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 Crypto Currency Exchange and Mining Excel Simulations 
 
The mathematics underlying blockchain-based cryptocurrencies is beyond the scope of 
most undergraduate finance programs. However, students should understand the intuition 
behind blockchain so that they might better understand how to apply this technology to 
future cases. In this paper, we develop a mathematically simple digital signature example 
and a mathematically simple proof-of-work simulation for classroom use. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Keys: 
Digital signature: mathematical relationship between private and public key, one-way 
function 
 
Proof-of-work: random guessing, faster guessing has a cost, benefit of winning 
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INTRODUCTION 

Cryptocurrencies have become a very popular topic in the finance classroom for 

many reasons.  However, the complicated mathematics underlying blockchain technology 

is beyond the scope of most undergraduate courses in finance. Students need to have some 

intuition regarding this technology to understand and create new usees for blockchain. In 

this paper, we develop a mathematically simple digital signature example and a 

mathematically simple proof-of-work simulation for classroom use. 

The mechanics of how a crypto exchange works are not easily illustrated nor 

demonstrated.  The lack of a dealer or an exchange (i.e. a third party) to process or “clear” 

trades is very different from trading traditional securities.  Crypto trading utilizes 

blockchain technology that records trades based on the consensus of the participants rather 

than a centralized exchange.  Any entity can record a trade on the blockchain when 

receiving consensus1 (called “proof-of-work” in the case of Bitcoin).  These entities that 

compete to record the trades are called “miners.” 

In the case of Bitcoin, a miner receives newly issued Bitcoin based on a schedule 

as compensation for recording the trade (i.e., for updating the blockchain).  The Bitcoin 

compensation schedule decreases the amount of new Bitcoin issued through time slowly 

by halving the compensation every 210,000 blocks, which occurs roughly every four years.  

Based on this schedule, no new Bitcoin will be created after the year 2140. 

In this presentation, we provide a simulation in Excel to demonstrate “proof-of-

work” for a transaction that requires encryption.  This simulation uses relationships 

between Fibonacci numbers to create the encryption.  A second simulation demonstrates 

 
1 While proof-of-work is the most well-known consensus protocol, many others, like proof-of-stake, exist. 
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the competition between miners for clearing a crypto currency trade based on the 

mechanism used by Bitcoin.  The simulation demonstrates attempts – known as “mining” 

or “hashing” – by four different miners to successfully record a trade over a sixty second 

interval.  Each miner must decide an allocation of fixed costs that increases the “frequency 

of attempts” to record the trade (e.g., generate an attempt each second or every two seconds, 

etc.) by lowering the variable cost per attempt.  A higher fixed cost investment will make 

a miner more competitive, but that does not guarantee success.  Further, a lower fixed cost 

investment may still generate enough compensation to make mining profitable. 

Section 1 presents the “proof-of-work” with encryption simulation. Section 2 

presents the crypto miner simulation.  Section 3 concludes. 

SECTION 1: Digital Signature Simulation 

 Participants in cryptocurrency transactions, which use permissionless blockchains, 

are anonymous. All transactions are recorded on a distributed ledger. The obvious problem 

arises – how can everyone in the community trust the authenticity of an anonymous 

message?  The solution is a digital signature.  

 Digital signatures are one-way functions. The message sender has a public key, also 

called a verification key, and a private key, also called a signature key. Students are often 

told that there is a mathematical relationship between the keys but the exact nature of that 

relationship is not explained.  

Consider the following simple and easily breakable digital signature scheme. 

Alice chooses her private signing key to be Sk(f1,f3,f4) = Sk(3,8,13) and her public 

verification key, Pk, to be f4 = 13. The community knows that the authentication equation 

is: 
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𝑆!"(𝑃# − 𝑆!") −
𝑆!$
𝑚 = |1| 

 

They do not know the values of Alice’s signature Sm1, Sm2. For a message to be 

authenticated it must include the message, m, and the values for Sm1 and Sm2 that make 

the authentication equation hold. Suppose that the message is m = 4. We have: 

 

𝑆!"(13 − 𝑆!") −
𝑆!$
4 = |1| 

 

If no one in the community has access to a search algorithm like Solver in Excel, the 

patience for trial and error, or the ability to recognize the somewhat hidden mathematical 

relationship between the signing and public keys, this scheme will work. Remember that 

only Alice knows her private signing key. No one else knows anything about it, except 

that it has a mathematical relationship to the signed messages and the public verification 

key. 

