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thousands of trajectories using the UR supercomputer.
Results show promise for the Gaussian random model,
predicting mean values for A,n,A,n,r that closely

and scalar perturbations, which relate to gravitational waves in the
Cosmic Microwave Background (CMB) and density of galaxies. The
spectra are summarized by their amplitudes and indices A, n, A, n.,
and r. Recent data from a 2018 Planck mission constrained three of

these quantities can be gathered from repeated trials. In these ways, we present a versatile multi-variable FIGURE 1: 4 Gaussian random potential V simulated at discrete points in its domain, N = 2 inflaton field components.

program for exploration into how accurately this emergent model can fit to observation. . . o . o | | | |
To use this function, or one like 1t, to solve for the inflaton field evolution in a model universe, imagine releasing a

ball at some point around the minimum. The Klein-Gordon equations tell us that the ball will accelerate downhill match observations of these cosmological parameters

these values to some extent (right), offering powerful plausibility tests

from 2018 Planck missions. Below are predictions and
observations (in parentheses) compared side-by-side.

(down the slopes of V) subjected to air resistance. This 1s wonderfully analogous to the trajectory of the inflaton field.
We built a multi-component program to solve for the trajectory of ¢ under a random potential, then extract from it
observable quantities. Figure 2 describes the process, from input to output, that we designed in Python to do the tasks.

for our model. Shown are histograms compiling predictions from
11,000 potentials randomized with parameters s = 30, V, = 5-1 0° N =
3, weighted and colored by initial condition | .

FIGURE 5 (below): Another way to visualize the predictions our
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indicating the inclusion of 68% (inner) and 95% (outer) of the points.

Gaussian Kernel Density Estimation with N =1

¢. The function 1s required to have some key properties:
Gaussian Kernel Density Estimation with N =3
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e Minimum condition. The function must have a local minimum at V= 0.
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There are many examples of inflationary potentials, but we are interested in creating V from a random process. A
We do this point-by-point. The first potential value V(¢ ) is a completely random value, drawn from a Normal e
distribution with mean zero and variance VO2 , or V(¢p,) ~ KO, VOZ). The second value V(¢,) 1s constrained by
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the first value depending on the difference between ¢ and ¢ . In general, V(¢ ) ~ My, I'.), where
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initial conditions on the potential and the differential equations. The potential is seeded to satisfy the Minimum condition, then the

Vg, 18 the list of all previous potential values and I' 1s the covariance matrix of constraints on V. Subscripts O differential equations are solved numerically, simulating the requisite potential information at each step. Once all relevant data is

and N abbreviate “old” and “new”, respectively. This process of randomly generating V 1s used when solving
the Klein-Gordon differential equations for the inflaton field evolution of a model universe:

collected, a stopping condition is met and attention turns to extracting quantities which are comparable to modern observations.

Since our model shows promise, there are several ways
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FIGURE 3: 4 solution ¢ to the Klein-Gordon equations of motion evolving under a Gaussian random potential with N = 8. Shown
are its vector components (left), component velocities (center), and monitored stopping condition over time. The stopping condition is
a specific function of the velocities, and when it approaches 1 from below, the program knows to stop solving differential equations.
Notice how each vector component approaches zero, indicating a convergence to the origin and preliminary success.
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parameters s, ¥, and N. Today, there exist are some observable quantities 4 , n, 4, n, r that are theoretically
linked back to the trajectory, and thus to the choice of potential. Testing the plausibility that the Gaussian
random potential represents our physical universe involves simulating many potentials, solving for many
trajectories, and extracting observable quantities from each trajectory for statistical analysis.




