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Abstract 

This study demonstrates the formation of nanoparticles (NPs) from metal salts within 

ceramic glazes, such that the use of this colorant technology is more accessible to artisans, 

employs less metal content, is less environmentally harmful, and allows for the use of traditional 

kilns.  Gold NPs have been demonstrated to possess a specific, low material loading use as a 

ceramic glaze colorant via plasmon resonance. Pre-synthesized gold NPs that are added to 

ceramic glazes have been found to significantly change in size after firing in both reductive and 

oxidative atmospheres, but still maintain some size relationships and color properties. 

Unfortunately, it is not viable for the art community to fabricate and employ gold NP systems 

with high precision in a studio setting; however, the use of noble metal salts or metal oxides are 

realistic.  To that end, this work investigates spontaneous gold and silver NP synthesis by the 

firing-induced development of NPs from metallic salts included within the glaze materials. Glaze 

samples with gold and silver salts are fired in reductive and oxidative environments, yielding a 

range of surface plasmon coloring effects for ceramic coloring. Additionally, the use of gold NP 

waste (precipitated Au NPs waste) was added to wet ceramic glazes to investigate firing effects 

on NPs precipitate and potential use as an alternative colorant. Sintering-induced NP nucleation 
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and growth was observed after firing in both oxidation and reduction environments, although to 

differing degrees. The direct noble metal salt application process eliminates the need for 

preliminary gold NP synthesis, thus allowing for more practical and environmentally friendly 

methods in creating plasmonic resonance ceramic coloring, potentially reflective of the processes 

employed in ancient nanoparticle glasses.  

 

Keywords 

ceramics, glazes, gold nanoparticles, silver nanoparticles, firing, salts 
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1. Introduction 

Gold nanoparticles (Au NPs) have a wide range of applications and are common subjects 

of study in medicine,[1,2] catalysis,[3–5] immunosensors,[6] art,[7,8] and others.[9] Gold has 

been demonstrated to be an alternative to traditional metal colorants in ceramic glazing, with 

demonstrated color and up to three orders of magnitude lower metal loading.[10] Traditional 

glazes use high quantities of metal oxides and carbonates that are often harmful to both the 

environment and humans.[11,12] Furthermore, high levels of lead- and cadmium-leaching have 

been observed from traditional ceramic glazes by everyday food products.[13,14] Traditional NP 

synthesis methods still require many harmful acids and energy-inefficient heating 

procedures.[15,16] If these steps were eliminated for NP synthesis, a greater ecological 

advantage could be realized for Au and Ag NP plasmon resonance ceramic color.[17,18]  

While Au NPs have been incidentally used since ancient times as colorants in glazes, 

stained glass,[19] ruby glass,[20] lustreware,[21] Purple of Cassius,[22] enameling,[23] and most 

famously in the Lycurgus Cup,[24] they have been used primarily as surface inks, lusters, and 

enamels. Previous studies incorporate tin oxide as an opacifer, brightener, and sacrificial 

reductant, whereas this study does not.[25,26] This study also explores the effects of firing on 

precipitated Au NPs (Au NP PPT), essentially the by-product waste material that is produced 

from fundamental research or industry applications that employ Au NPs.[27–30] By using Au 

NP waste we are able to not only study the effects of sintering on precipitated Au NPs but also to 

recycle unwanted lab materials. 

The presence of a surface plasmon band for metal NPs allows for an array of versatile 

optical properties which are dependent on particle size, shape,[31] and produce a wide range of 

colors.[32] When light strikes the surface of a NP, the surface electrons are excited, and result in 
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an oscillation of electrons around the particle. This oscillation is dependent on the diameter of 

the particle, such that the relaxation of the electrons allows for a size-dependent color scattering 

– the plasmon band – that shifts with different NP diameters.[33] Because of the versatility of the 

plasmon band, metal NPs can be altered for use in a wide variety of different systems that 

depend on the dimensions and characteristics of the metal NP, which includes orientation,[34] 

composition,[35] and structure.[36] This phenomenon is most commonly observed for Au NPs 

with an absorbance around 520 nm for particles with a diameter of ~20 nm (Fig. 1a and b) . 

