2018

Measuring Faculty Teaching Effectiveness Using Conditional Fixed Effects

Maia K. Linask
University of Richmond, mlinask@richmond.edu

James Monks
University of Richmond, jmonks@richmond.edu

Follow this and additional works at: https://scholarship.richmond.edu/economics-faculty-publications
Part of the *Economics Commons* and the *Educational Assessment, Evaluation, and Research Commons*
This is a pre-publication author manuscript of the final, published article.

Recommended Citation

https://scholarship.richmond.edu/economics-faculty-publications/62

This Post-print Article is brought to you for free and open access by the Economics at UR Scholarship Repository. It has been accepted for inclusion in Economics Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
Measuring Faculty Teaching Effectiveness Using Conditional Fixed Effects

by

Maia Linask*

and

James Monks†

Robins School of Business
University of Richmond
Richmond, VA 23173
mlinask@richmond.edu
jmonks@richmond.edu

* Associate Professor of Economics, Robins School of Business, 28 Westhampton Way, University of Richmond, VA 23173, phone: (804) 287-6520, fax: (804) 289-8978, mlinask@richmond.edu.

† Corresponding author; Professor of Economics, Robins School of Business, 28 Westhampton Way, University of Richmond, VA 23173, phone: (804) 287-1959, fax: (804) 289-8878, jmonks@richmond.edu.
Measuring Faculty Teaching Effectiveness Using Conditional Fixed Effects

[Short Title: Fixed Effects Measures of Teaching Effectiveness]

Abstract

Using a dataset of 48 faculty members and 88 courses over 26 semesters, we estimate Student Evaluation of Teaching (SET) ratings that are conditional on a multitude of course, faculty, and student attributes. We find that ratings are lower for required courses and those where students report a lower prior level of interest. Controlling for these variables substantially alters the SET ratings for many instructors. The average absolute value of the difference between the faculty ratings controlling just for time effects and fully conditional ratings is nearly one-half of a standard deviation in the students’ rating of how much they learned. This difference produces a change in quartile rank for over half the sample across two summary course evaluation measures.

Keywords: Teaching Evaluation; Assessment

JEL Classification: A20, A22
Virtually every college and university in the United States uses student evaluation of teaching (SET) instruments as its primary, if not sole, method of assessing the teaching performance and effectiveness of its faculty (see Baldwin and Blattner 2003, Campbell et al. 2005, and Becker et al. 2012 specifically for economics departments). Most institutions compare average (or median) scores across faculty on a series of SET questions pertaining to various aspects of the course and the faculty member’s teaching practices within that course (see Stark and Freishtat 2014 for a critique of using average scores). Indeed, an individual faculty member’s teaching effectiveness often is assessed based on the average score on some kind of summary question. The reliability of these scores for identifying effective teaching is important as they are used in tenure and promotion decisions and annual salary assessments, they are closely monitored by university administrators and accreditors, and they impact faculty choices about pedagogy and content.

Our analysis focuses on the limitations of comparing raw SET scores to evaluate teaching effectiveness for the purposes of personnel decisions, as is done in many institutions. Using data from a single school within a university in the U.S., we provide an alternative approach that offers context for individual faculty members’ teaching evaluations. To determine the extent of contextual influence prevalent in traditional measures of teaching effectiveness, we compare
conditional faculty fixed effects that control for multiple factors outside the instructor’s control with baseline faculty fixed effects that control only for semester effects, as is the standard practice in many institutions. We use these faculty fixed effects to calculate the rankings and focus particularly on how students’ desire to enroll in a course, as measured by the students’ prior interest and whether the course is required or elective, impact rankings quartiles of faculty.

The analysis produces four main findings. First, we find that students’ enthusiasm for taking a course, as measured by self-reported level of interest and whether the course is required or elective, significantly influences student evaluations of teaching quality. Second, we find that including course fixed effects has a substantial impact on the teaching evaluations. This suggests that subject matter and course content, as well as preconceptions and beliefs about courses and even whole disciplines, substantially change the ratings of faculty effectiveness. Third, our results confirm previous findings that raw SET scores are influenced by institutional factors unrelated to an instructor’s teaching ability, including class size, class meeting time and frequency, class composition by student cohort and gender, and students’ GPA. Finally, we find that, while rankings using SET scores that control only for semester or time effects are positively correlated to rankings that control for all the other factors, there are significant differences in the position of many faculty members in the two orderings.

Using faculty fixed effects conditional on students’ interest, course-level fixed effects, and a series of other variables outside the instructor’s control changes the ranking of over half of the instructors by enough to move them to a different rankings quartile. For almost a third of the faculty in our sample, the conditional faculty fixed effects move them from below to above the median rating on one summary question, or vice versa. Thus, using raw SET scores alone to evaluate teaching effectiveness without controlling for course and semester attributes overlooks
important environmental factors that can provide meaningful context when assessing faculty performance. Furthermore, the importance of course fixed effects implies that producing a single ranking, or even a single mean for comparison, for faculty who teach different courses or teach in different departments is problematic. Rankings and ratings of teaching effectiveness that cross not only disciplines and departments but also schools or divisions can only exacerbate this problem.

We argue that estimating conditional scores that control for as many relevant factors as possible provides useful additional information to using raw scores for making personnel decisions. We do not, however, claim that these conditional faculty fixed effects precisely measure teaching effectiveness. Indeed, the conditional scores that we produce reflect not only the quality of instruction that does not vary over time but also any other instructor attributes that do not vary over time. Furthermore, these conditional fixed effects do not account for changes in teaching effectiveness over time or in different situations. For example, an instructor may be particularly good at teaching an advanced elective and yet ineffective at teaching introductory courses; even conditional fixed effects do not reflect such distinctions. But given the current importance of SET ratings and rankings in the careers of university and college faculty, using conditional faculty fixed effects in addition to raw scores at least highlights the role that exogenous institutional factors play on the ratings and the resulting comparisons across faculty. Our results suggest that controlling for factors such as students’ prior level of interest and whether a course is required is especially important. Sufficient data would also allow evaluating how a faculty member’s teaching effectiveness in a given course changes over time and controlling for course fixed effects in calculating ratings and rankings.
While other empirical studies have identified and estimated the influence of many other factors on SET scores, they have not analyzed the degree to which ratings and rankings that are conditional on various observable factors differ from those that rely on the raw SET scores typically used for evaluation of teaching effectiveness. This study aims to fill that gap by providing evidence of the extent to which SET ratings and rankings change when conditioned on those course and semester characteristics over which the instructor has no influence. The results show that the use of raw SET ratings semester by semester, as is common practice, can lead to significant differences in the evaluation of teaching effectiveness.

