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Abstract: 

  

Hazardous air quality prematurely kills millions of people a year and exacerbates underlying 

health issues for millions more. Unsafe levels of particulate matter are typically associated with 

newly industrialized and developing countries, however, this is a misconception, especially when 

considering ambient air pollutants in densely packed urban areas. According to the Airbeam and 

Purple Air data collected on 07/15/2021, Richmond, Virginia has good air quality with the vast 

majority of values falling below the United States Environmental Protection Agency annual 

PM2.5 standard of 12 micrograms per cubic meter (µg/m3). Vehicular emissions may not 

account for a large percentage of PM2.5 levels in Richmond but considering other emission 

types and their effects on human health, preventive investment and action is necessary. The 

Virginian government, through the Richmond 300 project, is planning on expanding and 

improving on-street networks and amenities serving bicycles through further development of 

bike-sharing programs. 

  

  

  

  

  

  

  



Introduction:  

The acute and chronic health effects of short and long-term exposure to air pollution kills an 

estimated seven million people worldwide every year (WHO 2022).  Air pollution has been 

linked with death from lung cancer and cardiopulmonary disease and contributes to excess 

mortality in certain U.S. cities (Dockery, D.W. et Al. 1993). Air pollutants can perturb in vitro 

anti-microbial and regulatory immune responses weakening the immune system and allowing for 

greater exacerbation of other health issues (Glencross et Al.2020). High levels of certain 

pollutants cause smog and acid rain which have corrosive effects on the surrounding eco-

systems, causing harm to flora and fauna alike. Air pollution has also been linked with decreased 

life satisfaction, increased anxiety, mental disorders, self-harm, and suicide and can impair 

cognitive functioning and decision making (Lu et Al. 2020). 

The COVID-19 global pandemic increased the relevancy and urgency of researching the 

relationship between poor air quality and injurious health as caused by or exacerbated by the 

coronavirus disease. A positive correlation between areas that had higher historical PM2.5 

exposures and higher county-level COVID-19 mortality rates was established after specific area-

level confounders were accounted for. However, the study used ecological regression analyses 

which are unable to adjust for individual-level risk factors such as age, race, and smoking status. 

Thus, the conclusions were based purely on ecological associations and not individual 

associations which can lead to ecological fallacies (Wu, X., et. Al 2020). 

 

 

  

 

 

 

 

 

 

 

 

Map A: County-level 17-year 

long-term average of PM2.5 

concentrations (2000–2016) in the 

United States (μg/m3) 

  

Map B: County-level number of 

COVID-19 deaths per 1 million 

population in the United States up 

to and including 18 June 2020. 

 

 (Wu, X., et. al 2020) 

 



An integrated exposure risk (IER) model was created to specifically look at the health impacts 

related to PM2.5 and incorporates data from 161 cities across nine regions in China. It found that 

premature mortality in densely populated cities was high (652,000) due to dangerous levels of 

PM2.5 which accounted for around 6.92% of total deaths in China in 2015 (Maji, K.J 2018). 

  

Unsafe air quality has negative health effects on billions of people around the world, especially 

people who live in close proximity to busy roads (US EPA, O 2015). Exposure to high levels of 

air pollution can cause a range of cardiovascular issues and premature death such as heart attacks 

and strokes (EPA 2012). A study conducted in China on the effects of particulate matter on 

childhood pneumonia found that for every 10 μg/m3 increase in PM1, PM2.5, and PM10 

concentrations over a consecutive three-day period (lag 0–2), the risk of pneumonia 

hospitalizations increased by 10.28% (95%CI: 5.88%–14.87%), 1.21% (95%CI: 0.34%–2.09%), 

and 1.10% (95%CI: 0.44%–1.76%), respectively. This indicates a greater short-term impact on 

childhood pneumonia from PM1 in comparison to the larger particulate matter classifications 

(Wang et. Al 2021), (Tian et.Al 2019). 