Silver NPs (Ag NPs) of approximately the same size also demonstrate a surface plasmon band 

around 410 nm (Fig. 1c and d), which has been shown to be useful for applications that are 

dependent on shape and size.[37,38] While the traditional nucleation processes of NP formation 

through seeding and growth have been studied and thoroughly understood,[15,16,39] 

“spontaneous” formation of NPs during both reduction and oxidation sintering has not been 

previously explored or characterized. Additionally, it is commonly accepted that NP crystals 

precipitate out of a glaze melt during cooling, resulting in color effects; however, some few 

works suggest that certain metal NPs undergo nucleation and growth during the heating phase, 

which can lead to greater control over size parameters and the resulting color properties that are 

observed.[40,41]  

If NP synthesis is no longer required prior to kiln firing, this technology can be 

immediately adapted to glaze technologies and common practices worldwide. As such, skipping 

the expensive and tedious steps of traditional NP synthesis can allow one to further eliminate 

unnecessary economic and environmental stresses with more direct processes. Through a better 

understanding and further development of these processes, this work offers methodology by 
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which traditional NP synthesis can be eliminated completely in glaze preparation procedures, 

allowing for cheaper, more ecologically friendly, and more practical glazes for everyday use.  

 

2. Experimental 

2.1: Materials 

Gold (III) chloride trihydrate (>99.9%) and silver nitrate (>99%) were obtained from 

Sigma Aldrich. 20 nm Au and Ag NPs were obtained from Ted Pella Inc. Gold precipitate was 

obtained from in house gold NP waste readily available from other projects in the same 

laboratory.  

2.2: Glaze Synthesis 

Glazes consisted of 20% Kaolin EPK, 19% silica, 6% talc, 20% Ferro Frit 3134 (19% CaO, 

10% Na2O, 2% Al2O3, 23% B2O3, 46% SiO2), 15% wollastonite, and 20% G-200 feldspar (a stable, 

borosilicate glaze recipe, stable and vitrified at both cone 6 and 10). 39.38 mg of HAuCl4 and 100 

mg of AgNO3 were dissolved in 18.0 MΩ·cm nanopure water in 20 g scintillation vials. The 

aluminum seals were removed from the scintillation caps before adding the metal salts. The salt 

solutions were then added to 160 g and 200g glaze batches, respectively. In an effort to further 

reduce waste, we observed the effects of firing on precipitated Au nanoparticle waste (Au NP 

PPT) that was collected from previous experiments in our own lab to create new, vibrant glazes 

without rendering more waste (Fig. 2a and b). The Au NP PPT waste solution consisted of 

severely precipitated citrate- and thioalkane-stabilized Au NPs from other experiments [10,42–

44]that settled leaving a clear supernatant. A UV-vis spectrum was taken of a diluted sample of 

the Au NP PPT solution that was agitated to suspend the precipitate in solution. The spectrum 

shows that the Au NP PPT was so severely aggregated and precipitated that there is no visible 
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absorbance band from the plasmon band (Fig. 2b inset). By incorporating the Au NP PPT waste 

into glazes, we are able to observe the NP color after firing. Purchased Ag NPs with diameter 

sizes of 21.5 ± 4.9 nm were used with glaze samples as a stock reference (Figure 1d). Roughly 

10 mL of Au NP PPT was added to a 200 g glaze batch. 5 mL of silver NP solution was added to 

an 80 g glaze batch. Ceramic samples were then dipped in each glaze and fired in both reductive 

and oxidative kilns at cones 10 (1285 ºC, 2345 ºF) and 6 (1200 ºC, 2200 ºF), respectively.   

 

2.3: Post-Firing Glaze Analysis 

After samples were fired, glaze from the back of each sample was ground using a 

Dremel, and the glaze dust was collected in separate vials. The glaze dust was then processed 

with a mortar and pestle for several minutes or once the glaze turned into a fine powder. The 

powder was then returned to the vial and suspended in ethanol. The mortar and pestle were 

rinsed with ethanol and water between samples. A 5.0 µL volume of each solution was then 

deposited on 400-grid, carbon-coated, mesh TEM grids and analyzed. At least 100 NPs were 

measured for each sample to calculate average NP diameters. 

2.4: Firing 

For samples that were fired in a reduction atmosphere, the reduction kiln was slowly 

heated over twelve hours. Upon reaching 1000°F (538ºC), the kiln was then heated up to cone 10 

at 2345°F (1285ºC) over eight hours. After firing, the kiln was allowed to cool for 24 hours, and 

then the samples were removed for analysis.   The oxidation samples were fired in Nichrome 

wire kilns to cone 6 (1200 ºC, 2200 ºF) on a medium setting. Air was slowly pulled through the 

kiln via a venting mechanism, which contributes to the oxidative atmosphere. The kiln was then 

allowed to cool for 24 hours before removing the samples. For both reductive and oxidative 
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kilns, the samples were fired alongside other normal pottery at the Visual Arts Center of 

Richmond. This is significant to demonstrate the ease of this application for use by craft artists 

and without the need for special synthesis equipment. 

