when boxes are filled in, and low 

utilization is indicated when boxes are crossed out.  The linear nature of interventions in traditional 

healthcare is shown in Figure 1, and the temporal displacement of care is shown by the shifting of 

interventions across time in Figure 2. 

Figure 2.  Cost and Treatment Pattern for VBH as a Facilitated Network (FN) 
 
 

 
Note:  This treatment pattern has a low cost, because the VBH facilitated network (FN) 
plays a coordination role to ensure consistent SS follow-up over time.  Low-intervention 
treatments are moved earlier in the process and are sustained.  These low-intervention 
treatments are lower cost than the high intervention treatments in Figure 1.   

 
The IT and analytics infrastructure enable VBH to function as a FN.  VBH utilizes the IT and 

analytics infrastructure to lower risk by grouping instances of patient conditions.  Such grouping occurs 

because VBH captures patient health data to understand differences among chronic disease patients.  

VBH establishes best practices for patient groups, disseminates such best practices among physician 

practices, monitors compliance and provides benchmarking to take corrective action.  Grouping allows 

VBH practices to tailor care plans by shifting the locus of care among SS and VAP (Christensen et al., 

2009 p. xxxiv), enabling the temporal displacement of high-intervention treatments in favor of low-

intervention treatments.  IT and analytics are the underlying mechanisms to identify, group, analyze, and 
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monitor chronic diseases.  Together, these serve as a platform to educate patients on self-care and to share 

insights with VBH practices.  Christensen et al. (2009) endorse formation of VBH-like networks and 

suggest that “As these networks grow, the center of gravity for the care of any chronic diseases will 

increasingly shift from solution shop business models to facilitated networks” (p. xxxvi).  

Hypotheses 

IT, Analytics and Temporal Displacement 

Scholars have emphasized the need to examine mechanisms that enable organizations to 

implement interventions (Hedstrӧm and Swedberg 1998), such as shifting activities from one time period 

to another time period.  Codes are one mechanism that organizations use to signify states learned from 

past actions, and communicate those states to actors in the present (Butler 1995).  Organizational codes 

are generally stored and retrieved from IT systems, which economize time and space by recording an 

abbreviated form of past situations, actions and outcomes (Holmer-Nadesan 1997). 

At the operations level, codes specify the nature of situations and events, the level of attention 

that should be paid to events as they arise, and the potential actions to respond to each event.  Such codes 

are entered in patient charts by hospital staff to document the level of care needed for patients.  This 

documentation of codes communicates the level of care needed to transition across nursing staff when one 

nurse manager completes a shift to another nurse manager who begins the next shift (Zerubavel 1979).  At 

the decision-making level, managers use treatment codes to evaluate alternative courses of action, select 

an action, and implement the action to produce the desired outcome (Butler 1995).  The situation, action 

and outcome are added to the organization’s codes, which then help organizations apply knowledge from 

the past to make more effective decisions for the future (Gherardi and Strati 1988).  As the organization 

expands its code base over time, it can access the expanded code base to better interpret its environment, 

be forewarned about complex situations, quickly perceive events, and apply the code base to understand 

problems, actions to address the problems, and outcomes associated with each action (Goodman 1973). 

By analyzing and recombining past actions with successful outcomes, coded abbreviations of 

patient conditions enable organizations to displace temporal boundaries, extend present conditions, and 
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exert greater influence over future situations through remote control and centralized planning.  For 

example, when the United Kingdom’s National Health Service (NHS) analyzes which care profiles lead 

to better healthcare outcomes at lower costs, clinicians can refer to these care profiles to identify the most 

effective and efficient treatments (Bloomfield and Coombs 1992). 

As temporal boundaries are displaced and organizations achieve greater control, they are able to 

move events from one time period to another through scheduling, synchronization and allocation 

(McGrath and Rotchford 1983).  Scheduling is the definition of the time at which an event will occur, and 

organizations can define schedules so the desired action takes place at the desired time.  Synchronization 

is the alignment of one action by one person with another action and/or another person, and organizations 

can synchronize activities to ensure that personnel work in concert to achieve the desired objective.  

Allocation is the assignment of priorities and resources to tasks, which increases the likelihood that tasks 

can be completed when desired.  Codification increases the effectiveness of task identification and 

resource allocation across time periods (Rahmandad, Repenning and Sterman 2009).  These mechanisms 

enable organizations to respond to temporal pressures and problems by extracting an event from one 

context and relocating that event to another time.  As a result “these three issues [scheduling, 

synchronization and allocation] are at the heart of matters of organizational efficiency, cost and 

productivity” (McGrath and Rotchford 1983, p. 69). 

The literature in this section describes the theoretical mechanisms through which IT and analytics 

facilitate better healthcare outcomes at lower cost.  Table 2 above provides more detail on how providers 

can deploy and use IT.  By using the codification capabilities of IT systems to capture the health status of 

patients, providers analyze the codes to identify the most effective treatments at the most effective time for 

each patient.  IT gives clinicians greater visibility and control over the healthcare delivery process so they 

can displace the timing of patient procedures and schedule interventions that will have the highest impact 

on healthcare outcomes.  They can synchronize actions with partner agencies to provide efficient and 

effective healthcare support and allocate human resources and financial capital to improve healthcare 

outcomes.  Consistent with this discussion, we hypothesize: 



20 
 

 Hypothesis 1A: The use of IT is associated with the temporal displacement of high-intervention 
medical procedures in favor of low-intervention medical procedures. 

 
 Hypothesis 1B: The use of IT and analytics is associated with a greater temporal displacement of 

high-intervention medical procedures in favor of low-intervention medical 
procedures.  

  
IT, Analytics and Impacts Over Time 

In addition to relocating actions from one time period to another time period, codification 

facilitates organizational learning through the process of accumulating, encoding and leveraging insights 

gained through experience over an extended period of time (Saloman and Martin 2008).  Organizational 

learning involves the ability to recombine current knowledge with past knowledge across long time 

horizons, which requires that knowledge be maintained in archival databases and available for analysis 

and re-combination (Nerkar 2003).  The IT systems impact the data and associated processes that are used 

to identify, interpret and learn from the data (Holmer-Nadesan 1997).  For example, when an organization 

receives feedback about outcomes from past resource allocations, it uses that feedback to adjust future 

allocations, test assumptions on the relationship between actions and outcomes, and track actions and 

outcomes to improve performance (Rahmandad et al. 2009).  For example, the NHS uses resource 

management software to codify standardized care profiles, which define the tests and drug therapies for 

patients with a specific diagnosis (Bloomfield and Coombs 1992).  Clinicians can refer to these codified 

care profiles to determine the course of action based on the patient diagnosis, and the NHS can use the 

care profiles to collect data on patient patterns and variances in resource use across patients with the same 

condition and over time. 

Organizational learning based on codification can take the form of single-loop learning or double-

loop learning (Argyres 1976).  In single-loop learning, the organization uses existing codes to respond to 

an event with a specified action to ensure conformance to an existing performance norm, which reinforces 

the existing codes for that event-action sequence and timing.  In double-loop learning, organizations use 

experience and insights to go beyond existing codes and either modify or create new codes for improved 
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performance.  In this manner, organizations use codes to absorb their previous patterns of comprehension 

and reweave those patterns into a new coherent system of understanding over time (Chia 2002). 

Time is relevant for organizational learning.  When an organization learns new knowledge, the 

benefits of that new learning take some time to appear (Ko and Dennis 2011).  As the organization 

accumulates learning, it becomes better able to recognize new knowledge, contextualize new learning, 

and adapt the learning to work practices to improve performance.  While initial benefits may be modest, 

the scope and/or impact increases over time (Ko and Dennis 2011).  Learning also occurs across 

organizations through mechanisms such as benchmarking competitors, hiring employees with in-depth 

industry knowledge, contracting with leading suppliers, participating in trade associations and industry 

conferences, and individual networking (Saloman and Martin 2008). 

To the extent that codification-based organizational learning spreads across organizations, there is 

evidence that over time the performance of late adopters converges with the performance of early 

adopters (Ko and Dennis 2011).  The organization science literature explains how providers can apply 

their codification-based learning to improve the scope and impact of healthcare value over time, and how 

later-adopting providers can use the IT infrastructure to catch up to early adopters in terms of healthcare 

outcomes.  Early-adopters will use the codification-based features of IT for single-loop learning, in which 

they apply codes to maintain patient health at an accepted standard.  In the early stages of TDC, as IT and 

analytics lead to the increased use of low-intervention treatments and reduced use of high-intervention 

treatments, it may take some time for cost savings and health benefits to materialize.  As the health 

benefits materialize and early adopters gain experience and insights, they become more sophisticated and 

engage in double-loop learning where they test new assumptions, learn more new knowledge, and modify 

codes to achieve new and higher levels of healthcare value.  Through this recursive process, the code base 

becomes more robust for later adopters.  Later adopters take advantage of the knowledge represented in 

the code base to advance along the learning curve more quickly and converge their performance with 

early adopters.  Consistent with this discussion, we hypothesize: 
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Hypothesis 2A: Over time, the use of IT will be associated with an increase in displacement of 
high-intervention medical procedures in favor of low-intervention medical 
procedures. 

 
Hypothesis 2B:  Over time, the use of IT and analytics will be associated with a greater increase 

in displacement of high-intervention medical procedures in favor of low-
intervention medical procedures. 

 
IT, Analytics and Patient Outcomes 

The business value of IT literature points to the importance of use of IT artifacts to achieve 

productivity and other gains: “System-use is a pivotal construct in the system-to-value chain that links 

upstream research on the causes of system success with downstream research on the organizational 

impacts of information technology” (Doll and Torkzadeh 1998, p. 171).  When decision makers 

incorporate available information, their actions lead to appropriate solutions in pursuit of desired 

outcomes.  Accurate and complete information about previous interventions and status gives clinicians the 

ability to prescribe appropriate medication so the patient does not need to make an unplanned visit to the 

doctor’s office or emergency room.  Further, when clinicians can access a list of patients who have not 

refilled their medication prescription, they can intervene and contact patients to ensure adherence.  