The mathematical relationship is as follows. Alice picks four consecutive 

Fibonacci numbers, f1, f2, f3, and f4. Let them be 3, 5, 8, and 13. Her private signing key 

is Sk(f1,f3,f4)=Sk(3,8,13). She broadcasts her public key, Pk = 13, which is f4 and the 

message m=4.  

Sm1 = mf1f4 and Sm2 = f3. So, Sm1 = 4×3×13=156 and Sm2 = 8. Since it is a 

property of Fibonacci numbers that f1f4 – f2f3 = |1|, we know that the authentication 

formula is: 
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𝑆!"(𝑃# − 𝑆!") −
𝑆!$
𝑚 = |1| 

 

Alice can produce a valid signed message but no one else can in this community of 

limited computing power and mathematical skill. One can repeat this example with any 

different value for m and any four consecutive Fibonacci numbers. 

In the real world an observant mathematician would soon realize that the public 

verification key is always a Fibonacci number and that having an authentication equation 

equal to the absolute value of 1 looks suspiciously like f1f4 – f2f3. Even without a search 

algorithm to back into Sm1 and Sm2 this scheme would fail.  

Validating a transaction requires a “public key” for both the sender and the recipient 

of the crypto currency, a “private key” known only to the individual trader, and an identifier 

and amount for the crypto currency.  To simplify the transaction, we identify the crypto 

currency by a number, “12564” or referred to as “COIN#,” and assume the trade is for one 

unit of the crypto currency. 

 To provide encryption, we employ Fibonacci numbers, where f(N) is the Nth 

Fibonacci number: 

f(1) = 2 

f(2) = 3 

f(3) = 5 = f(2) + f(1)…f(N) = f(N – 1) + f(N – 2) 

The first one hundred Fibonacci numbers are generated in the spreadsheet (see Figure 1) 

in columns H and I on the “DIGITAL SIGNATURE” worksheet. 

 To generate a random public key for the crypto currency sender, the spreadsheet 

generates a random whole number between 4 and 50, call this value “X,” to produce a 
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public key of f(X).  Similarly, a random public key for the crypto currency recipient 

emerges from a random whole number between 54 and 100, call this value “Y,” to produce 

a pubic key of f(Y). 

 Each participant has two private keys: f(X – 1) and f(X – 3) for the sender and f(Y 

– 1) and f(Y – 3) for the recipient.  To verify the sender in the transaction, the following 

relationship must be correct (recall COIN# = 12564) in Figure 1: 

{(COIN#) × [f(X) – f(X – 3)]} ÷ {(COIN#) × [f(X – 1) – f(X – 3)]} – 2 = 0 (1) 

In the numerator: expand f(X) and then expand f(X – 1) 

[f(X) – f(X – 3)] = f(X – 1) + f(X – 2) – f(X – 3)      

 = f(X – 2) + f(X – 3) + f(X – 2) – f(X – 3) = 2 × f(X – 2)    (2) 

In the denominator: expand f(X – 1) 

[f(X – 1) – f(X – 3)] = f(X – 2) + f(X – 3) – f(X – 3) = f(X – 2)   (3) 

Inserting equations (2) and (3) into equation (1) demonstrates the result. 

Similarly, to verify the recipient in the transaction, the following relationship 

must be correct: 

{(COIN#) × [f(Y) – f(Y – 3)]} ÷ {(COIN#) × [f(Y – 1) – f(Y – 3)]} – 2 = 0 (4) 

 The final part of the encryption is to authenticate the transaction by identifying 

the COIN# for the sender and recipient from each participant’s public key and one of 

their private keys.  If COIN# matches, the transaction is legitimate between two approved 

participants.  For the sender: 

{(COIN#) × [f(X) – f(X – 3)]} ÷ {Public key – Second Private key} = COIN# (5) 

Recall, the public key is f(X) and the second private key is f(X – 3). 