LITERATURE REVIEW

Studies of student evaluations of teaching have evolved into a large literature that spans multiple disciplines and encompasses both empirical and theoretical papers (see Feldman 2007, Benton and Cashin 2012, Spooren et al. 2013, and Clayson 2015 for recent reviews). Within this large literature, our paper is most closely related to McPherson (2006), Carrell and West (2010), and Ragan and Walia (2010).

To our knowledge, McPherson (2006) is the only other paper to suggest using estimated faculty fixed effects as an alternative to ranking instructors by their raw SET ratings. Like our paper, he uses panel data and instructor and course fixed effects; unlike our paper, his primary focus is on the impact of the expected grade, and he includes only five additional controls: number of class meetings per week, share of students who are majors, class size, SET response rates, and instructor experience. In particular, he does not control for whether a course is required or students’ prior level of interest, two variables which seem to significantly influence SETs in our data.
In comparing the rankings based on raw scores and fixed effects, McPherson (2006) finds that the differences are small for most instructors, with only a few exceptions; the correlation between the unconditional scores and the fixed effect estimates is quite high (.95 and .88 for principles and upper-division courses, respectively). Our results are in stark contrast: we find that controlling for a range of variables, including course fixed effects and students’ prior interest in the course, changes the quartile ranking for more than half the faculty in our dataset. Crucially, McPherson (2006) uses data from a large university with class sizes up to 300 and analyzes the principles and upper-level courses separately. While this approach does reflect the reality that students often give large, introductory classes lower SET ratings, it is not consistent with the common practice of comparing SET ratings for faculty across an entire department or school regardless of the courses taught. Consequently, the finding that rankings within a subset of classes (e.g., large principles classes) are stable when controlling for course and semester variables does not necessarily imply that those rankings are stable across subsets of classes, which is typically how SET ratings are used for personnel decisions.

Ragan and Walia (2010) consider students’ prior interest as well as class size, response rate, the level of a course, and instructor experience in their estimates of the determinants of SET ratings. Like our results, they find that a higher level of prior interest in the course significantly and positively impacts evaluation scores. Ragan and Walia (2010) consider principles and non-principles courses separately (as does McPherson), and conclude that ratings using conditional faculty fixed effects are consistent across courses for individual faculty members and that, in general, faculty members who teach principles courses receive higher ratings. They do not, however, provide evidence of how well the raw SET scores that are actually used for evaluation at most colleges and universities reflect the conditional faculty fixed effects that they estimate.
Furthermore, as with McPherson (2006), the data in Ragan and Walia (2010) are from a larger university (maximum class size is 175) that covers a shorter time span and fewer faculty and courses.

Carrell and West (2010) use random effects and variation in students’ grades to estimate the educational “value added” by each instructor. They also compare rankings based on these estimates, which they argue are a proxy for true teaching effectiveness, to raw SET scores. They find that the correlation between the SET score and value-added in the instructor’s own class is 0.36, while the correlation between the instructor’s SET score and value-added in subsequent related classes is -0.31. However, implementing the approach in Carrell and West (2010) requires individual student grades and evaluations and also random assignment of students to classes. 11 Because very few institutional environments meet these stringent requirements, their approach provides little practical guidance for institutions that use SET scores in tenure, promotion, and salary decisions. Finally, because Carrell and West (2010) use course-semester random effects, the analysis provides no evidence of the importance of specific course attributes (e.g., whether a course is required or not) or how such course attributes affect rankings. The data also do not include information about the faculty member’s preps, course load, or student load, so the impact of these elements is also unknown, and controlling for them could significantly change the random effects estimates.12

Many other studies have used both qualitative and quantitative approaches to criticize SET practices on various grounds. For example, Onwuegbuzie et al. (2007) challenge the content validity of SETs because they often omit questions about those qualities that students consider most important for effective teaching, while Marks (2000) challenges the construct validity because students’ responses on SETs often confound how much they learn with how
much they like a class or instructor. The link between student evaluation of teaching and grade inflation, both theoretical and empirical, is another frequent basis for criticism of the instruments (Langbein 2008). Another concern is the relationship between both student and faculty demographic characteristics, such as gender, race, and ethnicity, and the SET scores. Indeed, Sproule (2002) develops a theoretical model to show that violating any one of three questionable assumptions will lead to a high probability that SET ratings are biased. There is even evidence to suggest that SET scores are correlated with factors such as faculty appearance (Hammermesh and Parker 2005) and weather conditions on the day evaluations are administered (Braga et al. 2014).

A large literature explores the many factors that may bias student evaluations (for some recent examples, see Langbein 2008, McPherson et al. 2009, Fenn 2015, and Wagner et al. 2016). This literature generally groups the potential sources of bias into three categories: student characteristics (e.g., GPA, expected grade), course characteristics (e.g., required or elective, lower- or upper-level, number of students), and instructor characteristics (e.g., gender, race, accent). Previous findings about the relationship between class size and SET ratings are inconclusive, with some papers finding no significant relationship (McPherson et al. 2009) while others find a positive (although small) effect (DeWitte and Rogge 2011) and still others find a negative effect (Isley and Singh 2005). Dilts (1980), Krautmann and Sander (1999), Isley and Singh (2005), Ewing (2012), and Boring et al. (2016) all find that the average expected grade is positively correlated with better evaluations, while De Witte and Rogge (2011) find the opposite. Most papers that analyze gender bias find significant evidence of its existence, including Gramlich and Greenlee (1993), Fenn (2015), Wagner et al. (2016), Boring et al. (2016) and Boring (2017). While Feldman (1993) finds that the sex of the instructor has no global effect on
SETs, this result is quite rare. Drawing on this literature, our paper controls for a thorough set of 16 different course-section and faculty-semester specific variables.14 We pay particular attention to the effect of students’ desire to take a course (as proxied by the level of prior interest and whether the course is required or an elective) on SETs. Those few papers that address this factor, notably Monks and Schmidt (2011), Ragan and Walia (2010), and Olivares (2001), are thus especially relevant to our paper.