Inability to access past information or to identify non-adherent patients leads to expensive interventions 

and potential adverse health outcomes.  Hospital decision makers’ use of IT has been associated with 

lower mortality rates (Devaraj and Kohli 2003) and clinical utilization of services (Menachemi, 

Chukmaitov, Saunders and Brooks 2008).  Recently, use of IT is found to have spillover effects among 

hospitals in a region because when hospitals can access consistent, timely and complete patient records, 

clinicians do not have to re-administer tests and can provide prompt treatment.  Prompt treatment and 

fewer tests lower the cost of patient care (Atasoy, Chen and Ganju forthcoming).  Consistent with this 

discussion, we hypothesize: 

 Hypothesis 3A:  The use of IT will be associated with reduced healthcare costs and improved 
patient health indicators. 

 
 Hypothesis 3B: The use of IT and analytics will be associated with a greater reduction in 

healthcare costs and more improved patient health indicators. 
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RESEARCH SETTING 

 The Vermont Blueprint for Health (VBH) is a state-led initiative designed to transform health 

care delivery in the U.S. state of Vermont (Vermont Blueprint for Health 2015).  VBH is organized 

around a network of practice facilitators, community health team leaders, local health and human services 

leaders, and project managers that work as a patient-centered medical home (PCMH).  Each of Vermont’s 

14 health service areas (HSA) has an administrative entity such as a hospital or federally-qualified health 

center that provides local leadership for project management, staffing for community health teams, and 

financial management.  The network allows for a rapid response to the state’s healthcare priorities 

through statewide implementation of initiatives.  VBH programs are informed by comprehensive 

evaluations of healthcare quality and outcomes at the practice-, community- and state-levels.  VBH is 

based on a three-tier strategy for IT and analytics, where each tier builds on the preceding tier.  Table 4 

provides more information on the three tiers. 

Table 4.  Vermont Blueprint for Health Tiers for IT and Analytics 

Tier Description 
Tier 1 
EMR Use 

Supports primary care practices as they move through the PCMH certification process 
and EMR implementation. This involves the installation of basic EMR systems to 
satisfy ‘meaningful use’ requirements established by the U.S. federal government 
under the HITECH Act of 2009 (Blumenthal and Tavenner 2010). EMRs enable 
accurate recording of information collected during each patient encounter, and support 
information gathering for medical claim submission. Tier 1 installation of IT 
applications gives the provider visibility to internal practice data from actual patient 
visits. 

Tier 2 
Data Quality 
Sprints (DQS) 

Establishes data standards through data quality sprints (DQS) that enable data 
aggregation, consolidation and extraction (details in Figure 3), and are designed to 
enhance individualized patient care with guideline-based decision support. The data 
extraction and consolidation enable the provider to maximize actual use of IT, with 
visibility to internal practice data from actual patient visits (as in Tier 1 above), AND 
the ability to identify patients that should have occurred, AND the ability to compare 
data across patients. Also supports management of populations with flexible reporting 
for groups of patients and individual patients. DQS align provider data capture and 
adhere to Continuity of Care Record (CCR) processing using industry standard 
nomenclatures to improve clinical data capture. The CCR specification is an extensible 
markup language (XML) based standard to specify the encoding, structure, and 
semantics of a patient summary clinical document for exchange with other providers 
(Ferranti, Musser, Kawamoto and Hammond 2006), which is a pre-requisite for Tier 3.  
Data capture is based on the VBH data dictionary, which is adopted directly from 
national guidelines for preventive health maintenance and treatment of chronic 
conditions. 



24 
 

Tier 3 
Vermont 
Healthcare 
Information 
Exchange 
(VHIE) 

Extracts practice-level data, integrates claims data from payers, and provides data 
sharing, network-wide analysis and information dissemination through the Vermont 
Healthcare Information Exchange (VHIE) (details in Figure 3). VHIE provides 
analytical capabilities to include external data on patients such as prescription refills 
and hospital visits, AND benchmarking data from other practices on patients with 
similar conditions (shown in Table 1). Tier 3 involves extraction and integration of 
standardized data elements from Tier 2 for aggregation, analysis, and reporting stages.  
During the clinical data aggregation stage, the VHIE extracts and translates pre-
determined ‘core data elements’ from EMRs into a common master database (Yaraghi, 
Ye Du, Sharman, Gopal and Ramesh 2015). Information from VHIE is passed to the 
VBH registry database via the integration engine. Patient-level data are augmented by 
messages entered by four types of Vermont public healthcare providers (PHPs) – 
support and services at home, tobacco cessation counselors, community health teams, 
and self-management programs. These healthcare providers work directly with patients 
but may or may not have direct contact with primary care providers (PCPs). 

  

 The registry database passes the PCP core data elements and clinical data to an independent non-

profit data analytics firm that joins patient data from the registry database with cost and outcomes data 

from commercial insurance firms and Medicaid via the all-payer claims database (APCD).  The APCD 

contains summary administrative health care claims data.  By law, all major commercial insurance 

companies and Medicaid issuing policies in the state of Vermont must submit data to the APCD.  The 

integrated data are analyzed, and patient-level, practice-level, and program-level results are returned to 

the registry database and/or disseminated to providers and public health agencies. 

 The analytics output supports clinical decision-making, guides activities of public health 

providers, and helps policy makers assess program performance.  VBH uses two types of analytics 

capabilities – direct data measurement and analytics reports.  Direct measurements are combined into 

recipient-specific sets to create custom reports for various stakeholders.  For example, custom reports 

provide an update to public healthcare providers (PHP).  These patient needs trigger the PHPs to 

proactively contact patients who may require certain preventative or maintenance services.  Having 

information on patient needs facilitates the temporal displacement of healthcare services to occur earlier 

in the process so healthcare outcomes can be improved and costs reduced. 

 Analytics products combine direct measurements with additional analyses.  For example, 

healthcare practice profiles and HSA profiles provide performance measurement and comparisons that 

benchmark each practice and HSA against other practices and HSAs.  Any stakeholder can receive a 
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combination of direct measurement data and analytics reports.  For example, the VHIE sends patient-level 

insight and practice profiles from the registry database to the respective EMRs.  In a similar manner to 

PHPs, PCPs can use patient-level insights to proactively engage patients at earlier points-in-time, and  

practice profiles to evaluate patient needs and practice performance relative to other PCP practices.  

Analytics reports include calculation of performance payments that are a function of cost, quality, and 

utilization measurements.  Analytics reports are used to assess programs that span multiple HSAs and 

involve large numbers of practices, and to develop predictive models to estimate future costs and public 

health trends. 

Figure 3.  Data Use: Aggregation, Analysis, and Reporting 

 
  

Data 
 
Cardio-metabolic disease 
 
 When complications from diabetes extend to the heart and other organ systems, the patient is said 

to suffer from multi-organ system suite of conditions known as cardio-metabolic disease.  Table 5 

provides the medically accepted list of 16 health conditions and corresponding International Classification 

of Diseases Ninth Revision (ICD-9) codes to indicate patients at risk of complications associated with 

cardio-metabolic disease.  These ICD-9 codes include conditions related to diabetes, cholesterol and lipid 

disorders, obesity, and hypertension. 
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Table 5.  Diagnostic Codes Related to Cardio-Metabolic Disease 
 

Health Condition ICD-9 Codes 
Coronary arthrosclerosis, native artery 414.xx 
Intermediate coronary syndrome 411.xx 
Pure hypercholesterolemia  272.0x 
Pure hyperglyceridemia 272.1x 
Mixed hyperlipidemia 272.2x 
Unspecified hyperlipidemia 272.4x 
Dysmetabolic syndrome X 277.7x 
Essential hypertension 401.xx 
Obesity, unspecified (BMI 30.0-39.9) 278.00 
Morbid obesity (BMI 40 or greater) 278.01 
Overweight (BMI 25.0-29.9) 278.02 
Hypertensive heart disease 402.xx 
Hypertensive chronic kidney disease 403.xx 
Diabetes type 2 not controlled 250.x0 
Diabetes type 2 controlled 250.x2 
Disorders of thyroid gland 240.xx-246.xx 

 
Selection criteria 
 
 Our data sources for this study are the Vermont All Payer Claims Database (APCD) and the 

Vermont Health Information Exchange (VHIE), which together contain medical claims plus the 

utilization of health and pharmacy services, clinical outcomes, and mandatory quality reporting measures 

for every Vermont resident that is uninsured, covered by commercial insurance, or covered by Medicaid.  

Our selection criteria for the total cost of care and utilization of health services are based on actual 

medical claims data gathered and formatted by the Vermont Department of Public Health.  At the time of 

this study, the data sources did not include information for Vermont residents covered by Medicare or 

Medicare Advantage. 

 Our data are annual summaries of cost, quality, and utilization measures over the five-year period 

2009 – 2013.  Because not all Vermont residents entered the VBH program at the same time, we are able 

to compare outcomes for VBH patients and non-VBH patients with the same condition in a quasi-natural 

experimental setting.  Our VBH data also contains the current level of IT usage for each practice (e.g., 

whether the practice has completed the DQS and whether the practice has established VHIE 

connectivity).  As described in Table 4 above, the deployment of IT and analytics is cumulative.  For 

example, in Tier 1 the PCMH cohort has installed EMR systems and meets federal meaningful use 

criteria.  In Tier 2, the DQS cohort has met the same technology standards as in Tier 1 and has also 
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completed a data quality sprint.  In Tier 3, the VHIE cohort has met the same technology standards as the 

PCMH cohort, has completed the DQS, and has also achieved VHIE connectivity.  This enables us to 

evaluate cost and quality measures for patients treated by PCMHs based on their level of IT and analytics 

usage.  To examine these measures against practices that did not undertake these structured IT 

deployment initiatives, we divide the patients into matching VBH tiers (PCMH, DQS, and VHIE, 

respectively) and non-VBH (control) cohorts. 

 The data in this analysis were normalized to control for practice-level and payer mix effects using 

a methodology deployed in past research (Finison, Mohlman, Jones, Pinette, Jorgenson, Kinner, 

Tremblay and Gottlieb 2017).  Controlling for practice-level and payer mix effects eliminates specific 

industry practices that could bias results.  For example, providers negotiate reimbursement rates with each 

payer separately.  A payer covering a relatively small proportion of individuals in a given geographic 

location will have less negotiating power and therefore pay higher amounts to providers than a payer with 

a larger market share.  Failure to account for the pricing mechanism could lead to erroneous conclusions 

where providers seemingly reduce total cost of care, when the reduction was actually due to payer mix 

factors.  All cost of care measures are adjusted for the medical inflation rate calculated for the state of 

Vermont using data from the APCD. 