Similarly, for the recipient: 
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{(COIN#) × [f(Y) – f(Y – 3)]} ÷ {Public key – Second Private key} = COIN# (6) 

Again, recall, the public key is f(Y) and the second private key is f(Y – 3).  Assuming all 

three levels of legitimizing the transaction are successful (see Figure 1), a miner can start 

attempting (or hashing) the transaction to record into the blockchain. 

Figure 1: Digital Signature Encryption Simulation 
 

 A B C D E F 
1 Coin Number: 12564     

2       

3 Sender:      

4 Public Key: 701408733 f(X) NUMERATOR: 6.173215E+12 (COIN#)*[f(X) – f(X – 3)] 

5 Private Siganture-1: 433494437 f(X – 1) DENOMINATOR: 3.36608E+12 (COIN#)*[f(X - 1) – f(X – 3)] 

6 Private Signature-2: 165580141 f(X – 3) Proof: SUCCESS NUM/DOM – 2 = 0 

7       

8 Recipient:      

9 Public Key: 1.77998E+18 f(Y) NUMERATOR: 1.70843E+22 (COIN#)*[f(Y) – f(Y – 3)] 

10 Private Siganture-1: 1.10009E+18 f(Y – 1) DENOMINATOR: 8.54216E+21 (COIN#)*[f(Y - 1) – f(Y – 3)] 

11 Private Signature-2: 4.20196E+17 f(Y – 3) Proof: SUCCESS NUM/DOM – 2 = 0 

12       

13       

14 Public View:      

15       

16 Sender Public Key: 701408733     

17 Recipient Public Key: 1.77998E+18     

18 Sender Coin: 12564     

19 Recipient Coin: 12564     

20 Transaction: SUCCESS     

 
Figure 1: Digital Signature Encryption Simulation (continued)  

 
 D E F G H I 
1     Index: Fibonacci: 

2     1 2 

3     2 3 

4 NUMERATOR: 6.173215E+12 COIN*[f(X) – f(X – 3)]  3 5 

5 DENOMINATOR: 3.36608E+12 COIN*[f(X - 1) – f(X – 3)]  4 8 

6 Proof: SUCCESS NUM/DOM – 2 = 0  5 13 

7     6 21 

8     7 34 

9 NUMERATOR: 1.70843E+22 COIN*[f(Y) – f(Y – 3)]  8 55 

10 DENOMINATOR: 8.54216E+21 COIN*[f(Y - 1) – f(Y – 3)]  9 89 

11 Proof: SUCCESS NUM/DOM – 2 = 0  10 144 

12     11 233 

13     12 377 
Cell formulas are available in the Appendix, hit the “F9” key to refresh the simulation 
 
A copy of this spreadsheet is available at: https://scholarship.richmond.edu/finance-faculty-publications/XX/ 
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For classroom purposes, the instructor may want to use a white font to hide 

portions of the simulation, perhaps only showing the students the COIN#, the public 

keys, and that the three levels of legitimization are successful.  The students can attempt 

to steal the crypto currency by trying to unravel the private keys and legitimization tests.  

As guesses, informed or not, are entered into the private key cells, the simulation is 

programmed to determine the success or failure of these attempts.  

SECTION 2: Crypto Currency Miner Simulation 

 Distributed ledger technology relies on a community of participants to verify 

messages and agree to add them to the ledger. The most popular consensus protocol is 

proof-of-work in which participants solve a puzzle and the winner receives a reward. In 

the case of bitcoin, the reward is newly minted bitcoin and transaction fees paid by the 

message sender. The puzzle is a game of random chance, like flipping coins with the 

winner being the first to flip N heads in a row. If it were a game of skill, only the skilled 

players would win. A game of chance encourages everyone to play. 

 A proof-of-work protocol (in the case of Bitcoin) this is called “mining”. We 

develop a simulation that shows the tradeoffs of the cost of the effort of mining versus the 

reward for successfully solving the puzzles. 