Finally, in comparing two different proxy measures for teaching effectiveness, our study also relates to papers that propose alternatives to using raw SET scores as a measure of teaching effectiveness. McPherson and Jewell (2007) produce adjusted ratings by setting some of the control variables (e.g., instructor race or average expected course grade) equal to a common value for all instructors to eliminate the bias of those variables on ratings. (See also McPherson 2006 and Ewing 2012, both of which adjust raw SET scores by subtracting the estimated impact, based on regression analysis, of problematic factors.) DeWitte and Rogge (2011) propose a new method for calculating measures of teaching effectiveness that entails weighting average scores for an instructor to maximize strengths and minimize weaknesses, resampling to minimize the impact of measurement error, and conditioning on exogenous characteristics.15 Weinberg et al. (2009) propose a weighted average of student learning and the student’s course experience as a better indication of faculty performance in the classroom. Driscoll and Cadden (2010) offer a simpler approach, arguing that reference measures to which SET scores are compared should be department-specific in order to ameliorate the potential bias caused by discipline-specific attributes such as a focus on quantitative skills. Finally, Baldwin and Blattner (2003) recommend supplementing SETs with substantial additional evidence of teaching effectiveness, such as
classroom observation, repeated feedback from students, and a comprehensive teaching portfolio
that includes teaching materials.

DATA AND ECONOMETRIC SPECIFICATION

The data for this study come from administrative records and student course evaluations
at a single university in the United States. The faculty and courses utilized in this analysis are
restricted to one particular undergraduate school within this university, as the student course
evaluation instrument is specific to the school. The sample period covers 26 consecutive
semesters, as these are the data made available to the authors. The sample includes 48 individual
faculty members, 88 separate courses, and 1,928 course-sections; the panel is unbalanced, as
there were some departures and additions to the faculty over the sample period. The unit of
observation is the course-section.16 The data set preserves the anonymity of each faculty member
by numbering each faculty member 1 to 48 and numbering each course 1 to 88.

The SET questions examined in this paper are the average course-section ratings for two
questions from the student course evaluations: overall instructor rating (1-5, with 5 being the
best) and amount learned (1-5, with 5 being the most). Our dependent variables are the
arithmetic means of the student ratings for a course-section for each of these questions. Although
the SET includes many other questions (see Table 1), we restrict our analysis to these two
summary questions. A significant share of other institutions also include similar summary
questions on their SETs (see Becker et al. 1999 and Becker et al. 2012). Furthermore,
d’Apollonia and Abrami (1997) argue that even multi-dimensional SETs may “measure a global
component.” Thus, both because they are often used for evaluating teaching and because there is
evidence that they summarize multiple dimensions of teaching, we focus on these two summary questions in our analysis of the use of SETs as indicators of teaching effectiveness.

The explanatory variables fall into several categories. First, we include course-section specific variables that are commonly used in the literature: the (self-reported) average grade point average across students in the section, the gender mix of the section, the gender mix interacted with the instructor’s sex, the cohort mix of the section, class length, whether the class met early or late in the day, and whether evaluations were administered online or on paper (see, for example, Isley and Singh 2005, McPherson 2006, Matos-Díaz and Ragan 2010, and Kherfi 2011). One of our key variables of interest is the prior level of student interest in the course on a scale of 1 to 5, with 5 being the most prior interest.

Another category of controls are faculty-semester specific variables that capture the number of students taught by the instructor. Class size is used in many papers analyzing the factors that affect SETs; we gather this data from administrative records that list the actual number of students enrolled in the section after the drop/add period in the second week of a fifteen-week semester. We also include three variables that measure the instructor’s overall teaching load: the total number of students that each instructor had enrolled in all of his or her class-sections that semester (student load), the number of course-sections taught by the instructor (course load), and the number of different courses that the instructor must prepare for in a given semester (number of preps).

The final set of explanatory variables includes semester, instructor, and course fixed effects. The semester fixed effects control for institutional change and observed evaluation
inflation over time. The course fixed effects control for characteristics such as department, whether the course is required or elective, and whether the course is introductory or advanced.

Finally, instructor fixed effects control for any unobserved or unrecorded instructor characteristics. In particular, instructor fixed effects include characteristics related to the quality of teaching, such as how engaging the instructor is in class, how available outside of class, how clear in her explanations, how well prepared, and so forth. In this we follow, for example, Rothstein (2010) and Goldhaber and Hansen (2010), both of which use teacher fixed effects to measure teacher value added or effectiveness.\(^{19}\) In other words, instructor fixed effects are a proxy for that part of the quality of instruction that does not vary over time. Naturally, we do not claim that instructor fixed effects are a precise measure of instructor quality. Since other characteristics that do not change over time, such as the instructor’s sex, race, and accent, are subsumed in the fixed effects, if evaluation ratings are biased by any of these characteristics then the fixed effects will also be biased. In addition, the instructor fixed effects are an average over the time period of the study and therefore do not reflect any improvements in teaching effectiveness that may be the result of adopting new teaching techniques or attending teaching workshops or seminars. Because multiple instructors teach the same course, and (almost all) instructors teach multiple courses, the conditional faculty fixed effects eliminate the influence of course, section, and semester characteristics on evaluations and as such provide context and additional information to supplement the raw SET scores typically used to evaluate teaching. As described above, the econometric specification estimated is:

\[Y_{isjt} = \beta_0 + \beta_1(X_{isjt}) + \beta_2(Z_{it}) + \delta_i + \alpha_j + \nu_t + \epsilon_{isjt}, \]
where \(Y \) represents the average course-section outcomes outlined above for instructor \(i \) in section \(s \) of course \(j \) at time (semester) \(t \). The vector \(X \) includes the course-section-semester specific variables, and the vector \(Z \) reflects the instructor-semester specific variables discussed above. The error components \(\delta, \alpha, \) and \(\nu \) represent instructor, course, and time effects, respectively, and standard errors are clustered by faculty member.\(^{20}\) The primary focus of this analysis is on the estimated \(\delta_i \) effects, which reflect the estimated faculty fixed effects conditional on the observable variables outlined above, and the degree to which these conditional faculty fixed effects are correlated with the baseline faculty fixed effects (average faculty SET scores controlling just for semester effects).\(^{21}\) This technique of using individual fixed effects as an estimate of worker ability conditional on workplace characteristics follows the approach in Abowd, Kramarz, and Margolis (1999), as applied, for example, in Cornelissen, Dustmann, and Schönberg (2017) and Card, Heining, and Klein (2013).