Reflectance spectra measurements were taken for all samples, indicative of glaze color 

quality and intensity, using an Ocean Optics Halogen lamp (HL-2000-FHSA) and Flame 

miniature spectrometer (FLAME-S-VIS-NIR-ES, 350-1000 nm).  

 

3: Results and Discussion 

 A range of NP glazes were tested in both common reductive and oxidative firing 

conditions, and the results examined for color and particle size distributions.    

3.1: Nanoparticle Color and Sizes after Firing	 

 NP formation was observed in all four glaze types – HAuCl4, AgNO3, Au NP PPT, and Ag 

NPs – in both firing conditions (reduction and oxidation). The reduction-fired HAuCl4 glaze (Fig. 

3a, left sample) exhibits a dark red-purple color – a result suggesting the presence of Au NPs in 

the gold salt-based glaze. The oxidized-fired sample (Fig. 3a, right sample) yielded a light pink 

color for oxidation environments. These color profiles are consistent with those first synthesized 

by Lambertson et al. From TEM analysis (shown in Fig. 3a), the reduced and oxidized HAuCl4 

glazes produced average NP sizes of 25.0 ± 13.0 nm and 38.5 ± 7.9 nm, respectively. When 

AgNO3 is included in the pre-fired glaze mixture and fired in a reductive environment, the 

resulting glaze is a burnt laurel green (Fig. 3b, left sample) with an average NP size of 12.2 ± 

4.0 nm. The oxidized AgNO3 sample (Fig. 3b, right sample) resulted in a very light white-green 

color with NP size of 21.0 ± 11.0 nm. This color is consistent with previous studies involving Ag 

NPs to produce a green color.[45,46] When Au NP PPT is a component of the glaze (Fig. 3c, left 
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sample) in a reduction firing, a light red-brown color was observed, and the oxidized sample 

(Fig. 3c, right sample) resulted in an orange glaze with average NP sizes of 21.2 ± 14.3 nm and 

40.4 ± 10.7 nm, respectively. Reduction-fired Ag NP (Fig. 3d, left sample) produced a light jade 

color with average NP size of 4.3 ± 2.4 nm, while the oxidized sample (Fig. 3d, right sample) 

yielded almost no color with NP size analysis of 13.4 ± 4.8. As confirmed with TEM analysis, all 

eight samples possess some NP formation, suggestive of NP formation during heating. Both 

individual Au NPs and precipitated Au NPs were observed in the reduction glaze sample of Au 

NP PPT, which would suggest renucleation and growth during firing. Fired tile samples were 

broken in half to show cross-sectional profiles of all four glaze types (Fig. 4). The cross sections 

show that the NPs are held within a suspension system with colors permeating throughout the 

glaze as opposed to residing purely on the surface. All glaze colors in Fig. 4 correspond to the 

same tiles shown in Fig. 3. 

 For reduction-fired samples, incomplete gas combustion in the kiln, and resulting carbon 

monoxide (CO), are responsible for a reductive flow of elections into ceramic surfaces, Scheme 

1.[47,48] This mechanism can allow for the reduction of Au or Ag atoms via nucleation, growth, 

and formation of suspended NPs, not just precipitation of material colorants from the glaze 

during cooling. Surprisingly, NPs are present in oxidation-fired glazes, even though samples 

were prepared with cationic noble metal salts of Au3+ and Ag+ (Fig. 3a and b). In an oxidative 

environment, the charged metal salt undergoes some amount of reduction, nucleates, undergoes 

growth, and ultimately results in stable NPs, Scheme 2. This suggests the presence of getter 

reduction in the glaze. Through this mechanism, the “getter” acts as a sacrificial molecule or 

atom in giving up electrons to the metal salt, forming the initial nucleation and growth of NPs 

during heating.[49] Impurities that exist within the clay or glaze may act as the getter, which 
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would allow for a weak but still visible presence of reduction and formation of NPs, consistent 

with earlier studies.[50] The same phenomenon could occur for Au precipitate (Figure 3c). The 

presence of an oxidative atmosphere potentially inhibits re-nucleation and growth of degraded 

particles that are lost to heat, thus the particle diameter averages are larger. Precipitated NPs are 

observed to remain in the glaze alongside newly formed NPs. Analysis of the TEM imaging from 

the stock Ag NPs samples indicates similar behavior to the Au NPs after both reductive and 

oxidative firing (Fig. 3d).  