  

Particulate matter is a mixture of suspended solid particles and liquid droplets that are classified 

according to each particle’s diameter length; PM10 has a diameter of 10 micrometers or less (10 

μm), PM2.5 ≤ 2.5 μm, and PM1≤ 1.0 μm. Particulate matter toxicity and other human health 

impacts are determined based on the particulate matter size. There is growing evidence that 

particulate matter size is inversely correlated with the severity of the health impact; it is 

hypothesized that a decrease in size will increase acidity and its ability to penetrate the lower 

lung airways (Kim et Al 2015).  

  

There are important differences between particulate matter interpretations: PM2.5 levels as 

measured by micrograms per cubic meter (µg/m3, 1.0 × 10-9 kg / m3) are considered “Good” by 

the United States Environmental Protection Agency if the concentration remains below the 

annual PM2.5 standard of 12 micrograms per cubic meter (µg/m3) and a 24-hour limit of 35 

(µg/m3) (EPA 2015).  The World Health Organization (WHO), on the other hand, has set its 

annual limit to 10 µg/m3 and a 24-hour limit of 25 µg/m3 which means that almost the entire 

global population (99%) breathes air that exceeds WHO guideline limits. Additionally, the U.S 

EPA processes the raw PM2.5 data to form the Air quality Index using this U.S EPA formula: 



 

  

                                                                                             (AQI Technical Assistance Document) 

Where Ip = the index for pollutant p 

Cp = the truncated concentration of pollutant p 

BPHi = the concentration breakpoint that is greater than or equal to Cp 

BPLo = the concentration breakpoint that is less than or equal to Cp 

IHi = the AQI value corresponding to BPHi 

ILo = the AQI value corresponding to BPLo  

  

  

  

  

  

  

  

  

  

  

Table 1: Shows the µg/m3 

breakpoint values and the 

AQI equivalent.  

 

(EPA 2015) 



  

  

  

Vehicular Emissions 

  

Vehicular emissions significantly contribute to air pollution in urban areas. Mobile sources of air 

pollution emit particle pollution (e.g. PM2.5 and PM10), nitrogen oxides, sulfur dioxide, and 

hydrocarbons. A study in China found that vehicular emissions account for 20–67% of carbon 

monoxide and 12–36% of the total nitrogen oxides in China and 12–39% of the volatile organic 

compounds (VOC) emissions in China (Lang Et al. 2012), (Zhang et al., 2009).  Vehicular 

transport-related emissions are the primary source of ambient PM10 in cities and tail emissions 

from road transport account for up to 30% of PM2.5 concentrations in urban areas 

(Krzyzanowski et Al. 2005). 

  

Birth cohort studies point to the relationship between increased longitudinal childhood exposure 

to traffic-related air pollution (PM2.5 and black carbon) and increased risk of asthma and 

asthma-related symptoms in childhood. Early childhood exposure to traffic-related air pollution 

is also associated with the development of asthma up to the age of twelve. There is some 

evidence that traffic-related air pollution is also associated with allergic diseases like eczema and 

hay fever (Bowatte, et Al. 2015). Additionally, studies have found an association between 

traffic-related air pollution and rhinitis symptoms in the first eight years of life (Gehring et Al. 

2010). Exposure to traffic-related outdoor air pollution may lead to respiratory illness in children 

and even miscarriage and stillbirth after adjusting for indoor air pollution. However, indoor air 

pollution can exacerbate the effects of outdoor air pollution (Kashima et Al 2010). 

  

  

 

Background 

  

Research into the distribution of point source emissions has been conducted in the Richmond 

area. Findings suggest uneven distribution of air pollution and temperature in Richmond, 



Virginia, indicating certain demographics of the Richmond population encounter unsafe levels of 

air pollution or temperature extremes annually. There is an uneven distribution of temperature in 

Richmond, Virginia with vulnerable neighborhoods in the East end and highly developed parts of 

the city experiencing significantly higher temperatures than suburban neighborhoods in the west 

which have greater green space areas (Eanes et Al 2020). Air pollution traps excess longwave 

radiation leaving the earth’s atmosphere, effectively creating a positive feedback loop of 

increasing temperature and perhaps PM2.5 levels, however, more in-depth studies need to be 

conducted until any accurate relationship between PM2.5 and temperature can be described. 