This simulation follows the work of Pritzker (2019).  The transaction information 

provided by a miner to potentially update the blockchain is in the form of 256-bit block (a 

“bit” is a binary number that is either 0 or 1).  Each block of information is applied to a 

“hashing” function that generates a 64-digit number based on the 256 bits within the 

block.  If the 64-digit number is below a target number, the miner is permitted to update 
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the blockchain for a certain amount of newly created crypto currency as compensation 

based on a schedule that lasts through the year 2140. 

 The hashing function provides a unique 64-digit number for an identical block, 

however, reversing the 64-digit number to reproduce the block is so complex that it is not 

worth trying to do.  Consequently, if the miner is unsuccessful initially, numbers can be 

added (called “nonces”) to the end of transaction information to generate a new 64-digit 

number.  The miner keeps adding nonces to make new attempts for updating the 

blockchain as fast as possible to “win” the right to record the transaction. The repeated 

attempts to record the transaction onto the blockchain is often called “mining” or 

“hashing.” 2 

 To capture how mining or hashing works, we create an Excel file in which a given 

miner A, B, C, or D, chooses a fixed cost amount that increases the ability to make more 

frequent attempts to win the right to update the blockchain by lowering the variable cost 

per attempt.  The fixed cost is allocated for mining over a 60-second period based on the 

following schedule presented in Figure 2. 

Figure 2: Mining Fixed and Variable Cost Schedule 
 

Panel A: Fixed to Variable Cost Schedule 
 

Fixed Cost (FC) per 60 Seconds: Associated Variable Cost per Attempt: 
FC ≥ $5.00 $0.04 

$5.00 > FC ≥ $4.00 $0.07 
$4.00 > FC ≥ $3.00 $0.10 
$3.00 > FC ≥ $0.00 $0.20 

  
Panel B: Variable Cost per Attempt to Frequency of Attempts 
 

Variable Cost per Attempt: Seconds per Attempt: 
 

2 Technically, the ‘nonce’ is modified within the block header, generating a new hash value. This is 
repeated with different nonce values until a hash meeting the target criteria is found. 



 10 

VC > $0.11 3 seconds per attempt 
$0.11 ≥ VC > $0.07 2 seconds per attempt 

$0.07 > VC 1 second per attempt 
 

In viewing the schedule, one can see the trade-offs. For example, a fixed cost of 

$5.00 lowers the variable cost to $0.04 per attempt that can occur every second versus a 

fixed cost investment of $4.00 with a variable cost per attempt of $0.07 that can also 

occur every second.  If it takes 34 seconds to reach a successful attempt, a $5.00 fixed 

cost has a total cost of $6.36 ($5.00 + 34 × $0.04) and a $4.00 fixed cost has a total cost 

of $6.38 ($4.00 + 34 × $0.07).  A $5.00 fixed cost is better if more than 33 attempts are 

required to be successful. 

Moving on from costs, a successful attempt for recording the transaction in the 

blockchain in the simulation generates compensation of $100.00.  Consider the $100.00 

to be the current value of the crypto currency. 

Next, instead of having blocks of transaction information applied to a hashing 

function that generates an effectively random 64-digit number, each miner’s attempt is 

assigned a random whole number between 0 and 10,000.  If the value assigned to the 

miner is equal to or below the target value (set at 50, i.e. a 0.50% probability of being 

successful), the attempt is considered successful.  Figure 3 illustrates this simulation and 

tabulates the cost of the four miners.  The simulation is for 60 seconds, and success by 

one of the four miners is not guaranteed.   