 

3.2: Color Profile Quantification 

As an effect of surface plasmon resonance for both Au and Ag NPs within glazes, color 

intensity and quality can be used to complement imaging techniques and sizing analysis results 

to build a more complete understanding of glaze composition. Thus, as the number of NPs 

increases within a glaze profile, the color becomes deeper and results in a lower percent 

reflectance in other parts of the visible spectrum. Percent reflectance spectra demonstrate a 

reciprocal relationship between reflectance and color brightness;[51] more vibrant, deep colors 

demonstrate a net lower percent reflectance, whereas lighter, more pale colors are observed to 

have a higher percent reflectance profile across the visible spectrum. Surprisingly, though 

HAuCl4 and Au NP PPT both contain gold, the HAuCl4 precursor glaze samples demonstrate a 

lower percent reflectance (and thus a more vibrant color) than the reduction-fired Au NP PPT 

glaze sample; reciprocally, the oxidized sample of HAuCl4 is observed to possess a higher 

percent reflectance and is lighter in color than that of Au NP PPT. For the Ag samples, those 

fired in reduction significantly differ between the AgNO3 and Ag NP tiles (Fig. 3c and d, left). 

The reduction-fired AgNO3 glazes produced a burnt laurel green whereas the reduced Ag NP 
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produced a light jade green-blue. This difference can also be seen in the reflectance spectra 

graphs in Fig. 5b and 5d. The significant difference between the reductive and oxidative 

reflectance spectra for the AgNO3 samples are a function of the differences in color – from the 

laurel green to the white (Fig. 5b).   Both oxidation-fired silver samples resulted in very pale, 

consistent results with minimal color. Reduction-fired Ag NPs glaze samples resulted in a 

vibrant glaze that contained smaller but more plentiful NPs (deeper color and lower % 

reflectance measurements). Oxidized Ag NPs resulted in a pale, almost translucent glaze with 

larger but fewer (higher % reflectance) NPs. 

3.3: Sizing Comparison 

Sizing trends of the four glaze systems are consistent between the reductive and oxidative 

samples as shown in Fig. 6. An oxidative firing atmosphere yields larger average NP sizes than 

those of a reductive firing atmosphere. This trend is consistent with previous work and 

suggestive that a higher temperature, reductive atmosphere may contribute to greater particle 

degradation as a result of greater heat work. For all four glazes from different metal salt 

precursors, the oxidized samples yielded NPs that were significantly larger than their respective 

reduced sample equivalent: +35% for HAuCl4, +42% for AgNO3, +47% for Au NP PPT, and 

+68% for Ag NPs (Fig. 6). To that end, a reductive atmosphere could also lead to the production 

of new, smaller NPs through promoting nucleation and regrowth.[25] This would shift the 

average particle diameter to be somewhat smaller while also displaying more plentiful NPs and 

deeper color. Alternatively, an oxidative atmosphere only promotes weaker getter reduction with 

less heat work degradation, which would yield larger but fewer NPs. Both of these phenomena 

occur regardless of noble metal and starting state of the metal across all samples. The stock Ag 

NPs have a fairly uniform starting size (21.5 ± 4.9 nm) and thus have relatively small standard 
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deviations in both reduction-fired and oxidation-fired samples. There is overlap of the error bars, 

but there are significant differences in average diameters among the samples (Fig. 6). These size 

trends are supportive of the possible degradation/growth mechanisms proposed above based on 

the difference in firing atmospheres and in previous studies;[10,50] however, new studies are 

currently being developed to further elucidate these processes.		

 

 

4. Conclusion 

This study explores the sintering-induced formation of nanoparticles in ceramic glazes 

among reductive and oxidative kilns to produce a wide variety of colors. Directly adding the 

metal salts HAuCl4 or AgNO3 to glazes allows for the formation of gold and silver nanoparticles 

during both reduction and oxidation firing processes. Gold precipitate is also observed to degrade 

and renucleate into new gold nanoparticles alongside precipitated materials. This allows for 

comparable color profiles to traditional red glazes and previously reported new gold nanoparticle 

glazes by recycling nanoparticle synthesis waste. The data presented in this study introduces new 

methods by which noble metal salts may be employed alongside modern glazes for natural 

nanoparticle nucleation and growth during firing, resulting in low metal loading plasmon 

resonance coloring. These methods bypass preliminary NP synthesis that require atypical acids, 

solvents, heat, precision, and equipment that artisans seldom possess. This work provides 

valuable insight and realistic parameters that are suggestive of the original processes employed 

by ancient artisans to create noble metal nanoparticle glasses and glazes, while introducing new 

methods for creating vibrant glazes from noble metals that are easy, cost-effective, and 
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environmentally friendly. Finally, these glazes can be prepared and fired alongside traditional 

glazes without costly scientific instruments or precision for use by everyday artists.	
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