Individuals who live in areas with poor air quality are at higher risk of getting cancer and 

exacerbating cancer, allergies, asthma, and other respiratory illnesses, particularly concerning 

impacts on childhood development. Communities in the west end have significantly better air 

quality and fewer socio-economic and health-related stressors than communities in the east end 

of Richmond which has resulted in individuals living in west end neighborhoods having life 

expectancies of up to twenty years higher than communities in the east end (Eanes et Al 2020). 

  

Based on previous air quality studies both in Richmond and in other urban areas, this research 

attempted to uncover the distribution of PM2.5 levels in Richmond, Va. If an accurate spatial 

pattern existed, it could be overlapped with a vulnerability index to determine whether a 

correlation exists. Additionally, this research was designed to further investigate whether there 

was a correlation between vehicular emissions and PM2.5 levels in Richmond. Finally, this paper 

was aimed at expanding our understanding of emission quantities based on vehicle type and to 

help paint a clearer picture when considering what subsect of vehicular emissions further 

research should be focused on when considering the contribution to pollution. 

  

2. Methods 

2.1 Site Description 

Over 230,000 residents call Richmond home, making it one of the largest cities in Virginia. Due 

to Richmond’s area and population size, public transportation is limited to certain bus routes, 

with the city lacking any metro or tram system. Bike lanes are rare and there is only a minuscule 

ad hoc walking and cycling commuting culture present in the city, therefore most of the 

commuting and ordinary travel is via road vehicles. Richmond’s population density is around 

3,906.40/sq mi (mi²) which is relatively low for a city. 

  



Particulate matter issues are especially relevant in Richmond, Virginia as it is ranked the second 

most challenging city in the U.S for asthma sufferers to live in considering prevalence, 

hospitalization and death rates (VDH 2018). In 2016, an estimated 874,713 people were 

diagnosed with asthma at some point in their lifetime, out of an estimated population of 

8,411,808 or, in other words, one out of ten adult residents in the Commonwealth of Virginia 

have been diagnosed with Asthma in their lifetime (VDH 2018). 

  

  

2.2 Data Collection 

On July 15th, 2021 a group of citizen volunteers collected air quality data in Richmond city 

using HabitatMap AirBeam devices and cycled along various pre-ordained routes in three 

sessions: morning, afternoon, and evening. Unfortunately, data from several of the routes had to 

be discarded or were not collected at all by citizen volunteers. AirBeam sensors are highly 

portable low-cost devices and therefore can take measurements over distance and can be paired 

with a mobile app. 

 

  

  



Map 1: Shows the air quality data collection bike routes taken on 07/15/2021 by a group of 

citizen scientist volunteers. 

Both Airbeam and Purple Air monitors track other particulate matter sizes, such as PM10 and 

PM1, however, this research paper primarily focuses on PM2.5 alone. Purple Air monitors are 

still classified as low-cost but are more expensive than AirBeam sensors, however, they are for 

stationary use only and can run throughout the year. Only fourteen out of sixteen Purple Air sites 

can be seen in Map 2. Some of the AirBeam data lay outside the 1 km buffer zones created to 

average AirBeam PM2.5 data around Purple Air monitors for cross-device PM2.5 concentration 

analysis. Therefore, the relevant Purple Air sites were located more toward the center of 

Richmond where the AirBeam collection occurred. 

 

 

  

Map 2: Shows the locations of fourteen (of sixteen) fully functioning Purple Air monitors on 

07/15/2021. 

  

A corrective equation, from a 2020 Environmental Protection Agency report, was applied to the 

Airbeam and PurpleAir PM2.5 values to account for humidity and temperature at the time of 

collection since these devices can be influenced by small environmental changes (Malings et Al. 

2020), (Barkjohn 2020). PM 2.5 values may also be skewed depending on specific conditions 

which lead to data inaccuracies, such as a brief gust of wind suspending dust near the monitor. 