 To be included in a VBH cohort, patients must have 12 months of baseline data that includes 

treatment by a primary care practice certified as a PCMH, and 24-36 months of follow-up data where the 

patient is attributable to the same practice observed during the baseline period.2  The date when care 

delivery was assumed by a PCMH is treated as the index date at which the patient is presumed to start 

benefits from the improved data and process changes facilitated by IT and analytics.  Twenty-two 

thousand four hundred and sixty-nine (22,469) patients met the inclusion criteria for a VBH cohort 

(PCMH 7,622 patients; DQS 9,548 patients; and VHIE 5,299 patients, respectively) for whom 

appropriately-matched control patients were also available in the state of Vermont’s dataset.  While we 

                                                           
2 All subjects included in the study were at least 18 years old and had a medical claim with at least one ICD-9 code. 
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have five years of data, not all practices adopted IT and analytics initiatives as the same point in time.  

Since IT and analytics adoption was spread over the time horizon of our data, our sample size (n) for the 

three VBH cohorts was lower by about 25% in the 3rd year after the baseline year (Year 3 PCMH 6,264 

patients, DQS 7,453 patients, VHIE 3,827 patients). 

ANALYSIS 

 We structured the analysis as an observational, retrospective case-control study.  Retrospective 

case-control studies are frequently used in medical, epidemiological and public health research when 

prospective and/or experimental study designs are impractical, unethical, and/or illegal.  Such studies can 

be impractical when several years of longitudinal data are required or when the number of subjects 

required to discern an effect is prohibitively large.  Ethical issues would include withholding a treatment 

for a control group patient that could be beneficial, or administering a treatment that could be harmful.  

Finally, laws governing patient autonomy, informed consent, and physician responsibilities can render 

some research questions untestable in an experimental setting.  Given these practical limitations, medical 

and public health researchers conduct retrospective studies.  In Table 6, we provide conditions where a 

retrospective cohort study design is required, and examples of past research studies that adopted this study 

design. 
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Table 6.  Retrospective Study Designs in Medical and Public Health Research 

Motivation for retrospective case-
control study design 

Study Description Why retrospective case-
control study is required 

Prospective study designs may be 
impractical or infeasible 

(Tzoulaki, Molokhia, 
Curcin, Little, Millett, 
Ng, Hughes, Khunti, 
Wilkins, Majeed and 
Elliott 2009) 
 

Fifteen-year retrospective 
analysis of the effect of 
three types of oral diabetes 
medication on 
cardiovascular disease and 
all-cause mortality 

Duration of time required for 
observable effects makes 
other study designs 
impractical 

(Booth, Kapral, Fung 
and Tu 2006) 

Six-year retrospective 
analysis of relationship 
between age and 
cardiovascular disease in 
diabetics compared with 
non-diabetics 

Duration of time required for 
observable effects and large 
number of subjects makes 
other study designs 
infeasible 
 

Prospective study designs may be 
unethical 

(Lauffenburger, Farley, 
Gehi, Rhoney, 
Brookhart and Fang 
2015) 
 

Retrospective cohort 
analysis of effectiveness 
and safety of blood 
thinning medications on 
patients with atrial 
fibrillation of the heart.  
This study uses a one-year 
baseline period and one to 
two years of follow up 

Potential for life threatening 
effects makes assignment of 
patients to groups unethical 

Prospective study designs may be 
illegal without informed consent of 
all subjects 

(Bittner, Deng, 
Rosenson, Taylor, 
Glasser, Kent, Farkouh 
and Muntner 2015) 

Retrospective cohort study 
on use of non-statin lipid-
lowering therapy among 
patients with coronary heart 
disease. Study compares 20 
cohorts over time 

Researchers cannot make 
changes to pharmaceutical 
treatment plans without the 
informed consent and 
permission of each study 
subjects. A retrospective 
cohort study is required 
because experimental design 
would be illegal 

(Delea, Edelsberg, 
Hagiwara, Oster and 
Phillips 2003) 
 
 

Retrospective cohort study 
of the prevalence of heart 
failure associated with an 
oral diabetes medication. 
This study uses one year of 
baseline data and five years 
of follow-up 

In addition to a large number 
of subjects and a long 
follow-up period, an 
experimental study design 
would require informed 
consent from each subject. 
This combination requires a 
retrospective cohort study 
because a prospective study 
would be impractical, 
unethical, and illegal 

 

 The studies listed in Table 6 use a retrospective cohort study design because the researchers seek 

to identify the effect of observed exposure to an intervention on an observed health outcome of interest.  

In case-control cohort studies, propensity score matching is used to construct each cohort because a 

number of factors can affect health outcomes.  Propensity score matching controls for those effects by 

ensuring that subjects in each cohort are paired with a control subject that has similar covariates known to 
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affect health outcomes.  This is in contrast to a regression approach where matching variables are 

included as covariates in the regression.  Both approaches yield similar results, but the advantage to a 

case-control cohort approach is that researchers can avoid over-parameterizing a regression model with 

covariates where the effects on the independent variable are well-established.  For example, in this setting 

a factor such as age exerts a strong effect on measures such as cost of care or likelihood of hospitalization.  

However, the fact that age is a ‘risk factor’ for chronic diseases already is well-established.  Rather than 

include age and other factors that are already known to impact the outcomes of interest in the model, 

propensity score matching in the first stage of analysis ensures that we compare ‘apples-to-apples’ with 

respect to the effect of treatment interventions on healthcare outcomes.  For example, a retrospective 

case-control study design was used to establish the correlation between smoking and lung cancer (Doll 

and Hill 1950).  More recently, retrospective case-control studies designs have been used to study the 

effect of lifestyle choices on incidence of heart disease (Zaridze, Brennan, Boreham, Boroda, Karpov, 

Lazarev, Konobeevskaya, Igitov, Terechova, Boffetta and Peto 2009) and the impact of community-wide 

cardiovascular disease prevention programs on health outcomes (Record, Onion, R.E., Dixon, Record, 

Fowler, Cayer, Amos and Pearson 2015). 

 Finally, case-control study design is preferred over regression models because regression models 

control for variables in a linear fashion.  For example, if we study the effect of a medication on heart 

failure and our treatment group consisted of only men but our control group consisted of men and women, 

we could use all data but could only infer the possible effect of women.  With propensity score matching, 

we can directly match males with males and our study results would not apply to females. 

 We compose three VBH cohorts with matched control cohorts using pharmacy data,3 medical 

claims data, and clinical data described above.  We use nearest neighbor propensity score matching with a 

+/- 0.05 caliper to develop a 1:1 match of a VBH group to the control group.  A sufficiently tight caliper 

(approximately +/- 0.20) has been shown to eliminate approximately 99% of bias due to measured 

                                                           
3 Our pharmacy data consists of alerts of when prescriptions were filled, and do not include the prescription details 
and/or instances when prescriptions were given but not filled. 
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confounders (Rosenbaum and Rubin 1985).  While calipers of +/- 0.25 or 0.20 are generally accepted, our 

review of the healthcare literature finds that public health researchers often use much tighter calipers 

because variance is high (Austin 2011).  To determine the appropriate caliper we examined the sensitivity 

of estimated effects to small changes in the propensity score specification (Lunt 2014).  We found that 

results were stable with the +/- 0.05 caliper, and remained consistent with effects observed with calipers 

of +/- 0.10 and +/- 0.02, although the latter caliper resulted in significantly fewer matches.  One concern 

with an extremely tight caliper is the inability to match experimental subjects with test subjects.  That did 

not occur with this study, and the 22,469 matched individuals represents over 60% of the 36,223 

individuals that met study inclusion criteria attributable to VBH practices. 

 We match subjects in each VBH cohort with control subjects based on age, gender, HSA, 

insurance type, baseline comorbidity index at index date as defined by Aggregated Clinical Risk 

Grouping (ACRG3) score, baseline comorbid conditions, baseline healthcare costs, and utilization.  The 

patient in the control group who is matched with a VBH patient must meet matching criteria on the index 

date.  The p values for post-match baseline demographic, clinical, and utilization, cost and outcome 

measures show that there are no statistically-significant differences between the VBH cohorts and their 

respective control groups for any demographic or data measure, including frequency of low-intervention 

treatments, frequency of high-intervention treatments, and health and financial outcomes.4 

Main results 

 In Table 7 we provide data on the use of low-intervention treatments by the three VBH cohorts 

and their respective control groups for the first three years after the baseline year.  For ease of exposition, 

we tested differences between groups using paired t-tests or McNemar tests for continuous or categorical 

data, respectively.  Those tests provide measures of absolute risk rather than odds ratios, which are less 

intuitive in their interpretation.  The section for each low-intervention treatment is divided into three 

rows, one row each for the PCMH cohort, DQS cohort, and VHIE cohort.  Each year is divided into two 

                                                           
4 Post-match statistics for demographic variables, utilization, cost and outcome measures are not included in the 
manuscript due to length restrictions, but are available from the authors on request. 
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columns, one column with data for the VBH cohort, and another column with data for the respective 

control group.  When the difference between the VBH cohort and respective control group is statistically 

significant, the statistical significance is indicated by asterisks in the VBH column. 