Table 1 presents summary measures of the data used in this analysis as well as of additional questions on the SET instrument. It is interesting to note that the average class size at this school is only 23.39, and the average student load (total number of students taught by a single professor that semester) is 63.46, reflecting the relatively small size of this school. Less than 10% of classes were held early (defined as starting before 9:00 am), while on average 60% of the students in a class were male. In terms of the primary dependent variables of interest, the average response to the prompt, “I have learned a lot as a result of this course,” is 4.12, with a range of 2.45 to 5.00 (the highest possible rating) and a standard deviation of .45; a rating of 5 indicates strong agreement, with 1 indicating strong disagreement, so that higher ratings are better. The statistics are similar for the SET questionnaire item, “this instructor’s overall
teaching ability is excellent:” the average score is 4.18, with a range of 2.08 to 5.00 and a standard deviation of .48, using the same 1 to 5 Likert scale as above.

[Insert Table 1 about here]

ESTIMATION RESULTS

The baseline faculty fixed effects, conditional only on semester effects, are simply the coefficients on the set of instructor dummy variables relative to the instructor closest to the average rating on the “amount learned” SET questionnaire item. These coefficients vary from a high of almost .7 higher than the average faculty member to a low of .65 below the average faculty member. Faculty who are “noticeably” above the average are usually labelled as successful in teaching their students, while those below are usually identified as less effective at teaching their students.

The question addressed here is how well these baseline faculty scores correlate with faculty scores when controlling for course-section characteristics, faculty-semester characteristics, and course fixed effects. To clarify: we do not address how well SET scores correlate with actual teaching effectiveness, as we do not claim that our modified measure accurately gauges teaching effectiveness. Instead, our analysis addresses how well the measure that is used by many institutions (raw SET scores) is correlated with a measure that controls for multiple external factors outside the instructor’s control. We first regress, using OLS and clustered (by faculty) standard errors, the average amount learned score for each course-section against all observable course-section and faculty-semester characteristics: class size, student load, course load, number of preps, meeting time (early or late), class duration (50 minutes versus 75 minutes), whether the evaluations were administered online, the proportion of the class
that is male, the interaction of this variable with the instructor’s sex, the cohort mix of the
course-section, the average GPA of the students in the section, the average prior level of interest,
whether the course was required or not, and semester and faculty fixed effects. Column 1 of
Table 2 presents the results; the estimated semester and faculty fixed effects are not individually
reported in the table. The R-square value on this regression is .607, indicating that these
regressors explain over half of the variation in average reported amount learned scores across
course-sections.

It is not surprising that the larger the class, the lower was the average amount learned as
reported by the students: on average, each additional student reduces the average rating of
amount learned by .009. The estimated coefficients for student load (number of students taught
by the instructor in a given semester) and number of course preps are both negative, but neither
is statistically significant. Similarly, although the number of course sections taught has a
positive coefficient, it is also not statistically significant at conventional levels.

The coefficient estimate for early class-sections is negative, indicating that early classes
(before 9am) reduce the average reported amount learned by .095 relative to classes that meet
later in the day. More frequent (3 versus 2 times a week) and thus shorter (50 versus 75 minutes)
course-sections, on the other hand, have significantly higher average amount learned scores,
although again the economic magnitude is small, increasing the SET rating by just .05. The
impact of online evaluations, more male students, or more upperclassmen on the amount learned
score is not statistically significant. Consistent with the results in Boex (2000) and Grimes,
Millea, and Woodruff (2004), course-sections with higher average reported GPAs prior to the
current course have lower reported average amount learned results: an increase of .1 in the average GPA reduces the average SET score by .02. Since the GPA measures students’ performance prior to the semester in question and does not include the grade for the course being evaluated, this suggests that, on average, better students appear to be tougher graders of their instructors.24

The estimated coefficient on the average level of prior student interest in the course, one of our key variables of interest, is positive and significantly different from zero at the 99 percent level. The magnitude of the estimate indicates that a one unit increase in prior interest (on a 5 point scale) would increase the predicted average amount learned rating by over 0.3, approximately a 0.75 standard deviation increase in the amount learned.25

We also include a binary variable that controls for whether the instructor is teaching a required course or an elective, another key variable of interest. A required course is defined here as one required of all business students, regardless of their major or concentration. The estimation results indicate that the average rating of amount learned for a required course is 0.15 lower on average than for electives, and this estimate is again significant at the 99 percent level.

The correlation coefficient of the baseline and conditional faculty fixed effects from this regression is .81. This is the equivalent of an R-square value of .656 in a regression of the conditional fixed effects on the baseline faculty fixed effects.

In our second estimation, we include a full set of course dummy variables. Results are reported in Column 2 of Table 2.26 As the courses are simply numbered 1 to 88, we are unable to categorize or describe which types of courses have a lower or higher average amount learned. Nonetheless, incorporating course fixed effects into the regression raises the R-square value from
.607 to .671 and lowers the correlation coefficient between the baseline and conditional faculty fixed effects to .59, with a Spearman’s rank correlation coefficient of .50. A .59 correlation coefficient translates to an R-square value of only .34 in a regression of the conditional fixed effects on the baseline fixed effects. Clearly, for some faculty a significant portion of the perceived amount learned depends on course and section attributes. 27

The coefficient estimates for most of the control variables remain stable when course fixed effects are included (and the binary variable for required courses dropped). There are, however, a few notable differences in coefficient estimates. In particular, the coefficients on the proportion of students that are sophomores, juniors, and seniors are all positive and statistically significant. On average, sophomores within a given course report an amount learned score that is higher by .17 than that reported by first-years (the excluded category). Juniors and seniors report scores that are higher by .37 and .32, respectively. 28 The magnitude of the prior interest coefficient also increases substantially to .411, indicating that a 1-point increase in the prior interest value will increase amount learned scores by more than .4, a difference of almost one standard deviation. In addition, the coefficient on the class duration variable is still positive but no longer statistically significant. In the event that faculty are allocated to teach certain courses, such as introductory or advanced seminar courses, based on teaching ability, then identification of separate faculty and course fixed effects becomes problematic and less precise.

We find that 23 faculty have estimated fixed effects that are statistically significantly different from zero, at the 95 percent level of confidence, or higher. Additionally, the standard deviation of faculty fixed effect estimates is over twice the average of the standard errors of those estimates (standard deviation of faculty fixed effects = .2823; average standard errors =
.1277). Clearly, there is significant variation in the estimated faculty fixed effects, relative to the standard errors of those estimates.