Corrective equation: 

  



 T & RH: PM2.5 = 0.39*PA +0.0024*T -0.050*RH + 5.19, R2=0.72 

  

Units: 

PM2.5= µg m-3 

T= Temp. in Fahrenheit 

RH=% (Relative Humidity) 

 A 1km radius buffer analysis around each of the Purple Air monitor sites rendered AirBeam 

PM2.5 averages by using the “summarize within” function and running a statistical analysis of 

the highlight values. However, only fourteen out of the sixteen fully functioning Purple Air 

monitors had AirBeam PM2.5 within a one-kilometer radius.   

 The Commonwealth of Virginia Department of Transportation (VDOT) collects traffic count 

data from sensors in or along streets and highways. The ‘Annual Average Daily Traffic data’ or 

AADT (ADT on Map 1) is an estimate of the typical traffic count on a road segment divided by 

365 days. The incorporation of the prediction model data gauges the thickness of the roads on the 

map with natural break intervals (< 0, 60,000, 130,000, 200,000, > 259,000). The traffic volume 

data incorporated in this study was from the 2019 VDOT report. The decision to omit the 2020 

record in favor of the 2019 traffic volume data was done to best avoid any anomalies due to the 

immense impact the Covid-19 pandemic had on transportation. 

Results: 

Geospatial analysis of the AirBeam PM2.5 readings taken on 07/15/2021 indicates that PM2.5 

levels did not significantly differ across Richmond city and only 0.1% of all the PM2.5 crossed 

the AQI threshold of 12 µg/m3 (moderate) set by the EPA. As seen on Map 1, the distribution of 

PM2.5 did not differ significantly across the AirBeam routes, and the vast majority of readings 

fell within the 3 µg/m3 -12 µg/m3 range. The PM2.5 distribution based on AirBeam results 

shows no increased concentration near major roads (greater than 200,000), therefore it would be 

inaccurate to attempt to conclude on a defined spatial relationship without more PM2.5 readings 

that span the same area as the roads.    



 

 

 

Map 3: Shows the spatial distribution of the Airbeam values collected on 07/15/2021, 

underlapped by VDOT traffic volume data. 

  

However, Purple Air PM2.5 readings for the same day are significantly different from the 

AirBeam counterparts. As seen in Table 2 in the discussion section, most of the Purple Air 

values indicate PM2.5 levels double that recorded by AirBeam sensors. Furthermore, the 

AirBeam and Purple Air averages did not correlate based on their geographic location within 

Richmond, (R-squared=0.03). The large value gap between the AirBeam sensors and the Purple 

Air monitors and the apparent lack of site-specific correlation points to environmental or 

technology-related influences skewing the accuracy of AirBeam data collection. There were 

sixteen functioning monitors on which we were able to extract data on 07/15/2021, however, 

only fourteen are represented in the data table and map with AirBeam PM2.5 readings due to the 

proximity buffer. 

  

  



  

  

Discussion and Conclusion: 

  

The results from the analysis of PM2.5 levels in Richmond indicate good air quality in 

Richmond, however, environmental conditions and technological malfunctions can easily lead to 

record inaccuracies. Although PM2.5 levels were considered safe during the day of data 

collection, these data are instantaneous whereas breakpoints are daily averages, such as the EPA 

standard of 12 µg/m3. The PurpleAir monitors report much higher PM2.5 levels for the same 

day, fluctuating just below the 12 µg/m3 breakpoint. The sites monitored by Purple Air devices 

still lie in the “Good” zone for both the EPA AQI and the EPA µg/m3 measurement tools. Again, 

this data represents one day and is not a good representation of PM2.5 levels around Richmond 

through out the year. Table 2 was constructed by extracting PM 2.5 averages from the values that 

lay within one-kilometer radius proximity to fourteen Purple Air monitors. 