Hypothesis 1A proposed that the use of IT will be associated with the temporal displacement of 

high-intervention medical procedures in favor of low-intervention medical procedures.  Consistent with 

this hypothesis, we expect displacement of low-intervention treatments to early stages, resulting in higher 

utilization of physician office visits, neuropathy screening, eye exams, and prescription fills per member 

attributable to DQS practices compared with the control group.  We see this phenomenon for all four low-

intervention treatments (see Table 7).  Even in the first year after VBH implementation, we note early 

differences in the DQS cohort and PCMH cohort relative to their respective control groups.  For example, 

in Year 1 the average number of physician office visits is 4.4 per member for the PCMH cohort (not 

statistically-significantly (NS) different from control group average 3.8), while the average number of 

physician office visits is 5.1 per member for the DQS cohort (p<0.05 difference from control group 

average 3.8). 
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Table 7.  Comparison of Low Intervention Treatments for VBH Cohorts and Control Groups 
 

Low intervention treatment 
 

VBH 
cohort 

Year 1 Year 2 Year 3 
VBH Control 

group 
VBH Control 

group 
VBH Control 

group 
Physician office visits 
(per member) 

PCMH 
 

4.4 3.8 4.9* 3.8 5.0** 3.7 

DQS 
 

5.1** 3.8 5.2** 3.8 5.2** 3.7 

VHIE 
 

5.8*** 3.7 5.8*** 3.7 5.7*** 3.8 

        
Neuropathy screening 
(percent of members) 

PCMH 
 

60% 57% 67%* 57% 80%** 58% 

DQS 
 

64%* 56% 74%*** 58% 94%*** 57% 

VHIE 
 

70%*** 56% 84%*** 58% 95%*** 56% 

        
Eye exam 
(percent of members) 

PCMH 
 

64% 59% 73% 61% 84%** 63% 

DQS 
 

71%* 59% 82%*** 63% 93%*** 64% 

VHIE 
 

75%** 61% 87%*** 62% 96%*** 65% 

        
Rx utilization 
(prescription fills per member) 

PCMH 
 

38 34 39 33 41** 34 

DQS 
 

38* 34 41** 34 43*** 33 

VHIE 
 

41** 33 46*** 33 48*** 34 

 Difference between control group and VBH significant at *10%, **5%, and ***1%; no asterisk indicates not significant (NS) 
  

 We see a similar result for the other three low-intervention treatments, even in the first year after 

VBH implementation.  Sixty-four percent of the DQS cohort has a neuropathy screening in Year 1 

(p<0.10 difference from control group 56%), while only 60% of the PCMH cohort has a neuropathy 

screening (NS difference from control group 57%).  Seventy-one percent of the DQS cohort has an eye 

exam in year 1 (p<0.10 difference from control group 59%), while only 64% of the PCMH cohort has an 

eye exam in Year 1 (NS difference from control group 59%).  There are 38 prescription fills per member 

per year in the DQS cohort (p<0.10 difference from control group 34), while the difference between 

prescription fills per member in the PCMH cohort is NS. 

 For Hypothesis 1A to be supported, we should also see a decrease in high-intervention treatments 

as these treatments are subject to temporal displacement in favor of low-intervention treatments.  In Table 

8, we provide data on the use of high-intervention treatments by the three VBH cohorts and their 
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respective control groups for the first three years after the baseline year.  Similar to the layout of Table 7, 

Table 8 has three rows for each treatment, one row with data for each VBH cohort (PCMH, DQS, and 

VHIE) compared with their respective control group.  The results for Table 8 support Hypothesis 1A 

because we see a decrease in avoidable emergency department visits as early as year 1.  In year 1, 18.6% 

of patients in the DQS cohort had an avoidable emergency department visit (p<0.10 difference compared 

with control group 24.2%), compared with 20.7% of the PCMH cohort (NS difference compared with 

control group 24.1%).  While we see only a minor decrease in inpatient admissions for the DQS cohort in 

Year 1 (10.7% NS compared with control group 11.1%), the decrease in emergency department visits for 

the DQS cohort combined with the increase in four low-intervention treatments for the DQS cohort 

provides support for Hypothesis 1A. 

Table 8.  Comparison of High-Intervention Treatments for VBH Cohorts and Control Group 
 

High intervention treatment 
 

VBH 
cohort 

Year 1 Year 2 Year 3 
VBH Control 

group 
VBH Control 

group 
VBH Control 

group 
Avoidable emergency department 

utilization 
(number of visits) 

PCMH 
 

20.7% 24.1% 19.7% 24.3% 21.1% 23.5% 

DQS 
 

18.6%* 24.2% 19.0%* 24.2% 17.2%** 24.0% 

VHIE 
 

18.0%** 24.1% 17.7%*** 24.0% 16.4%*** 23.6% 

        
Number of inpatient admissions PCMH 

 
10.9% 11.1% 10.6% 11.1% 10.8% 11.2% 

DQS 
 

10.7% 11.1% 10.5% 11.2% 10.3%* 11.5% 

VHIE 
 

10.7% 11.1% 10.1%** 11.0% 10.5%*** 12.4% 

 Difference between control group and VBH significant at *10%, **5%, and ***1%, no asterisk indicates not significant (NS) 
 

 Hypothesis 1B proposed that use of IT and analytics will be associated with an even greater 

temporal displacement of high-intervention treatments in favor of low-intervention treatments, compared 

with the use of IT alone.  Consistent with this hypothesis, we should expect to see a further increase in 

low-intervention treatments for the VHIE cohort (where both IT and analytics are used) compared with 

the DQS cohort (where IT is used), which as discussed above has already shown a more pronounced 

effect than the PCMH cohort relative to their respective control groups.  The results in Table 8 confirm a 
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greater increase in all four low-intervention treatments for the VHIE cohort compared with the DQS 

cohort relative to control groups, showing the incremental contribution of analytics to healthcare 

outcomes.  In Year 1, the average number of office visits increases to 5.8 for the VHIE cohort (p<0.01 

difference compared with control group 3.7), greater than 5.1 for the DQS cohort.  The percent of patients 

with neuropathy screening in Year 1 increases to 70% for the VHIE cohort (p<0.01 difference compared 

with control group 56%), higher than 64% for the DQS cohort.  The percent of patients with eye exams in 

Year 1 increases to 75% for the VHIE cohort (p<0.01 difference compared with control group 61%), 

higher than 71% for the DQS cohort.  The number of prescription refills in Year 1 increases to 41 for the 

DQS cohort (p<0.01 difference compared with control group 33), higher than 38 in the DQS cohort.  As 

shown in Table 8, even as the utilization of low-intervention treatments increases for the VHIE cohort 

(because high-intervention treatments are temporally displaced in favor of low-intervention treatments), 

emergency department utilization as a high-utilization treatment decreases with the addition of analytics 

capability.  In Year 1, 18.0% of patients in the VHIE cohort have emergency room visits (p<0.05 

difference compared with control group 24.1%), lower than the DQS cohort with 18.6%.  Although we 

see a minor decline in inpatient admissions for the VHIE cohort in Year 1 (10.7% NS compared with 

control group 11.1%), the fact that all four low-intervention treatments increase for the VHIE cohort and 

high-intervention treatment emergency department visits decrease for the VHIE cohort, provide support 

for Hypothesis 1B. 

 Hypothesis 2A proposed that, over time the use of IT will be associated with an increased   

displacement of high-intervention medical procedures in favor of low-intervention medical procedures.  

Consistent with this hypothesis, we should expect that the increase in low-intervention treatments for the 

DQS cohort in Year 1 will continue and further increase in Years 2 and 3.  The results in Table 8 show 

this to be the case.  For the DQS cohort, the number of physician office visits per member increases from 

5.1 in year 1 to 5.2 in Years 2 and 3 (p<0.05 difference compared with control group 3.7).  The percent of 

DQS patients with neuropathy screening increases from 64% in Year 1 to 74% in Year 2 (p<0.01 

difference from control group 58%) and to 94% in Year 3 (p<0.01 difference compared with control 
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group 58%).  The percent of DQS patients with an eye exam increases from 71% in Year 1 to 82% in 

Year 2 (p<0.01 difference compared with control group 63%) and to 93% in year 3 (p<0.01 difference 

compared with control group 64%).  The number of prescription fills per DQS patient increases from 38 

in Year 1 to 41 in Year 2 (p<0.05 difference compared with control group 34) and to 43 in Year 3 (p<0.01 

difference compared with control group 33).  Even as DQS patients increase the use of low-intervention 

treatments over time, they decrease the use of high-intervention treatments.  This is consistent with the 

notion of temporal displacement and provides confidence in our claim that services displaced from high-

intervention treatments result in the increase of low-intervention treatments.  While there is not a decrease 

in percentage of DQS patients with avoidable emergency department visits from Year 1 to Year 2, there is 

a statistically significant decrease from 19.0% to 17.2% in Year 3 (p<0.05 difference compared with 

control group 24.0%).  Similarly, while the percent of DQS patients with an inpatient admission does not 

decrease at a statistically significant level from Year 1 (10.7%) to Year 2 (10.3%), the difference between 

the DQS cohort (10.3%) and the control cohort does become moderately statistically-significant in Year 3 

(p<0.10 difference compared with control group 11%).  For the DQS cohort, the further increase over 

time in low-intervention treatments and further decrease over time in high-intervention treatments provide 

support for Hypothesis 2A. 

 Hypothesis 2B proposed that the use of IT and analytics will be associated with a greater increase 

in temporal displacement of high-intervention medical procedures in favor of low-intervention medical 

procedures over time, compared with the use of IT alone.  While the results are inconclusive for physician 

office visits, we do observe this phenomenon for the other three low-intervention treatments.  The percent 

of VHIE patients with neuropathy screening increases from 70% in Year 1 to 84% in Year 2 (p<0.01 

difference compared with control group 58%) to 95% in Year 3 (p<0.01 difference compared with control 

group 56%).  The percent of VHIE patients with eye exams increases from 75% in Year 1 to 87% in Year 

2 (p<0.01 difference compared with control group 62%) to 96% in Year 3 (p<0.01 difference compared 

with control group 65%).  The number of prescription refills per VHIE patient increases from 41 in Year 

1 to 46 in Year 2 (p<0.01 difference compared with control group 33) to 48 in Year 3 (p<0.01 difference 
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compared with control group 34).  For high-intervention treatments, while the percent of VHIE patients 

with emergency department visits decreases slightly from Year 1 (18.0%) to Year 2 (17.7%), it decreases 

further from 17.7% in Year 2 (p<0.01 difference compared with control group 24.0%) to 16.3% in Year 3 

(p<0.01 difference compared with control group 23.6%).  We see a decrease in the percent of VHIE 

patients with inpatient admissions from 10.7% in Year 1 to 10.1% in Year 2 (p<0.01 difference compared 

with control group 11.0%), and a widening differential from the control group in Year 3 (10.5% p<0.01 

difference compared with control group 12.4%).  For the VHIE cohort, the increase in three low-

intervention treatments over time and the decrease in high-intervention treatments over time provide 

support for Hypothesis 2B. 

 Table 9 provides comparative data on cost and health indicators for the three VBH cohorts and 

their respective control groups, for three years after the baseline year.  Hypothesis 3A proposed that the 

use of IT will be associated with reduced healthcare costs and improved patient health indicators.  Table 9 

shows that while DQS patients did generate emergency department (ED) cost savings in Year 1, other 

cost indicators such as inpatient cost savings and total healthcare cost savings did not emerge until Year 2.  

We compute cost savings as the difference between the VBH expenditure and the control group 

expenditure.  In Year 2, inpatient cost savings were $34 ($218 - $174) per member per month compared 

with the control group (p<0.10) and total healthcare cost savings were $97 ($741 - $644) per member per 

month compared with the control group (p<0.05).  In Year 3, inpatient cost savings increased to $59 

($230 - $171) per member per month compared with the control group (p<0.01), and total healthcare cost 

savings remained relatively steady at $89 ($740 - $651) per member per month compared with the control 

group (p<0.10). 