Including the course fixed effects produces estimates of faculty fixed effects that have a correlation coefficient of only .59 with the baseline faculty fixed effects that are produced controlling only for semester effects. Table 3a shows the quartiles of faculty ratings based on amount learned in both the baseline and conditional faculty fixed effects. Thus, for example, 1 faculty member who is in the 4th (lowest) quartile of the baseline fixed effects moves into the 1st (top) quartile based on the conditional faculty fixed effects, 2 faculty in the bottom baseline fixed effects quartile move up into the 2nd conditional fixed effects quartile, and so forth. If the two approaches produced identical quartile groupings of faculty, then we would expect to see only the diagonal cells of the table populated. In fact, many faculty move between quartile rankings once course and semester controls are incorporated. Specifically, 19 out of 45 faculty (42 percent) remain in the same quartile, while 16 (36 percent) move one quartile, 8 (18 percent) move two quartiles, and two instructors (4 percent) move three quartiles. This indicates that course attributes have a significant influence on SET ratings, and because multiple faculty teach each course these attributes are related to the content of the course rather than to the instruction itself. For example, the impact of course attributes could depend on whether a course is heavily quantitative, whether a course is abstract or concrete, or whether course readings are highly technical. Because individual courses are not identified in the dataset, we cannot determine which attributes in particular tend to be associated with higher SET ratings. We can, however, conclude that SET ratings depend in no small part on the course being taught. These course-specific effects suggest that SET scores and faculty ratings need to be assessed within the context of the instructors’ assigned courses.
The effectiveness of an instructor is often assessed relative to the mean or median ratings in a given institution. In our analysis, controlling for course, section, and semester attributes (i.e. using the fully conditional faculty fixed effects) moves 7 faculty (16 percent) from below the median rating to above the median, 2 of whom are significantly below the median at the 95 percent level of confidence. Naturally, 7 faculty move from above to below the median rating, 2 of whom are significantly above the median at the 95 percent level of confidence. Relative to the mean, 17 faculty move from below to above the mean (6 of whom are below the mean with 95 percent level of confidence), while 4 faculty move in the opposite direction (1 of whom is above the mean with 95 percent level of confidence). These lop-sided shifts result from the fact that the baseline fixed effects are right-skewed while the fully conditional fixed effects are left-skewed.

While these statistics clearly indicate that a substantial number of faculty are significantly impacted, it is also worth noting that the fully conditional fixed effects drastically change the ratings of a few individual faculty members, moving them from being among the lowest rated to being about average. Overall, the average of the absolute value of the differences between the baseline and conditional faculty fixed effects is .234, which is more than one-half of a standard deviation in the average rating across all sections and instructors.

We repeat the above analysis using the overall instructor quality ratings in place of the amount learned scores. Columns 3 and 4 of Table 2 repeat, using this overall instructor quality score, the analyses in Columns 1 and 2: Column 3 controls for course-section and faculty-semester attributes, including prior interest and whether a course is required, and Column 4 includes a full set of course fixed effects. The coefficient estimates in Column 3 are qualitatively the same in terms of sign and significance as those in Column 1, with two exceptions. First, the estimate of the coefficient on the proportion of male students is statistically significant at the 95
percent level: male students give lower SET scores overall. The estimate on the interaction of proportion of male students with the instructor’s sex is also significant at the 95 percent level but indicates that males give higher SET scores to male faculty. Given the average class size of just over 23, one additional male student would lower the average SET rating of amount learned for a female instructor by just less than .01 and raise it for a male instructor by approximately the same amount.

The remaining coefficient estimates are quite similar to those in Column 1. Once again, larger class size, earlier classes, classes of longer duration, and students with higher GPAs lower the instructor quality scores. The students’ level of prior interest coefficient estimate is positive and significantly different from zero at the 99 percent level, as in Column 1. The magnitude of the coefficient is notably smaller than in Column 1 and indicates that a one unit increase in student prior interest in the subject is correlated with a .186 increase in the overall instructor rating. The estimate of the effect of a required course on ratings of overall teaching quality, also statistically significant at the 99 percent level, is remarkably similar to that in Column 1: the coefficient estimate indicates that required courses have overall instructor ratings that are .152 lower, on average, than electives, conditional on the other variables. The R-square value on this regression is .534, indicating that approximately one half of the variation in the overall instructor quality rating is explained by the course-section and faculty-semester attributes as well as semester and faculty fixed effects.

Column 4 of Table 2 includes the full set of course fixed effects for the overall instructor quality score. Coefficient estimates are the same in sign and significance as those in Column 2, with the exception of the proportion of male students and the interaction of this variable with the male faculty indicator (both of which are now statistically significant) and the online evaluation
indicator (which changes sign but is still not statistically significant). The magnitude of the coefficients is also significantly bigger for the proportion of male students, the proportion of male students interacted with male faculty indicator, and the share of each section that is sophomores, juniors, and seniors.

The correlation coefficient between the baseline faculty fixed effects (controlling just for semester effects) and the fully conditional faculty fixed effects is .79. This is equivalent to an R-square value of .62 in a regression of the fully conditional faculty fixed effects on the baseline fixed effects. In other words, 62 percent of the variation in faculty fixed effects can be predicted by the baseline effects, while 38 percent of the variation is unexplained by the baseline evaluation. Twenty-six of the faculty fixed effects are statistically significantly different from zero at the 95 percent level, or higher. The standard deviation of faculty fixed effects estimates in this case is over three times greater than the average standard errors of those estimates (standard deviation of the faculty fixed effects = .365; average standard errors of the estimated faculty fixed effects = .116). For this survey item, there is even greater variation in the estimated faculty fixed effects, relative to the standard errors of those estimates.

Table 3b shows that 23 out of 45 (51 percent) faculty would remain in the same quartile ranking based on fully conditional and baseline faculty fixed effects. Eighteen faculty members (40 percent) would move one quartile, and another four (9 percent) would move two quartiles based on conditional faculty fixed effects. Nearly one-fifth of the faculty in our sample (18 percent) move either from below to above the median or the reverse, although only 2 out of these 8 faculty are significantly different from the median value, at 95 percent level of confidence. And 8 faculty move from below the mean to above the mean, with 3 of these faculty significantly
below the mean at 95 percent level of confidence or higher, while two move from above to below the mean, although neither of the individuals is significantly above the mean.

The average absolute value of the difference between the baseline and conditional faculty fixed effects is 0.199 (close to one-half of a standard deviation). Thus, as with the student ratings of amount learned, the ratings of overall instructor quality are markedly different when controlling for course-section and faculty-semester attributes and particularly course fixed effects.