Figure 3: Crypto Mining Simulation 
 

 A B C D E F 
1 MAXIMUM: 10000     
2 MINIMUM: 0     
3 BARRIER: 50.00     
4 PROBABILITY OF SUCCESS: 0.5000%     
5 CRYPTO-VALUE: $100.00     
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6       
7       
8 MINER: A B C D  
9 FIXED COST: $5.00 $3.00 $1.50 $4.00  
10 VARIABLE COST: $0.04 $0.10 $0.20 $0.07  
11 SECONDS per ATTEMPT: 1 2 3 1  
12 COST: $5.32 $3.40 $1.90 $4.56  
13 PROFIT: $(5.32) $96.60 $(1.90) $(4.56)  
14       
15 TIME (SECONDS):     SUCCESS: 
16 1 F/A   F/A  
17 2 F/A F/A  F/A  
18 3 F/A  F/A F/A  
19 4 F/A F/A  F/A  
20 5 F/A   F/A  
21 6 F/A F/A F/A F/A  
22 7 F/A   F/A  
23 8 F/A SUCCESS  F/A 1 
24 9      
25 10      

Cell formulas are available in the Appendix, hit the “F9” key to refresh the simulation 
 
A copy of this spreadsheet is available at: https://scholarship.richmond.edu/finance-faculty-publications/XX/ 

 

 Pressing the “F9” key refreshes the simulation. Notice that there are many times 

when there are no successful attempts over sixty seconds, and that Miners A and D tend 

to be the most successful of the four miners over successive simulation trials because 

they can generate an attempt every second. 

 However, Miners B and C are successful periodically, and both can have lower 

total expenses relative to Miners A and D due to having lower fixed costs, depending on 

how long it takes for a successful attempt.  Consequently, a good classroom exercise is to 

run the simulation twenty times (i.e. 20 minutes of “transaction time” or 20 trials) and 

determine which miner is the most profitable and whether all four miners are profitable.  

Next, raise the value of the crypto currency to $200.00 and run the exercise again.  This 

type of exercise illustrates the reason for entities to try to be crypto miners or crypto 

hashers because of the possible rewards for even very infrequent successful attempts. 
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 Another exercise is raising and lowering the target value.  Raising it increases the 

probability of success, but also favors Miners A and D.  How high or low the target value 

should be is an interesting classroom discussion.  In a sense, it depends on trying to find a 

level that does not over-encourage nor discourage mining.  Bid-ask spreads have a similar 

effect. 

SECTION 3: Conclusion 

 The mechanisms employed by crypto currency markets are very different from 

traditional security markets.  Instead of dealers and a centralized exchange, crypto 

markets use a blockchain to record transactions, and the blockchain is updated by miners 

or hashers, who could technically be anybody with the requisite computer resources. 

 We provide two simulations to demonstrate how encryption can work to 

legitimate a transaction and how miners compete to update the blockchain with a given 

transaction.  Classroom exercises can include trying to steal crypto currency by 

“breaking” the three levels of legitimization for a transaction, mining for crypto currency 

as a reward for updating the blockchain or changing the reward parameters to encourage 

more miners to compete.  Students can contrast how these items work relative to 

exchanges and discuss which marketplace may be more secure and stable.  
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APPENDIX: 

Figure 1 cell formulas: 

Assigning Fibonacci numbers to the sender’s public and two private keys 

CELL B4: =VLOOKUP(RANDBETWEEN(4, 50), $H$2:$I$101, 2, FALSE) 

CELL B5: =VLOOKUP(XLOOKUP($B$4,$I$2:$I101, $H$2:$H101, “N/A”, 0, 1) – 1, 
$H$2:$I$101, 2, FALSE) 
 
CELL B6: =VLOOKUP(XLOOKUP($B$4,$I$2:$I101, $H$2:$H101, “N/A”, 0, 1) – 3, 
$H$2:$I$101, 2, FALSE) 
 
Assigning Fibonacci numbers to the recipient’s public and two private keys 

CELL B9: =VLOOKUP(RANDBETWEEN(54, 100), $H$2:$I$101, 2, FALSE) 

CELL B10: =VLOOKUP(XLOOKUP($B$9,$I$2:$I101, $H$2:$H101, “N/A”, 0, 1) – 1, 
$H$2:$I$101, 2, FALSE) 
 
CELL B11: =VLOOKUP(XLOOKUP($B$9,$I$2:$I101, $H$2:$H101, “N/A”, 0, 1) – 3, 
$H$2:$I$101, 2, FALSE) 
 