 While these empirical results generally support Hypothesis 3A, we observe the additional insight 

that there is a lag effect between the temporal displacement of treatments and the subsequent decrease in 

costs.  This lag effect is even more pronounced when we consider the health indicator of HbA1c levels.  

With the implementation of IT, we see a moderately statistically significant decrease in HbA1c levels 

only in Year 3 (0.82% for DQS patients p<0.10).  These empirical results appear to show a pattern such 
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that temporal displacement of care is followed by cost savings, which is then followed by health indicator 

improvements with a lagged effect in each relationship.  We will discuss this important insight further in 

the discussion section below. 

Table 9.  Comparison of Cost and Health Outcomes for VBH Cohorts and Control Group 
 

Outcome 
 

VBH 
cohort 

Year 1 Year 2 Year 3 
VBH Control 

group 
VBH Control 

group 
VBH Control 

group 
Avoidable emergency 

department expenditure 
(per member per month) 

PCMH 
 

$68 $81 $60* $82 $57** $86 

DQS 
 

$55* $79 $51** $83 $55** $88 

VHIE 
 

$52* $77 $49*** $82 $52** $86 

        
Inpatient healthcare expenditure 
(per member per month) 

PCMH 
 

$199 $202 $187 $216 $177** $229 

DQS 
 

$198 $200 $174* $218 $171*** $230 

VHIE 
 

$192 $199 $167** $220 $162*** $227 

        
Total healthcare expenditure 
(per member per month) 

PCMH 
 

$710 $714 $687 $732 $667** $742 

DQS 
 

$713 $711 $644** $741 $651* $740 

VHIE 
 

$688 $715 $628** $730 $636*** $746 

        
Health status 
(HbA1c level)  

PCMH 
 

7.14% 7.30% 7.00% 7.28% 6.63%* 7.25% 

DQS 
 

7.12% 7.30% 6.80% 7.26% 6.40%* 7.22% 

VHIE 
 

6.89% 7.33% 6.66%* 7.30% 6.20%*** 7.24% 

 $ rounded to nearest whole number 
 Difference between control group and VBH significant at *10%, **5%, and ***1%; no asterisk indicates not significant (NS) 

 
 

 Hypothesis 3B proposed that the use of IT and analytics will be associated with reduced 

healthcare costs and improved patient health indicators, compared with the use of IT alone.  The pattern 

of empirical results for VHIE patients is similar to the pattern of results for DQS patients described above.  

Except for cost savings for ED visits, cost savings for inpatient visits do not occur until Year 2, which at 

$53 ($220 - $167) per member per month for VHIE patients compared with the control group (p<0.05) 

are higher than $34 cost savings per member per month for DQS patients compared with the control 

group.  In Year 3, these inpatient cost savings for VHIE patients increase to $65 ($227 - $162) per 
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member per month compared with the control group (p<0.05), which are higher than DQS patient $59 

cost savings per member per month compared with the control group.  Total healthcare cost savings for 

VHIE patients also do not emerge until Year 2, which are $102 ($730 - $628) per member per month 

compared with the control group (p<0.05).  In Year 3, these total healthcare cost savings for VHIE 

patients increase to $110 ($746 - $636) per member per month (p<0.05), which are higher than $89 per 

member per month cost savings for DQS patients compared with the control group.  Just as most cost 

savings do not emerge until Year 2, improvements in the health indicator for VHIE patients do not 

emerge until Year 2 (7.30% - 6.66% = 0.64% lower HbA1c compared with control group at p<0.10).  

This HbA1c level improves further in Year 3, reaching 1.04% (7.24% - 6.20%) lower for VHIE patients 

compared with the control group (p<0.01), even lower than the 0.82% (7.22% - 6.40%) difference for 

DQS patients in Year 3.  While these empirical results generally support Hypothesis 3B, as discussed 

above we believe the insight of lags from temporal displacement to cost savings and health indicators 

deserves special attention, which we give in the discussion section below. 

Robustness checks 

 We conducted robustness several checks to rule out alternative explanations for our findings. We 

describe each robustness check below. 

Did healthier patients participate in VBH? 

 One possible explanation for our empirical results could be that healthier patients participated in 

VBH.  Our main analyses suggest that this was not the case.  As we show in Table 9, the HbA1c levels of 

patients that participated in VBH are virtually identical to HBA1c levels for patients in the control group.  

Our propensity score matching ensures that characteristics of VBH patients and control group patients are 

comparable.  There is no a priori evidence to suggest a difference between VBH and non-VBH patients. 

  



40 
 

Were VBH patients diagnosed with new chronic disease(s) after propensity score matching? 

 To rule out the possibility that VBH patients were diagnosed with an additional chronic disease 

after propensity score matching, we examined data derived from medical claims to determine whether 

there were differences in the proportion of patients with newly diagnosed chronic disease during the 

follow-up period.  We find no significant difference between VBH patients and non-VBH patients.  Table 

10 shows the proportion of individuals in each cohort for which a claim was submitted during the follow-

up period that is not associated with the condition(s) met for study inclusion.  New diagnoses for five 

conditions are virtually identical between the VBH cohort and control group in each of the three follow-

up years, adding further support to the notion that there is no inherent difference between patients in the 

VBH cohort and the control group. 

Table 10. Proportion of Patients Receiving New Diagnosis During Follow-up Period 

 
Year 1 Year 2 Year 3 

VBH Control VBH Control VBH Control 
Coronary heart disease  1.1%  1.0% 1.2%  1.0% 1.2%  1.0% 
Hypertension  1.3% 1.1%  1.2%  1.0% 1.2% 1.1% 
Congestive heart failure  0.3% 0.0%  0.5% 0.3% 0.2% 0.3% 
Diabetes  1.2%  1.1% 1.4% 1.1% 1.4% 1.1% 
Hyperlipidemia  1.5% 1.1% 1.6% 1.0% 1.5% 1.0% 

 
Does IT and Analytics use vary among VBH practices? 

 It is possible that the size of a VBH practice was a factor in the deployment of IT and analytics, 

because larger practices may have superior resources and could be in better position to implement and 

integrate IT and analytics into practice operations.  To determine practice size, we identified all patients 

receiving care from a VBH practice.  To ensure a sufficient number of observations in each comparison 

group, we partitioned the practices into two groups.  Smaller practices represented the bottom 50% of 

VBH practices in number of distinct patients seen each year (mean 1,011, standard deviation 603), and 

larger practices represented the top 50% of VBH practices in number of distinct patients seen each year 

(mean 2,581, standard deviation 1,242).  We conducted this analysis among VBH practices only, because 

non-VBH subjects are not attributed to a specific practice in our data set.  Table 11 compares cost and 

outcome measures for small and large VBH practices at each level of IT utilization. 
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Table 11.  Comparison of Cost and Health Indicators for Small and Large VBH Practices 

Outcome 
 

VBH 
cohort 

Year 1 Year 2 Year 3 
VBH 

(small) 
VBH 

(large) 
VBH 

(small) 
VBH 

(large) 
VBH 

(small) 
VBH 

(large) 
Avoidable emergency 

department expenditure 
(per member per month) 

PCMH 
 

 $67  $70  $58  $61  $59  $54 

DQS 
 

 $57  $54  $52  $50  $57  $54 

VHIE 
 

 $53  $50  $48  $51  $54  $50 

        
Inpatient healthcare expenditure 
(per member per month) 

PCMH 
 

 $198  $201  $189  $184  $175  $178 

DQS 
 

 $200  $195  $173  $180  $173  $169 

VHIE 
 

 $190  $194  $165  $168  $160  $163 

        
Total healthcare expenditure 
(per member per month) 

PCMH 
 

 $710  $714  $687  $732  $667  $742 

DQS 
 

 $713  $711  $644  $741  $651  $740 

VHIE 
 

 $688  $715  $628  $730  $636  $746 

        
Health status 
(HbA1c level) 

PCMH 
 

 7.14%  7.30%  7.00%  7.28%  6.63%  7.25% 

DQS 
 

 7.12%  7.30%  6.80%  7.26%  6.40%  7.22% 

VHIE 
 

 6.89%  7.33%  6.66%  7.30%  6.20%  7.24% 

 

DISCUSSION 

 Previous research has proposed several approaches to contain healthcare costs and improve health 

outcomes.  These approaches involve evidence-based medicine (EBM) that emerges from “…integrating 

individual clinical expertise with the best available external clinical evidence from systematic research” 

(Sackett 1997, p. 3).  EBM guidelines emerge from clinician experience combined with external sources, 

such as a population of patients treated by a group of practitioners in a hospital, or a large population of 

patients treated by providers in an integrated health system such as the U.S. Veterans Administration.  

Our TDC approach seeks evidence of process changes by exploring the mechanisms through which IT 

and analytics result in higher quality healthcare at lower cost. 

 By utilizing IT and analytics, clinicians can ascertain how to displace care across stages of the 

chronic care lifecycle.  In the early stage, clinicians utilize IT infrastructure to codify and gather 
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utilization, cost outcomes and health outcomes data to identify promising opportunities to increase quality 

and reduce cost.  In the later stage, clinicians deploy analytics to understand how interventions over time 

influence patient status, so clinicians can advance the timing of treatments from more intensive and costly 

treatments (such as inpatient admissions and emergency room visits) to less intensive and less costly 

treatments (such as eye exams, lab tests and prescription refills).  Displacing the timing of some 

treatments leads to increased healthcare quality, because earlier treatments help to prevent patients from 

developing more severe conditions.  Understanding the effectiveness of treatments through analytics also 

enables clinicians to delay or exclude invasive and expensive treatments that would be more effective at 

later stages.  This creates organizational learning that clinicians can retrieve for analytics of future 

displacement opportunities.  It is likely that accumulated evidence from process changes proposed by 

TDC will become a part of future EBM practices and be used in predictive analytics to identify ‘at-risk’ 

patients. 

 Our time-based analysis using an index date and three follow-up years provides deeper insight 

into the way TDC impacts develop over time.  As illustrated in Figure 3 (based on empirical results in 

Table 7), improved disease management is associated with an immediate and sustained increase in the 

utilization of low-intensity health interventions such as eye exams and neuropathy screenings.  By Year 1, 

the percent of members in the DQS and VHIE cohorts having annual eye exams and neuropathy 

screenings increased by 10-15% above their respective control groups at a statistically-significant level.  