CONCLUSION

Many papers have analyzed the effects of various course, section, and faculty attributes on student evaluations of teaching results. We use a dataset covering 48 faculty members, 88 courses, 26 semesters, and 1,928 observations to study the impact of a wide range of course-section and faculty-semester attributes on SET ratings. We focus especially on how students’ desire to take a class may impact their SET ratings and find that SET scores are higher when students’ level of interest prior to taking the course is higher and when the course is an elective rather than a required course. We then take the analysis a step further and consider not only how these factors affect SET ratings but also how this can in turn affect the evaluation of faculty members’ teaching effectiveness. Comparing the baseline faculty fixed effects with only semester controls to the fully conditional faculty fixed effects, including required and prior interest variables, reveals significant differences in ratings for a majority of the faculty. When we include course fixed effects as well as the students’ prior level of interest variable, we find even bigger differences in both the SET scores and the relative faculty rankings.

These results indicate that the identification of effective teaching based on SET ratings of overall instructor quality and amount learned, as is a common practice in many institutions, will
be markedly different when controlling for course fixed effects, students’ prior level of interest, and a series of other variables that characterize each section and each instructor’s teaching load. Of course, the fully conditional faculty fixed effects absorb a number of time-invariant factors, some of which are related to teaching effectiveness (e.g., how engaging is the instructor, does the instructor respect students, is the instructor on time and prepared) and some of which are not (e.g., race, sex, accent). Furthermore, they do not account for changes in teaching effectiveness over time. As such, the conditional fixed effect estimates should not be taken as a precise measure of teaching effectiveness but instead as a rough proxy of those elements of teaching effectiveness that are constant over time. Indeed, the substantial impact that prior student interest variables and other control variables have on SET scores suggests that SET scores should be interpreted in the context of the courses being taught, as they may be influenced by many factors unrelated to teaching effectiveness. This is especially so when the rankings cross departments and divisions, given how much course fixed effects matter to the rankings. A ranking based on fully conditional faculty fixed effects can provide such context for assessing instructional performance. Future research attempting to assess teaching quality may find tracking student performance across multiple instructors, in the manner of Carrell and West (2010), a fruitful avenue of investigation, with Rothstein’s (2010) analysis providing a strict structural framework for undertaking this type of study. Analyzing data across schools within an institution or even across institutions can provide additional insight into the factors that increase teaching effectiveness. Such an examination would allow controlling for both observed and unobserved differences across instructors (see Abowd, Kramarz, and Margolis, 1999). It would also allow identification of peer effects (as in Cornelissen, Dustmann, and Schönberg, 2017) or school or
institutional characteristics that impact teaching (similar to Card, Heining, and Kline, 2013), shedding light more broadly on what makes for effective teaching.
NOTES

1 Many institutions use a variety of approaches to measure teaching effectiveness, from SETs to
classroom observation to review of teaching and assessment materials. However, Becker and
Watts (1999) report that the use of SETs is almost universal (of 302 US institutions responding
to their survey, only 3 did not use SETs). Becker et al. (2012) confirm the prevalence of SETs
and note further that the average weight across all types of institutions that is given to SETs in
evaluating teaching effectiveness is 48.7 percent.

2 Examples of the summary question are “Overall, how would you rate the teaching effectiveness
of this instructor,” “Overall, how would you rate this course,” and “Would you recommend this
class to another student?” Most SETs include at least one such question.

3 Semester effects account for any “evaluation inflation” that is present. Although most
institutions do not explicitly estimate semester fixed effects, this is approximated by comparing
SET scores semester by semester, as many institutions do.

4 It is important to note that we do not claim that the conditional faculty fixed effects that control
for multiple factors are a comprehensive measure of teaching effectiveness, but rather that they
provide important additional information that may be used in assessing teaching performance.

5 See Ongeri (2009) for a discussion of the characteristics and content of economics courses that
may result in negative student evaluations.

6 Al-Issa and Sulieman (2007) identify 2,988 papers that focus on student evaluations of teaching
and were published in scholarly journals between 1990 and 2005.

7 It is not surprising that instructor experience has a significant and positive impact on SET
ratings. Indeed, if experience helps build human capital, then it may be appropriate to consider
experience as a component of teaching effectiveness.
The mean principles class size in McPherson’s data is 82 for principles classes, while the mean class size for upper-level classes is 33. Class sizes in our dataset are no larger than 45 and most are substantially smaller.

For example, if SET ratings are substantially lower for required courses, then an instructor’s ranking within a subset of courses that are all required (e.g., principles courses) may not change when course fixed effects are included. However, when all courses are pooled together, the principles instructors’ rankings may improve relative to the non-principles instructors when course fixed effects (which include whether a course is required) are included.

Given our result that required courses (e.g., principles) receive lower ratings on average, it is possible that faculty who teach principles courses try to compensate for this trend and therefore, conditional on course attributes, are actually more effective instructors.

We note that Carrell and West (2010) do not argue that their approach is one that should be broadly implemented.

While a number of other control variables are subsumed by the faculty and course-semester random effects that Carrell and West (2010) include in their estimation, these three attributes vary within either the course-semester or the faculty identifier; they are therefore not accounted for by the random effects and instead enter into the error term.

Content validity is suspect both because no precise definition of all the elements of teaching effectiveness exists at most institutions, and students (who complete the SETs) and faculty or administration (who design them) seem to disagree about what constitutes effective teaching. Construct validity is called into question because, for example, SETs do not effectively distinguish between teaching effectiveness and how much students like the instructor of the
class; see Onwuegbuzie et al. (2009), Benton and Cashin (2012) and Clayson (2015) for further discussion.

14 Naturally, we do not include any variables that are specific to the instructor but do not vary over time, as these are subsumed by the faculty fixed effects.

15 Their approach is applicable only in those institutions where ratings are calculated by averaging an instructor’s scores across not only multiple students but also multiple questions on the instrument.

16 A course-section is defined by a combination of course, meeting time, and instructor.

17 See Sproule (2002) for theory underlying the inclusion of these variables.

18 The GPA gives the average of students’ self-reported GPA across all courses prior to that semester. The gender mix of the section comprises two variables: the proportion of the students who were male, and an interaction between this proportion and a binary variable equal to one if the instructor was male. The grade level mix of the section comprises three variables: the proportion of student who were sophomores, juniors, and seniors (first-years was the excluded category). Class length is a binary variable equal to one if the class met three times a week for 50 minutes, otherwise the class met twice a week for 75 minutes each. Class time comprises two variables: the first is a binary variable equal to one if the class met before 9am, the second is a binary variable equal to one if the class met after 2pm, and the excluded meeting times are those in the middle of the day.