 

  

  

  

  

  

  

  

  

  

Table 2: Shows average Purple Air 

and AirBeam records from 

fourteen sites in Richmond, VA on 

07/15/2020 



The Purple Air monitors attain data more accurately and reliably, as compared to the AirBeam 

sensors, and are used by the Science Museum of Virginia in the RVAir initiative. However, 

Purple Air monitors are not as low cost as AirBeam sensors and lack the mobility needed to 

accumulate data across the city. Currently fully functioning Purple Air monitors are sparsely 

spread out throughout the city of Richmond and can only produce accurate readings for a limited 

area. PurpleAir (PA) stationary sensors served as an alternative monitoring instrument that has 

proven to be fairly reliable and accurate. These sensors establish a rough understanding of air 

quality spatial variability from site to site and temporal trends, recording measurements at two-

minute intervals and collecting data for PM2.5 and temperature at each site. Thus, to create a 

citizen science project that can accurately analyze the particulate matter and other pollutant 

spatial trends in Richmond there needs to be an increase in Purple Air installations all around the 

city or an alternative sensor/monitor. 

  

  

  

 

 

 

Graph 1 allows us to conclude that PM 2.5 quantities do not contribute heavily to the vehicular 

emission profile compared to other emission types like carbon monoxide and nitrogen oxides. 

PM2.5 (All) includes Exhaust PM2.5, Brakewear PM2.5, and Tirewear PM2.5 which combined 

account for 0,025 grams per mile according to data collected by the U.S. Environmental 

Protection Agency, Office of Transportation and Air Quality. Carbon Monoxide Exhaust is 

significantly the most emitted pollutant per vehicle (5.481 grams per mile), followed by Nitrogen 

Oxide Exhaust (0.88 grams per mile), and then Total Hydrocarbon emissions (0.4), with total 

Graph 1: Shows the average 

emissions (grams per mile) per 

vehicle for both gasoline and diesel 

fleets from 2016-2020 in the U.S.  

 

(U.S. Environmental Protection 

Agency, Office of Transportation 

and Air Quality) 
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PM2.5 only accounting for 0.37% of emissions (grams per mile) among the four pollutant types 

measured by the EPA. 

  

Data from the Virginia Department of Transportation represented in Graph 1, PM 2.5 quantities 

do not contribute heavily to vehicular emission profile compared to other emission types like 

carbon monoxide and nitrogen oxides. Future research on air quality and vehicular emissions in 

Richmond, requires a larger data pool, especially while interpreting vehicular emissions and air 

quality throughout the city. Investing more time and money into gathering extensive air quality 

data over a longer period in which accurate averages can be derived and a greater scope of 

emission types can be analyzed; through the use of more refined equipment and more robust 

sampling of pollutants such as CO, CO2, NO2, O3, and SO2. 

  

  

Unsafe levels of air pollution in Paris and London sparked a longitudinal study beginning in 

2005.  NO2 concentrations from roadside traffic increased from 2005-to 09 in both cities before 

an overall decrease in PM2.5 and NO2 from 2010–to 16 in Paris and London which is accredited 

to the introduction of Euro V heavy vehicles (Font, et Al 2019). Another study in London found 

that a substantial proportion of the children lived with high levels of NO2 exposure that do not 

meet EU targets, with most schools and residences residing within 500 meters of busy roads. The 

study found inverse correlations between lung function and exposure to urban air, particularly to 

NOx and NO2, which point to high concentrations of diesel emissions in London. However, 

although the study found small improvements in air quality in highly polluted urban areas there 

was no evidence of a reduction in the proportion of children with small lungs between 2009-10 

and 2013-14(Mudway, I.S. et Al 2019). 

  

European Union (EU) Clean Air Directive is one of the strictest legislation passed in an attempt 

to reduce PM10 air pollution with specific attention to vehicle emissions. The policy restricts 

vehicles that are not qualified as “low PM10 emitting vehicles” from entering “Low Emission 

Zones”. The implementation of strict LEZ policies in Germany had a ripple effect on the 

community; commercial truck and bus companies felt slighted as they were no longer permitted 

to enter LEZs and had to re-configure previous routes. Local business owners also struggled with 

the introduction of LEZs, complaining of a reduction in sales. Above all, it potentially affects 

thousands if not hundreds of thousands of residents who may live in that zone that is now 

deemed an LEZ (Wolff, et Al 2010). According to the Airbeam and Purple Air PM2.5 results 

there is no pressing need to implement highly disruptive transportation policies (e.g. LEZs) in 



Richmond. If in fact, further studies find unsafe concentrations of PM2.5 or other pollutants 

present in the vehicular emission profile, there will need to be accurate, current data spanning 

across Richmond city to effectively develop and implement low emission zones. Based on Graph 

2, Heavy-duty vehicles, especially diesel engines, should be the type of vehicle considered “High 

emitting” and disallowed from entering LEZs. 