This improvement continued in Year 2 and increased further in Year 3.  By Year 3, 93-94% of the DQS 

cohort and 95-96% of the VHIE cohort was getting regular eye exams and neuropathy screenings.  The 

shift in utilization is important because it indicates more aggressive and consistent medical management.  

A larger number of office visits provides more opportunities for comprehensive physical assessment and 

patient education, and a larger number of prescription fills indicate more aggressive pharmacological 

management and/or better patient compliance.  Higher rates of eye exams and neuropathy screenings 

enable clinicians to more reliably detect evidence of disease progression that may require changes to the 

plan of care. 
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Figure 3.  Frequency of Eye Exams and Neuropathy Screening by Cohort 

 

 The low-intervention treatments described above displace high-intervention treatments such as 

emergency department utilization as shown in Figure 5 (based on empirical results in Table 8).  In Year 1, 

the DQS and VHIE cohorts already achieve a statistically-significant reduction in emergency department 

utilization compared with their respective control groups.  This reduction is maintained in Year 2, and by 

Year 3 the percent of DQS and VHIE cohort members that utilized the emergency room declined by 6% 

for both cohorts compared with Year 1.  More comprehensive and timely medical management by 

displacing activities, enabled by IT and analytics, results in a greater number of low-intervention 

treatments in Year 1 that reduce or eliminate high-intervention treatments. 

Figure 5.  Frequency of Emergency Department Utilization by Cohort 
 

 
  

 As the utilization of low-intervention treatments increases and the utilization of high-intervention 

treatments decreases for the VHIE and DQS cohorts, we begin to see an impact to overall healthcare 

costs.  As shown in Figure 6 (based on empirical results in Table 9), the difference in total healthcare cost 

does take until Year 2 to materialize, suggesting a lag between the change in treatments and the impact to 
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healthcare costs.  This lag in improved healthcare costs suggests the need for patience to realize financial 

benefits from healthcare investments in IT and analytics.  In Year 2, the cost per member per month is 

$97 lower for the DQS cohort compared to its control group, and $102 lower for the VHIE cohort 

compared to its control group.  The improvement for the VHIE cohort continues from year 2 to year 3, by 

which time the cost per member per month is $110 lower than its control group.   

Figure 6.  Total Healthcare Cost Savings by Cohort 

 
  

 Just as there is a lag between the increase (decrease) in utilization for low (high) intervention 

treatments and financial benefits, there is a longer lag between the increase (decrease) in utilization for 

low (high) intervention treatments and healthcare indicators such as HbA1c levels.  Figure 7 shows the 

actual HbA1c level for each cohort, based on the percentage differences in cohorts shown in Table 9.  By 

Year 2, only the VHIE cohort has a statistically-significant difference compared with the control group.  

In Year 3, the positive difference for the VHIE cohort increases further, while the DQS cohort establishes 

a statistically-significant difference.  This longer lag for health indicators, together with the lag in 

healthcare cost savings described above, shows that policy makers and healthcare institutions need to 

show some degree of patience for healthcare savings and healthcare indicators to improve after changing 

treatment plans based on investments in IT and analytics. 
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Figure 7.  HbA1c Levels by Cohort 

 

 The sequence illustrated in Figures 2 – 5 above, in which utilization of preventative services 

increases first, followed by cost savings, followed by quality improvement, is consistent with the 

theoretical underpinnings of TDC that IT and analytics also play crucial roles to mitigate risk (Knight 

1971) and increase coordination (Christensen et al. 2009) articulated in this paper, with additional 

implications discussed in the next section. 

Contributions 

The contribution of our research emerges from the integration of IT and analytics with the 

operations management literature on TQM and delayed differentiation which established the notion that 

business value can be created by strategic actions and by the timing of those actions.  Prior healthcare 

research has established that preventative care is lower cost than curative care due to preventable hospital 

admissions (Kolstad and Kowalski 2012; Yach and Calitz 2014), and that patients are likely to have 

improved healthcare indicators if IT is used to contain the advance of acuity by enabling preventive care 

activities (Shih, McCullough, Wang, Singer and Parsons 2011).  Our temporal analysis involving a base 

year and three years of follow-up data provides insights into the way TDC impacts develop over time.  It 

begins with a displacement of more intensive interventions in favor of less intensive treatments, which 

results in lower costs.  As the program gains momentum, clinicians collaborate with patients to adapt their 

behaviors to better manage their chronic disease. 

Our findings contribute to IS research by articulating the theoretical mechanisms through which 

the use (not just implementation) of IT and analytics leads to impacts on healthcare treatments, costs and 
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outcomes over time.  IT infrastructure is germane to identify the nature and timing of treatments that must 

be displaced in the continuum of chronic disease care.  We provide evidence that IT and analytics create 

healthcare value by identifying for clinicians which low-intervention healthcare treatments to move 

earlier in the process, and which high-intervention treatments to displace later in the process.  The 

increased use of low-intervention healthcare treatments earlier in the process leads to a decrease in overall 

healthcare costs, which then leads to an improvement in healthcare indicators.  

Implications for IS and healthcare research 
 
 The findings reported in this paper have significant implications for research at the intersection of 

IS and healthcare.  We demonstrate how IT and analytics can be used to increase the volume and velocity 

of information available for providers to manage chronic diseases.  Our theory and findings show that the 

impacts of IT and analytics go beyond the patient-level impacts of EMRs and extend to the management 

of population-level chronic care.  We find it interesting that a large proportion of healthcare research is 

focused on new treatments, when proven existing treatments could be implemented at a much lower cost 

on a much larger scale through initiatives such as VBH supported by IT and analytics.  Our empirical 

analysis suggests that massive improvements in health outcomes and reductions in healthcare costs are 

possible through such coordinated efforts. 

 Just as the treatments that will reduce the progression of chronic disease are generally known, the 

types of IT that can support large-scale implementation of initiatives such as VBH are also known.  The 

importance of data quality and the prevalence of Internet technology required for healthcare exchanges 

have been in place for over two decades.  While research into new forms of IT may not be essential to 

address population-level chronic disease care, what will be needed is a systematic view that integrates our 

findings with research into the incentives that will encourage governments and healthcare providers to 

implement and use the appropriate IT and analytics.  What is new in this domain is the increasing 

availability of analytics tools and skills, and research will be needed to help organizations embed these 

tools into their business processes, and education will be needed to help professionals develop the 

relevant skills.  
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 Our TDC approach presents a road map for researchers to identify improvement opportunities by 

analyzing clinical operations data to examine how variations in the type and timing of interventions lead 

to improvement in patient health conditions.  Our findings from patients with cardio-metabolic disease 

can be applied to treatment of patients with other progressive chronic diseases such as primary heart 

disease, chronic obstructive pulmonary disease (COPD), and cancer.  For example, a study of COPD can 

adapt our TDC framework to measure the effect of the three tiers of IT and data analytics described in 

Table 3.  Utilization measures could include ED utilization and hospital admission rates as well as 

condition-specific measures of lung transplant rates and volume reduction surgery.  Cost measures could 

also be similar to ours, such as total cost of care and condition-specific costs including cost of 

supplemental oxygen and continuous positive air pressure (CPAP) machines.  Disease state progression 

could be measured through condition-specific assessments such as pulmonary function tests that measure 

airflow, lung volume and lung capacity.  Since effective management of many chronic diseases depends 

on timely diagnosis, proactive intervention, and coordination of care among different healthcare 

providers, our TDC approach can guide design of public health efforts for other chronic conditions such 

as treatment of Human Immunodeficiency Virus (HIV), chronic kidney disease, Alzheimer’s and 

dementia, and depression.  Because patients and clinicians must collaborate to generate improvements in 

cost and quality, and such improvements are difficult to achieve by either party alone, our findings also 

have implications for the co-creation of IT value (Grover and Kohli 2012). 

Beyond chronic disease management, insights from TDC can extend to any setting in which 

conditions are progressive and return to normalcy is the exception.  In such cases, preemptive actions can 

have a decisive impact on outcomes.  For example, TDC principles of data gathering, analysis and 

displacement of activities can be applied to care of complex equipment such as aircraft engines, 

autonomous vehicles, and electrical power grids where preventive maintenance can protect the systems 

while also reducing costs of catastrophic failures.  Indeed, General Electric (GE) has been gathering real- 

time data from aircraft engines to model normal operation, and analyzing data for potential failures  
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(Wilson 2003).  With analytics, TDC principles can establish best practices for displacement of 

preventive maintenance activities to prolong the life of aircraft engines. 

Implications for practice 

Our analysis of data from a baseline year and three follow-up years suggests that for practitioners 

to deliver high quality outcomes and lower costs, government agencies and healthcare systems should 

carefully define the metrics upfront.  Because providers are likely to change their actions faster than 

patients change their behaviors, operational costs are likely to decrease before there is a noticeable 

improvement in patient health outcome indicators.  Although some healthcare providers may observe 

steady improvement, other entities might see sporadic improvement or even a decline in the early years 

before benefits emerge (Menon, Yaylacicegi and Cezar 2009).  Providers and patients must recognize that 

the financial investments required to initiate such large-scale programs can take several years to 

demonstrate returns (McCullough, Casey, Moscovice and Prasad 2010).  Therefore, state governments, 

providers and citizens should not give up on TDC initiatives if improvement in population health status 

takes time, even as they take actions to minimize that timeframe.  Alongside financial investments, 

providers must be willing to make process changes and share best practices. 

Further, the integration of IT infrastructure and development of analytic capabilities involve 

significant and sustained commitment.  To achieve improvements in healthcare quality and cost 

outcomes, practitioners must commit resources to build and facilitate IT and analytics infrastructure. 

Building the IT infrastructure involves gaining consent of data owners, establishing protocols to 

accurately identify patients, interventions, costs and outcomes, and then capturing and storing data in a 

secure environment.  Providers and patients must be willing to share health data and must have the ability 

to choose how much data and with whom they would like to share.  Protocols to identify patients requires 

investments in a master patient index through which longitudinal intervention and cost data from various 

providers are accurately combined and linked to each patient.  Organizations pursuing these efforts must 

acquire technical competencies such as data extraction, cleansing, transformation and loading (ECTL) to 

create and manage a large data warehouse.  Finally, security mechanisms must be in place for access 
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control, user authentication and intruder detection.  A stable IT infrastructure will enable practitioners to 

build effective analytical capability that incorporates reporting services, with ‘push’ and ‘pull’ data 

capabilities such as ‘pushing’ an alert when a patient has missed a prescription and ‘pulling’ updates 

when a patient gets immunizations or receives a therapeutic treatment at home. 