19 Note that Rothstein (2010) refers to “teacher” and “classroom” effect interchangeably because teachers are assigned to a single classroom in his data on elementary students in North Carolina. For a survey of value-added estimation, see McCaffrey et al. (2004).
We also estimate equation (1) using weighted least squares, with weights equal to the number of student responses in each section. Results are qualitatively similar and are available from the authors upon request.

Of course, omitting factors that are significant in explaining variation in the SET ratings only results in biased coefficient estimates if the excluded variables are correlated with the included variables. As Greene (2000, pg. 229) explicitly states, “If the variables in a multiple regression are not correlated (i.e. are orthogonal), then the multiple regression slopes are the same as the slopes in the individual simple regression.” This property of multiple regression estimates implies that a simple comparison of raw SET averages across faculty members may in fact be an accurate estimate of teaching effectiveness, as long as the course and faculty characteristics that are significant in explaining variation in the raw SET scores (which are by definition not conditional) are not correlated with the (unobserved) teaching effectiveness of the instructors teaching those courses.

McPherson (2006) and Ragan and Walia (2010) both find that increased class size leads to lower ratings; Ragan and Walia (2010) also find that the effect decreases with class size.

The negative relationship between class size and perceived learning may be due to focusing less attention on each student during class time. Negative student load and course prep coefficients could easily be explained by faculty having less time to spend providing individual assistance to students outside of class or improving the quality of any individual course. A positive coefficient for sections taught may be attributable to faculty devoting more attention and effort to their teaching during semesters when they have a higher teaching load and focusing more on research and other activities when they have fewer teaching responsibilities.
It is, of course, also possible that instructors try to incentivize students to give high SET ratings with easy courses in which students received high grades but do not learn a lot. However, since the GPA is the average of students’ GPAs across all prior classes and does not include the class being evaluated, the grade inflation would have to be present in all courses across the entire university in order for a high GPA to indicate easy courses rather than better students.

While cognitive dissonance may be a problem in this instance due to asking students at the end of the semester to recall their level of interest in the subject prior to taking the class, any bias resulting from this would actually be likely to result in under-estimating the relationship between prior interest and amount learned. Students who do not enjoy a course may well perceive both that they have learned little and that the instructor has diminished their interest in the subject. In this case, the prior interest rating will be biased upward but the amount learned rating will be biased downward, implying that the coefficient is actually under-estimated in our results.

Naturally, this requires dropping the binary variable that indicates a required course.

Additionally, controlling for course fixed effects eliminates two faculty from the estimated faculty fixed effects due to perfect collinearity, resulting in 45 faculty fixed effects estimated, relative to the omitted average faculty member.

A significant portion of this is due to including the required course and prior interest variables. When faculty fixed effects are estimated without controlling for these two variables, the correlation with the baseline faculty fixed effects is .98.

This could be due to a handful of introductory courses, populated primarily with first-year students, receiving higher than average scores in amount learned.

The overall results are not driven by these individual faculty members.
The differences are somewhat skewed: just under 25 percent of faculty included in the sample receive unconditional ratings that are higher than the fully conditional ratings, indicating that a portion of their high unconditional ratings are actually due to course fixed effects or course-section or faculty-semester characteristics, e.g. small class size or student load, students with high GPAs, etc. But three quarters (76 percent) of faculty receive unconditional ratings that are lower than the fully conditional ratings.
REFERENCES

<table>
<thead>
<tr>
<th>Summary Measures</th>
<th>Mean</th>
<th>Std. Dev.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Class Size</td>
<td>23.39</td>
<td>6.86</td>
</tr>
<tr>
<td>Student Load</td>
<td>63.46</td>
<td>18.75</td>
</tr>
<tr>
<td>Early</td>
<td>.098</td>
<td>.297</td>
</tr>
<tr>
<td>Late</td>
<td>.284</td>
<td>.451</td>
</tr>
<tr>
<td>50 Minute Class</td>
<td>.312</td>
<td>.463</td>
</tr>
<tr>
<td>Proportion Male Students</td>
<td>.601</td>
<td>.151</td>
</tr>
<tr>
<td>Male Student * Male Faculty</td>
<td>.516</td>
<td>.256</td>
</tr>
<tr>
<td>Proportion Sophomores</td>
<td>.226</td>
<td>.315</td>
</tr>
<tr>
<td>Proportion Junior</td>
<td>.342</td>
<td>.325</td>
</tr>
<tr>
<td>Proportion Senior</td>
<td>.372</td>
<td>.376</td>
</tr>
<tr>
<td>GPA</td>
<td>3.18</td>
<td>.142</td>
</tr>
<tr>
<td>Expected Grade</td>
<td>3.05</td>
<td>.292</td>
</tr>
<tr>
<td>Interest in This Subject Prior to the Course</td>
<td>3.47</td>
<td>.545</td>
</tr>
<tr>
<td>Course Workload</td>
<td>3.39</td>
<td>.463</td>
</tr>
<tr>
<td>Course Level of Difficulty</td>
<td>3.66</td>
<td>.501</td>
</tr>
<tr>
<td>Level of Critical & Analytical Thinking</td>
<td>4.00</td>
<td>.447</td>
</tr>
<tr>
<td>Pace of Course</td>
<td>3.15</td>
<td>.207</td>
</tr>
<tr>
<td>Number of Evals. Completed by Student</td>
<td>2.66</td>
<td>.824</td>
</tr>
<tr>
<td>Clear and Understandable Presentation</td>
<td>4.09</td>
<td>.485</td>
</tr>
<tr>
<td>Effectiveness of Teaching Methods</td>
<td>4.05</td>
<td>.500</td>
</tr>
<tr>
<td>Instructor's Daily Preparation for Class</td>
<td>4.50</td>
<td>.361</td>
</tr>
<tr>
<td>Effectiveness in Stimulating Interest</td>
<td>3.94</td>
<td>.514</td>
</tr>
<tr>
<td>Enthusiasm for Teaching Course</td>
<td>4.48</td>
<td>.366</td>
</tr>
<tr>
<td>Availability Outside the Classroom</td>
<td>4.41</td>
<td>.370</td>
</tr>
<tr>
<td>Respect for Students in the Class</td>
<td>4.34</td>
<td>.425</td>
</tr>
<tr>
<td>Graded Material vs. Course Content</td>
<td>3.98</td>
<td>.499</td>
</tr>
<tr>
<td>Adequacy of Comments on Student Work</td>
<td>3.76</td>
<td>.483</td>
</tr>
<tr>
<td>Timeliness of Feedback on Student Work</td>
<td>4.26</td>
<td>.496</td>
</tr>
<tr>
<td>Usefulness of Text, etc. to Learning</td>
<td>3.84</td>
<td>.512</td>
</tr>
<tr>
<td>Amount Learned as a Result of Course</td>
<td>4.12</td>
<td>.449</td>
</tr>
<tr>
<td>Instructor's Overall Teaching Ability</td>
<td>4.18</td>
<td>.479</td>
</tr>
<tr>
<td>Overall Quality of Course</td>
<td>4.00</td>
<td>.475</td>
</tr>
</tbody>
</table>