First level of legitimization (sender): 
 
CELL E4: = B1 * (B4 – B6) 
 
CELL E5: = B1 * (B5 – B6) 
 
CELL E6: =IF(ROUND(E4/E5 – 1,2) = 0, “SUCCESS”, “FAILED”) 
 
Second level of legitimization (recipient): 
 
CELL E9: = B1 * (B9 – B11) 
 
CELL E10: = B1 * (B10 – B11) 
 
CELL E11: =IF(ROUND(E9/E10 – 1,2) = 0, “SUCCESS”, “FAILED”) 
 
Third level of legitimization (COIN#): 
 
CELL B16: = B4 
 
CELL B17: = B9 
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CELL B18: = E4 / (B4 – B6) 
 
CELL B19: = E9 / (B9 – B11) 
 
CELL B20: =IF(AND(E6 = “SUCCESS”, E11 = “SUCCESS”, B18 – B19), “SUCCESS”, 
FAILED”) 
 
Generating Fibonacci numbers: 
 
CELL H2: 1. CELL H3: = 1 + H2...copy downward through CELL H101 
 
CELL I2: 2, CELL I3: 3, CELL I4: = I2 + I3…copy downward through CELL I101  
 
Figure 3 cell formulas: 
 
Note: The expression “ “ are double quotes around a blank line space 

CELL B4: = B3 / B1 

Determine miner’s variable cost: 

CELL B10: =IF(B9 > = 5, 0.04, IF(B9 > = 4, 0.07, IF(B9 > = 3, 0.10, 0.20))) 
Copy to cells C10, D10, and E10 
 
Determine miner’s seconds per attempt: 

CELL B11: =IF(B10 < = 0.07, 1, IF(B10 < = 0.11, 2, 3)) 
Copy to cells C11, D11, and E11 
 
Determine miner’s (total) cost: 
 
CELL B12: = B9 + B10*(MAX($A$16:$A$75) – COUNTIF(B16:B75, “ “)) 
Copy to cells C12, D12, and E12 

Determine miner’s profit: 
 
CELL B13: =IF(COUNTIF(B16:B75, “SUCCESS”) > 0, $B$5 / SUM($F$16:$F$75) – 
B12, -B12)  
Copy to cells C13, D13, and E13 
 
Time index: 
 
CELL A16: 1, CELL A17: = 1 + A16… copy downward through CELL A75 
 
Assignment of random value for mining/hashing simulation: 
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CELL B16: =IF(MOD($A16, B$11) = 0, IF(RANDBETWEEN($B$2, $B$1) - $B$3 > 0, 
“F/A”, “SUCCESS”), “ “) 
Copy to cells C16, D16, and E16 
 
CELL B17: =IF(AND(MOD($A17, B$11) = 0, $F$16 = “ “), 
IF(RANDBETWEEN($B$2, $B$1) - $B$3 > 0, “F/A”, “SUCCESS”), “ “) 
Copy to cells C17, D17, and E17 
 
CELL B18: =IF(AND(MOD($A18, B$11) = 0, SUM($F$16:$F17) = 0), 
IF(RANDBETWEEN($B$2, $B$1) - $B$3 > 0, “F/A”, “SUCCESS”), “ “) 
Copy to cells C18, D18, and E18 
 
Copy cells B18, C18, D18, and E18 downward through cells B75, C75, D75, and E75 
 
Recording mining/hashing success: 
 
CELL F16: =IF(COUNTIF(B16:E16, “SUCCESS”) > 0, COUNTIF(B16:E16, 
“SUCCESS”), “ “) 
 
CELL F17: =IF(F16 = “ “, IF(COUNTIF(B17:E17, “SUCCESS”) > 0, 
COUNTIF(B17:E17, “SUCCESS”), “ “), “ “) 
 
CELL F18: =IF(SUM($F$16:F17) = 0, IF(COUNTIF(B18:E18, “SUCCESS”) > 0, 
COUNTIF(B18:E18, “SUCCESS”), “ “), “ “)…copy this cell down through cell F75  
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