While our main analysis demonstrates the creation of healthcare value over time, researchers can 

examine how this healthcare value is apportioned by various stakeholders (Menon and Kohli 2013).  For 

example, when healthcare costs are reduced, do the savings improve the profitability of primary care 

practices that participate in initiatives such as VBH?  Do private insurers reduce the amount of 

reimbursements?  How are the cost savings apportioned to state and federal government insurance 

programs?  Understanding the way healthcare value is captured by various stakeholders would give a 

clear picture of the incentives for various stakeholders to participate in wellness programs.  To the extent 

that appropriate incentives are lacking, researchers could identify the types of subsidies that would be 

necessary to make the markets for healthcare more efficient (Parker and Van Alstyne 2005).  Our findings 

also present an opportunity for researchers to identify the pathways and mechanisms through which later 

adopters interact with early adopters to exchange knowledge. 

Limitations and future research 
 

 Our data is subject to at least three limitations.  First, while our unique data set includes the entire 

population of the U.S. state of Vermont, it is important to note that there are some aggregations in the 

data.  For example, annual cost data for each patient is aggregated by cost category, not by individual 

event.  While we analyze annual data for each cost category (avoidable ED expenditures, inpatient 

healthcare expenditures, total healthcare expenditures), we are unable to discern the specific composition 

of costs within each category (for example, which procedures were performed during an inpatient office 

visit).  Our data do not include item-level pharmacy charges, comprehensive laboratory panel results, or 

specific information on all possible treatments and interventions.  Our data do not include the sequencing 

of procedures, and it is possible that the sequencing of procedures among some patients may vary and 

have an unobserved influence on our results.  Hence, while we can evaluate the results, we cannot offer 
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patient-level clinical guidance on provider interventions that achieved the outcomes.  Our data also do not 

include changes to health insurance benefits or co-payments that have been shown to influence patient 

utilization of low-intervention treatments (Chandra, Gruber and McKnight 2010; Starc and Town 2018). 

 As a second limitation, though our discussions with healthcare executives provide insights on 

how stakeholders share best practices, our data does not record the specific communications and 

networking across primary care practices, public health providers, and the VBH organization.  A record of 

the extent of networking across stakeholders could generate greater insights about the way benefits spread 

across practices over time.  Future researchers may find these topics to be fruitful areas of study.  

Researchers may also explore how learning effects vary among early and late adopters of TDC practices 

and how best practices are shared and adopted.  The participation of patients and how information helps 

them engage more actively in their plan of care is also a fruitful area of research that will shed light on the 

boundaries of provider-led initiatives. 

 A third potential limitation is that while our data set includes exceptional detail on the types of 

financial benefits that healthcare providers can achieve through the application of IT and analytics, our 

data does not include the upfront financial investments by the state of Vermont or by healthcare providers 

to become certified as a PCMH, to pass the DQS, or to be approved for the VHIE.  Although our research 

offers important insights on healthcare IT value, further research is needed to learn more about the IT 

investments required to generate this value.  

 Given that VBH represents a network of clinicians, we would be interested to know if the time-

based improvement within a clinical practice shown in our main results can extend to other practices.  Are 

there differences in learning in the effects of temporal displacement of care between early adopters and 

late adopters of TDC?  This presents an opportunity for researchers to study the timing of upfront 

investments in IT and analytics, and develop insights on the matching between investments and returns. 

Conclusion 
 

 We have introduced the notion of temporal displacement of care (TDC), in which IT and 

analytics create healthcare value by displacing the time at which providers and patients make 
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interventions to improve chronic disease healthcare outcomes and reduce costs.  Our empirical analysis 

involving a base year and three years of follow-up provides insights into the way such impacts develop 

over time by displacing later high-intervention procedures in favor of earlier low-intervention procedures.  

The displacement of procedures translates into lower healthcare expenses, including costs for emergency 

care and inpatient admissions.  Only after the IT infrastructure and analytics inform displacement of 

procedures do cost differentials widen and chronic disease health status measures improve.  Our theory 

and results are important for governments, healthcare systems, clinicians and patients because they 

present a roadmap to use IT and analytics to improve patient health while optimizing healthcare 

expenditures.  Chronic diseases are progressive.  We can slow or halt the progression, but we cannot 

reverse their course.  Our findings are critical for patients and healthcare providers because chronic 

diseases do not give second chances. 

References 
 

Adler-Milstein, J., Sarma, N., Woskie, L. R., and Jha, A. K. 2014. "Chronic Care: A Comparison of How 
Four Countries Use Health IT to Support Care for People with Chronic Conditions," Health 
Affairs (33:9), pp. 1559-1566. 

Angst, C. M., Devaraj, S., and D'Arcy, J. 2012. "Dual Role of IT-Assisted Communication in Patient 
Care: A Validated Structure-Process-Outcome Framework," Journal of Management Information 
Systems (29:2), pp. 257-292. 

Anupindi, R., and Jiang, L. 2008. "Capacity Investment Under Postponement Strategies, Market 
Competition, and Demand Uncertainty," Management Science (54:11), pp. 1876-1890. 

Argyres, C. 1976. "Single-Loop and Double-Loop Models in Research on Decision Making," 
Administrative Science Quarterly (21:3), pp. 363-375. 

Atasoy, H., Chen, P.-Y., and Ganju, K. forthcoming. "The Spillover Effects of Health IT Investments on 
Regional Healthcare Costs," Management Science). 

Austin, P. C. 2011. "An Introduction to Propensity Score Methods for Reducing the Effects of 
Confounding in Observational Studies," Multivariate Behavioral Research (46:3), pp. 399-424. 

Bardhan, I., Oh, J.-H., Zheng, Z., and Kirksey, K. 2015. "Predictive Analytics for Readmission of Patients 
with Congestive Heart Failure," Information Systems Research (26:1), pp. 19-39. 

Bardhan, I. R., and Thouin, M. F. 2013. "Health Information Technology and Its Impact on the Quality 
and Cost of Healthcare Delivery," Decision Support Systems (55:2), pp. 438-449. 

Bates, D. W., and Bitton, A. 2010. "The Future of Health Information Technology in the Patient Centered 
Medical Home," Health Affairs (9:4), pp. 614-621. 

Bittner, V., Deng, L., Rosenson, R. S., Taylor, B., Glasser, S. P., Kent, S. T., Farkouh, M. E., and 
Muntner, P. 2015. "Trend in the Use of Nonstatin Lipid-Lowering Therapy Among Patients with 
Coronary Heart Disease," Journal of the American College of Cardiology (66:17), pp. 1864-1872. 

Bloomfield, B. P., and Coombs, R. 1992. "Information Technology, Control and Power: The 
Centralization and Decentralization Debate Revisited," Journal of Management Studies (29:4), 
pp. 459-484. 



52 
 

Blumenthal, D., and Tavenner, M. 2010. "The "Meaningful Use" Regulation for Electronic Health 
Records," New England Journal of Medicine (363), pp. 501-504. 

Booth, G. L., Kapral, M. K., Fung, K., and Tu, J. V. 2006. "Relation Between Age and Cardiovascular 
Disease in Men and Women with Diabetes Compared with Non-Diabetic People: A Population-
Based Retrospective Cohort Study," The Lancet (368:9529), pp. 29-36. 

Brundisini, F., Vanstone, M., Hulan, D., DeJean, D., and Giacomini, M. 2015. "Type 2 Diabetes Patients' 
and Providers' Differing Perspectives on Medication Nonadherence: A Qualitative Meta-
Synthesis," BMC Health Services Research (15:516), pp. 1-23. 

Butler, R. 1995. "Time in Organizations: Its Experience, Explanations and Effects," Organization Studies 
(16:6), pp. 925-950. 

Chandra, A., Gruber, J., and McKnight, R. 2010. "Patient Cost-Sharing and Hospitalization Offsets in the 
Elderly," American Economic Review (100:1), pp. 193-213. 

Chia, R. 2002. "Time, Duration and Simultaneity: Rethinking Processes and Change in Organizational 
Analysis," Organization Studies (23:6), pp. 863-868. 

Christensen, C. M., Grossman, J. H., and Hwang, J. 2009. The innovator's prescription : a disruptive 
solution for health care. New York: McGraw-Hill. 

Delea, T. E., Edelsberg, J. S., Hagiwara, M., Oster, G., and Phillips, L. S. 2003. "Use of 
Thiazolidinediones and Risk of Heart Failure in People with Type-2 Diabetes," Diabetes Care 
(26:11), pp. 2983-2989. 

Deming, W. E. 1986. Out of Crisis. Cambridge, MA: Massachusetts Institute of Technology, Center for 
Advanced Engineering Study. 

Devaraj, S., and Kohli, R. 2000. "IT Payoff in the Healthcare Industry: A Longitudinal Study," Journal of 
Management Information Systems (16:4), pp. 41-67. 

Devaraj, S., and Kohli, R. 2003. "Performance Impacts of Information Technology: Is Actual Usage the 
Missing Link?," Management Science (49:3), pp. 273-289. 

Devaraj, S., Ow, T. T., and Kohli, R. 2013. "Examining the Impact of Information Technology and 
Patient Flow on Healthcare Performance: A Theory of Swift and Even Flow (TSEF) Perspective," 
Journal of Operations Management (31:4), pp. 181-192. 

Doll, R., and Hill, A. B. 1950. "Smoking and Carcinoma of the Lung," British Medical Journal (2:4682), 
pp. 739-748. 

Doll, W. J., and Torkzadeh, G. 1998. "Developing a Multidimensional Measure of System-Use in an 
Organizational Context," Information & Management (33:4), p. 1998. 

Ferranti, J. M., Musser, R. C., Kawamoto, K., and Hammond, W. E. 2006. "The Clinical Document 
Architecture adn Continuity of Care Record: A Critical Analysis," Journal of the American 
Medical Infomatics Association (13:3), pp. 245-252. 

Finison, K., Mohlman, M., Jones, C., Pinette, M., Jorgenson, D., Kinner, A., Tremblay, T., and Gottlieb, 
D. 2017. "Risk-Adjustment Methods for All-Payer Comparative Performance Reporting in 
Vermont," BMC Health Services Research (17:58), pp. 1-13. 