 

 

 

 

  

  

  

 An alternative government initiative, such as bike-sharing, could kickstart Richmond’s vehicular 

emission reduction campaign and culture. Increased cycling results in decreased car use and 

therefore a reduction in vehicular emissions especially if the infrastructure is set up to facilitate 

cycling daily commuters. Cycling in residential neighborhoods decreased particulate number 

concentrations by 17% relative to the ambient average level, and by 22% when cycling through 

green spaces or parks (von Schneidemesser et Al. 2019). 

  

A case study in Seoul, Korea found that short vehicle trips, of three miles or less, are a primary 

cause of air pollution. Bicycles can be an environmentally and economically effective 

replacement for vehicles for these short trips. A p-median model was produced to configure an 

Graph 2:  Shows average 

vehicle PM2.5 emissions 

based on vehicle type 

and fuel type from 2016-

2020 U.S. 

 

(U.S. Environmental 

Protection Agency, 

Office of Transportation 

and Air Quality) 

 



even distribution of bicycle stations across the city and the MCLP model places high 

concentrations of bike stations where the most demand is predicted to be (Park, et Al 2017). 

Realistic bicycle travel distances were established (equal to a 30-minute ride) to propose the 

replacement of cars with bicycles for short trips, especially for commuting communities. A 

similar model was hypothetically tested for the demographics of Stockholm County, Sweden. If 

all the car drivers living within a distance that is equal to a maximum of a 30 min bicycle ride to 

work would change from driving cars to commuting by bicycle the mean population exposure to 

NOx and black carbon would both be reduced by 7% in the most densely populated area of 

Stockholm. If this air pollution reduction occurred, the study calculated with a 95% confidence 

interval, using NO2 or black carbon as an indicator of health impacts, 395 and 185 years of life 

would be saved for the population (Johansson et Al 2017). However, although there are 

numerous benefits to cycling, there are also negative consequences of increasing cycling in 

heavily trafficked areas of the city concerning increased PM2.5 exposure for the cycling 

population. If an area consistently has unsafe levels of air pollution, then other policies need to 

be implemented before encouraging and developing bike lanes and bike-sharing programs in that 

area (Hu, H. et al 2021). The Virginian government is planning on expanding and improving on-

street networks and amenities serving bicycles through further development of bike-sharing 

programs (Richmond 300, 2020).  Not only will the environment and in turn, the general city 

population benefit from reduced car usage but also individuals who choose to walk or bike will 

greatly benefit physically and mentally from the exercise. If bike paths and bike-sharing 

programs are feasible then the next steps should be aimed at figuring out the best strategy for 

implementation.  

Vehicular emissions may not account for a large percentage of PM2.5 levels but considering 

other emission types and their effects on human health, preventive investment and action is 

necessary. The Virginian government, through the Richmond 300 project, is planning on 

expanding and improving on-street networks and amenities serving bicycles through further 

development of bike-sharing programs. Hopefully, improvements in infrastructure and 

accessibility will lead to a cycling commuting culture that will vastly benefit Richmond city’s 

future grapple with air pollution. Future research on air quality and vehicular emissions in 

Richmond, requires a larger data pool, especially while interpreting the relationship between 

vehicular emissions and air quality throughout the city. Investing more time and money into 

gathering extensive air quality data over a longer period in which accurate averages can be 

derived and a greater scope of emission types can be analyzed; through the use of refined 

equipment and more robust sampling of pollutants such as CO, CO2, NO2, O3, and SO2. 
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