Number of Faculty
Number of Courses
Number of Sections (=no. of observations)
TABLE 2
Regression Results

<table>
<thead>
<tr>
<th></th>
<th>Amount Learned</th>
<th>Amount Learned</th>
<th>Instructor Rating</th>
<th>Instructor Rating</th>
</tr>
</thead>
<tbody>
<tr>
<td>Intercept</td>
<td>3.835***</td>
<td>2.672***</td>
<td>4.404***</td>
<td>3.243***</td>
</tr>
<tr>
<td>Class Size</td>
<td>-0.009***</td>
<td>-0.010***</td>
<td>-0.008**</td>
<td>-0.009***</td>
</tr>
<tr>
<td>Student Load</td>
<td>-0.001</td>
<td>-0.002</td>
<td>-0.001</td>
<td>-0.001</td>
</tr>
<tr>
<td>No. Sections Taught</td>
<td>0.039</td>
<td>0.043</td>
<td>0.027</td>
<td>0.042</td>
</tr>
<tr>
<td>No. of Preps</td>
<td>-0.030</td>
<td>-0.026</td>
<td>-0.030</td>
<td>-0.034</td>
</tr>
<tr>
<td>Early</td>
<td>-0.095***</td>
<td>-0.072***</td>
<td>-0.117***</td>
<td>-0.083***</td>
</tr>
<tr>
<td>Late</td>
<td>0.009</td>
<td>0.007</td>
<td>0.013</td>
<td>0.004</td>
</tr>
<tr>
<td>50 Minute Class</td>
<td>0.051*</td>
<td>0.042</td>
<td>0.050*</td>
<td>0.036</td>
</tr>
<tr>
<td>Online Evaluation</td>
<td>-0.010</td>
<td>0.024</td>
<td>-0.081</td>
<td>-0.024</td>
</tr>
<tr>
<td>Proportion: Male Students</td>
<td>-0.093</td>
<td>-0.065</td>
<td>-0.216**</td>
<td>-0.235**</td>
</tr>
<tr>
<td>Male Student *</td>
<td>0.022</td>
<td>0.030</td>
<td>0.198**</td>
<td>0.236***</td>
</tr>
<tr>
<td>Male Faculty</td>
<td>(0.088)</td>
<td>(0.067)</td>
<td>(0.096)</td>
<td>(0.095)</td>
</tr>
<tr>
<td>Proportion: Sophomore</td>
<td>-0.003</td>
<td>0.168**</td>
<td>-0.025</td>
<td>0.228**</td>
</tr>
<tr>
<td>Junior</td>
<td>-0.008</td>
<td>0.365***</td>
<td>-0.018</td>
<td>0.492***</td>
</tr>
<tr>
<td>Senior</td>
<td>-0.120</td>
<td>0.324***</td>
<td>0.003</td>
<td>0.576***</td>
</tr>
<tr>
<td>GPA</td>
<td>-0.215**</td>
<td>-0.145*</td>
<td>-0.218**</td>
<td>-0.182**</td>
</tr>
<tr>
<td>Prior Interest</td>
<td>0.317***</td>
<td>0.411***</td>
<td>0.186***</td>
<td>0.355***</td>
</tr>
<tr>
<td>Required Course</td>
<td>-0.150***</td>
<td>-0.152***</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Semester Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Faculty Fixed Effects</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Course Fixed Effects</td>
<td>No</td>
<td>Yes</td>
<td>No</td>
<td>Yes</td>
</tr>
<tr>
<td>R²</td>
<td>0.607</td>
<td>0.671</td>
<td>0.534</td>
<td>0.602</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>0.588</td>
<td>0.639</td>
<td>0.511</td>
<td>0.563</td>
</tr>
</tbody>
</table>

Notes: Standard errors are shown in parentheses; * indicates two-tailed significance at the 90% level; ** at 95%; and *** at 99%
<table>
<thead>
<tr>
<th>Conditional Faculty Fixed Effects</th>
<th>1st quartile</th>
<th>2nd quartile</th>
<th>3rd quartile</th>
<th>4th quartile</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Faculty Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st quartile</td>
<td>6</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>2nd quartile</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>2</td>
<td>11</td>
</tr>
<tr>
<td>3rd quartile</td>
<td>1</td>
<td>2</td>
<td>4</td>
<td>4</td>
<td>11</td>
</tr>
<tr>
<td>4th quartile</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td>5</td>
<td>12</td>
</tr>
<tr>
<td>total</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>45</td>
</tr>
</tbody>
</table>

TABLE 3b
Instructor Rating Quartile Rankings

<table>
<thead>
<tr>
<th>Conditional Faculty Fixed Effects</th>
<th>1st quartile</th>
<th>2nd quartile</th>
<th>3rd quartile</th>
<th>4th quartile</th>
<th>total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baseline Faculty Fixed Effects</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1st quartile</td>
<td>6</td>
<td>3</td>
<td>2</td>
<td>0</td>
<td>11</td>
</tr>
<tr>
<td>2nd quartile</td>
<td>4</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>11</td>
</tr>
<tr>
<td>3rd quartile</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>3</td>
<td>11</td>
</tr>
<tr>
<td>4th quartile</td>
<td>0</td>
<td>0</td>
<td>4</td>
<td>8</td>
<td>12</td>
</tr>
<tr>
<td>total</td>
<td>11</td>
<td>11</td>
<td>11</td>
<td>12</td>
<td>45</td>
</tr>
</tbody>
</table>