Gherardi, S., and Strati, A. 1988. "The Temporal Dimension in Organizational Studies," Organization 
Studies (9:2), pp. 149-164. 

Goodman, R. A. 1973. "Environmental Knowledge and Organizational Time Horizon: Some Functions 
and Dysfunctions," Human Relations (26:2), pp. 215-226. 

Grover, V., and Kohli, R. 2012. "Cocreating IT Value: New Capabilities and Metrics for Multifirm 
Environments," MIS Quarterly (36:1), pp. 225-232. 

Hackman, J. R., and Wageman, R. 1995. "Total Quality Management: Empirical, Conceptual, and 
Practical Issues," Administrative Science Quarterly (40:2), pp. 309-342. 

Hedstrӧm, P., and Swedberg, R. 1998. Social Mechanisms: An Analytical Approach to Social Theory. 
Cambridge, UK: Cambridge University Press. 

Holmer-Nadesan, M. 1997. "Dislocating (Instrumental) Organizational Time," Organization Studies 
(18:3), pp. 481-510. 

Knight, F. H. 1971. Risk, uncertainty and profit. Chicago: University of Chicago Press. 



53 
 

Ko, D.-G., and Dennis, A. R. 2011. "Profiting from Knowledge Management: The Impact of Time and 
Experience," Information Systems Research (22:1), pp. 134-152. 

Kohli, R., and Tan, S. S.-L. 2016. "Electronic Health Records: How Can IS Researchers Contribute to 
Transforming Healthcare?," MIS Quarterly (40:3), pp. 553-574. 

Kolstad, J. T., and Kowalski, A. E. 2012. "The Impact of Health Care Reform on Hospital and 
Preventative Care: Evidence from Massachusetts," Journal of Public Economics (96:11-12), pp. 
909-292. 

Lauffenburger, J. C., Farley, J. F., Gehi, A. K., Rhoney, D. H., Brookhart, M. A., and Fang, G. 2015. 
"Effectiveness and Safety of Dabigatran and Warfarin in Real-World U.S. Patients with Non-
Valvular Atrial Fibrilation: A Retrospective Cohort Study," Journal of the American Heart 
Association (4), p. e001798. 

Lee, H. L., and Tang, C. S. 1997. "Modelling the Costs and Benefits of Delayed Product Differentiation," 
Management Science (43:1), pp. 40-53. 

Lieberman, M. B., and Montgomery, D. B. 1988. "First-Mover Advantages," Strategic Management 
Journal (9:1), pp. 41-58. 

Lunt, M. 2014. "Selecting an Appropriate Caliper Can Be Essential for Achieving Good Balance with 
Propensity Score Matching," American Journal of Epidemiology (179:2), pp. 226-235. 

McCullough, J. S., Casey, M., Moscovice, I., and Prasad, S. 2010. "The Effect of Health Information 
Technology on Quality in U.S. Hospitals," Health Affairs (29:4), pp. 647-654. 

McGrath, J. E., and Rotchford, N. L. 1983. "Time and Behavior in Organizations," in Research in 
Organizational Behavior. Greenwich, CT: JAI Press, pp. 57-101. 

Menachemi, N., Chukmaitov, A., Saunders, C., and Brooks, R. G. 2008. "Hospital Quality of Care: Does 
Information Technology Matter? The Relationship Between Information Technology Adoption 
and Quality of Care," Health Care Management Review (33:1), pp. 51-59. 

Menon, N. M., and Kohli, R. 2013. "Blunting Damocles' Sword: A Longitudinal Model of Healthcare IT 
Impact on Malpractice Insurance Premium and Quality of Patient Care," Information Systems 
Research (24:4), pp. 918-932. 

Menon, N. M., Yaylacicegi, U., and Cezar, A. 2009. "Differential Effects of the Two Types of 
Information Systems: A Hospital-Based Study," Journal of Management Information Systems 
(26:4), pp. 297-316. 

Nerkar, A. 2003. "Old Is Gold? The Value of Temporal Exploration in the Creation of New Knowledge," 
Management Science (49:2), pp. 211-229. 

Oborn, E., and Barrett, S. K. 2016. "Digital Health and Citizen Engagement: Changing the Face of Health 
Service Delivery," Health Services Management Research (29:1/2), pp. 16-20. 

Parker, G. G., and Van Alstyne, M. W. 2005. "Two-Sided Network Effects: A Theory of Information 
Product Design," Management Science (51:10), pp. 1494-1504. 

Rahmandad, H., Repenning, N., and Sterman, J. 2009. "Effects of Feedback Delay on Learning," System 
Dynamics Review (25:4), pp. 309-338. 

Record, N. B., Onion, D. K., R.E., P., Dixon, D. C., Record, S. S., Fowler, F. L., Cayer, G. R., Amos, C. 
I., and Pearson, T. A. 2015. "Community-wide Cardiovascular Disease Prevention Programs and 
Health Outcomes in a Rural County, 1970-2010.," Journal of the American Medical Association 
(313:2), pp. 147-155. 

Reed, R., Lemak, D. J., and Montgomery, J. C. 1996. "Beyond Process: TQM Content and Firm 
Performance," Academy of Management Review (21:1), pp. 173-202. 

Rittenhouse, D. R., and Shortell, S. M. 2009. "The Patient Centered Medical Home: Will It Stand the Test 
of Health Reform?," Journal of the American Medical Assocation (301:19), pp. 2038-2040. 

Rollow, W., and Cucchiara, P. 2016. "Achieving Value in Primary Care: The Primary Care Model," 
Annals of Famliy Medicine (14:2), pp. 159-165. 

Rosenbaum, P. R., and Rubin, D. B. 1985. "Constructing a Control Group Using Multivariate Matched 
Sampling Methods that Incorporate the Propensity Score," The American Statistician (39:1), pp. 
33-38. 



54 
 

Sackett, D. L. 1997. "Evidence-Based Medicine," Seminars in Perinatology (21:1), pp. 3-5. 
Saloman, R., and Martin, X. 2008. "Learning, Knowledge Transfer, and Technology Implementation 

Performance: A Study of Time-to-Build in the Global Semiconductor Industry," Management 
Science (54:7), pp. 1266-1280. 

Shams, I., Ajorlou, S., and Yang, K. 2015. "A Predictive Analytics Approach to Reducing 30-Day 
Avaoidable Readmissions among Patients with Heart Failure Acute Myocardial Infarction, 
Pneumonia, or COPD," Health Care Management Science (18:1), pp. 19-34. 

Shih, S. C., McCullough, C. M., Wang, J. J., Singer, J., and Parsons, A. S. 2011. "Health Information 
Systems in Small Practices Improving the Delivery of Clinical Preventative Services," American 
Journal of Preventative Medicine (41:6), pp. 603-609. 

Starc, A., and Town, R. J. 2018. "Externalities and Benefit Design in Health Insurance," in: NBER 
Working Paper Series. Cambridge, MA: National Bureau of Economic Research, pp. 1-58. 

Swaminathan, J. M., and Tayur, S. R. 1998. "Managing Broader Product Lines through Delayed 
Differentiation Using Vanilla Boxes," Management Science (44:12), pp. S161-S172. 

Thietart, R. A., and Vivas, R. 1984. "An Empirical Investigation of Success Strategies for Businesses 
Along the Product Life Cycle," Management Science (30:12), pp. 1405-1423. 

Tzoulaki, I., Molokhia, M., Curcin, V., Little, M. P., Millett, C. J., Ng, A., Hughes, R. I., Khunti, K., 
Wilkins, M. R., Majeed, A., and Elliott, P. 2009. "Risk of Cardiovascular Disease and All Cause 
Mortality Among Patients with Type 2 Diabetes Prescribed Oral Antidiabetes Drugs: 
Retrospective Cohort Study Using UK General Practice Research Database," BMJ (339), p. 
b4731. 

Vermont, Blueprint, and Health. 2015. "Annual Report," Department of Vermont Health Access, 
Williston, VT. 

Wilson, J. R. 2003. "Jetliner Maintenance Moves to Electronic Monitoring," in: Military and Aerospace 
Electronics. pp. 1-10. 

Yach, D., and Calitz, C. 2014. "New Opportunities in the Changing Landscape of Prevention," Journal of 
the American Medical Assocation (312:8), pp. 791-792. 

Yaraghi, N., Ye Du, A., Sharman, R., Gopal, R. D., and Ramesh, R. 2015. "Health Information Exchange 
as a Multisided Platform: Adoption, Usage, and Practice Involvement in Service Co-Production," 
Information Systems Research (26:1), pp. 1-18. 

Zaridze, D., Brennan, P., Boreham, J., Boroda, A., Karpov, R., Lazarev, A., Konobeevskaya, I., Igitov, 
V., Terechova, T., Boffetta, P., and Peto, R. 2009. "Alcohol and Cause-Specific Mortality in 
Russia: A Retrospective Case-Control Study of 48,557 Adult Deaths," Lancet (373:9682), pp. 
2201-2214. 

Zerubavel, E. 1979. Patterns of Times in Hospital Life: A Sociological Perspective. Chicago: University 
of Chicago Press. 

 
 
 


	University of Richmond
	UR Scholarship Repository
	2019

	Chronic Disease Management: How IT and Analytics Create Healthcare Value Through the Temporal Displacement of Care
	Steven M. Thompson
	Jonathan W. Whitaker
	Rajiv Kohli
	Craig Jones
	Recommended Citation


	KEYWORDS
	ABSTRACT
	BACKGROUND
	The premise of TQM is that firms can create business value by taking certain actions, such as developing production processes, at an earlier point-in-time, just as healthcare providers can create value   by taking certain actions at an earlier point-...
	Delayed differentiation
	To use IT and analytics to displace care, providers must be able to codify the time dimension, interventions, and associated cost and outcomes (we discuss interventions and outcomes in the next section).  Codification is the conversion of knowledge i...
	Table 1.  Constructs for the Study of TDC
	Hypothesis 1A: The use of IT is associated with the temporal displacement of high-intervention medical procedures in favor of low-intervention medical procedures.
	Cardio-metabolic disease
	Selection criteria
	ANALYSIS
	Our time-based analysis using an index date and three follow-up years provides deeper insight into the way TDC impacts develop over time.  As illustrated in Figure 3 (based on empirical results in Table 7), improved disease management is associated w...
	Figure 3.  Frequency of Eye Exams and Neuropathy Screening by Cohort
	Figure 5.  Frequency of Emergency Department Utilization by Cohort
	Limitations and future research
	Conclusion

