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ABSTRACT 
 For years, frog populations have been declining due to a variety of anthropogenic 
sources, including pesticide use. Pesticides work by inhibiting bodily functions in their target 
pest species, though they frequently have unintentional impacts on other life forms in an 
ecosystem. Some researchers have evaluated these effects, but their studies mainly focus on 
finding an LC50 - a concentration that will kill 50% of their test species sample. However, these 
LC50 levels are often higher than what would be found in nature, and pesticides have been 
shown to still impact species at lower concentrations. Thus, this study attempted to summarize 
literature that included these lower concentrations to identify the level at which three target 
pesticides began to disrupt frog function. The target chemicals were atrazine, carbaryl, and 
glyphosate, all of which are commonly used pesticides or pesticide bases. This study was done 
specifically in the context of management for the Gambles Mill Eco-Corridor (referred to as the 
Eco-Corridor) in Richmond, Virginia, the site of a recent creek restoration project with a focus 
on storm water management and ecosystem health. To make results more applicable to the study 
area, four frog species with known or potential ranges in the Eco-Corridor were selected: The 
Gray Treefrog (Hyla versicolor), the Spring Peeper (Pseudacris crucifer), the American Bullfrog 
(Lithobates catesbeiana), and the Eastern Spadefoot (Scaphiopus holbrookii). The goal of this 
study wass to determine if the selected frog species and pesticides could be connected to provide 
motivation for the use of frogs as indicator species and contribute insight into water testing 
requirements for the Eco-Corridor. The results suggested that atrazine is impactful at 0.0025ppm, 
glyphosate is impactful at 0.018ppm and carbaryl is impactful at 0.07ppm for one or more of the 
target frog species. These lowest concentrations of concern can be used to set detection 
thresholds when conducting water quality testing in the Eco-Corridor. This study also discussed 
potential sources of pesticides for the Eco-Corridor and suggested water quality testing locations. 
However, the results showed a lack of consistency in literature availability for the target species. 
Thus, P. crucifer was recommended as an indicator species, largely due to capture availability. 
  
 
INTRODUCTION 

Of the class Amphibia, the most well-known global representative is undeniably the 
anuran, the zoological order consisting of frogs and toads. In fact, frogs and toads make up 
around 90% of all amphibian species. Like most amphibians, frogs are ectothermic, meaning 
their body temperatures rely on their ambient environment for homeostasis. They can also be 
fully or partially cutaneous, which means they rely on ambient moisture to respire. This puts frog 
species worldwide in danger, as the changing global climate threatens to increase temperatures 
and alter precipitation patterns (Cummins, 2003). In addition to climate change, frogs also face 
shrinking diversity from human-driven habitat loss, animal-driven ecosystem engineering, frog 
poaching for food-related trade, fungal diseases like Chytridiomycosis, and interspecies 
competition (Gratwicke et al., 2010; Ringler et al., 2015). 
 

To adapt to their environments, frogs use a variety of behavior patterns that can be 
generally distinguished into three categories: semi-fossorial, semi-arboreal, and semi-aquatic. 
While most amphibian species have the ability to burrow, fossorial amphibians are noted to 
spend most of their lives beneath the ground, only surfacing occasionally to breed and forage 
(Székely et al., 2018). Since frogs dig backwards, semi-fossorial frogs’ burrows are not 
permanent and usually collapse after exit (Johnson & Hembree, 2015). In amphibians, fossorial 
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behavior represents greater adaptation to dry climates, as some semi-fossorial frogs can stay 
burrowed for up to nine months and are activated by even light rainfall (Ruibal et al., 1969). 
Arboreal frogs are known for their climbing acumen, spending most of their adult lives in trees. 
Many semi-arboreal frog species are members of the Family Hylidae. These frogs are believed to 
use mucus present on their toepads to induce wet adhesion, allowing them to stick to most 
surfaces (Langowski et al., 2018). Semi-aquatic frogs are the most abundant type of frog and 
divide their time between the water and moist land. Many semi-aquatic frogs belong to the 
Genus Lithobates. These frogs’ habits are less defined and the amount of time they spend in the 
water depends on the individual species.  
 

For humans, the global decline of frogs presents a major dilemma since many frog 
species provide people with invaluable ecosystem and health services. Frogs have long been used 
in medicine, with the South African clawed frog being touted as the world’s first pregnancy test, 
while other frog species like the Chinese brown frog have historically been used in traditional 
remedies for their antimicrobial qualities (Bieniarz, 1950; Jin et al., 2009). Consuming a diet of 
small invertebrates such as flies, mosquitos, and earthworms, frogs act as wildly successful 
biological pest-managers in all life stages (Chowdhary et al., 2018). And as pest species become 
progressively more tolerant to modern agricultural control methods, frogs will only become 
increasingly essential for pest control (Zhelev et al., 2018). As indicator species, frogs provide 
value to complex or recently disturbed habitats by acting as biotic representatives for whole 
groups within an ecosystem, allowing environmental managers to focus their monitoring onto a 
single, more attainable species (Lindenmayer & Likens, 2011). Due to their sensitivity to 
environmental changes and reliance on consistent conditions for survival, frogs are particularly 
valuable indicator species for wetland habitats which can often be difficult to manage and 
monitor (Naito et al., 2012).  
 

Despite these valuable ecosystem services, most of the negative changes that frogs face 
have been caused by human action and development. In fact, anthropogenic land-use change 
drives population-declines for an estimated 88% of amphibians, whose habitat has been 
threatened by both chemical contamination and ecosystem destruction (Taylor & Paszkowski, 
2017). In general, environmental pollution is believed to be most impactful on frogs during the 
tadpole and embryonic life stages. Yet in most ecosystems, it is rare for one contaminant to be 
potent enough to cause death at any stage, meaning the individuals in polluted environments 
must live out their lives with reduced fitness (James & Semlitsch, 2011). Conversely, some built 
environments can actually benefit frogs by providing refuge from anthropogenic destruction. For 
example, some storm water management systems have potential to provide habitat for frogs and 
other aquatic species during drought (Halliday et al., 2015).  
 

As the global community has become more in tune with environmental issues, improving 
storm water management has developed into a major consideration for cities and localities alike. 
As part of a project first conceptualized in 2011, the University of Richmond in Richmond, 
Virginia worked with the environmental solutions firm “RES” to improve storm water 
management near their campus by restoring an adjacent stream named “Little Westham Creek” 
(University Facilities - University of Richmond, n.d.). This project, now completed, saw the 
reestablishment of the creek’s bed, the introduction of improved flood zones, the expulsion of 
invasive plant species, and the addition of a newly paved walking path through the surrounding 
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3,094-foot-long Gambles Mill Eco-Corridor (Joireman, n.d.). With goals to improve ecosystem 
health and biodiversity around the creek, and provide new spaces for environmental learning, the 
Gambles Mill Eco-Corridor restoration project represents an opportune moment to evaluate the 
current knowledge surrounding potential risk factors for local water systems (Joireman, n.d.). 
One of those risk factors is the use of pesticides in the areas around the Gambles Mill Eco-
Corridor. 

 
Pesticide use represents just one of the major anthropogenic challenges currently 

threatening frog populations. Pesticides are chemical compounds that target different portions of 
a pest species’ bodily functions to inhibit their growth and reduce their presence in an ecosystem, 
usually for human benefit. Pesticides can be broken down into 4 different categories: herbicides 
which target plants, fungicides which target fungi, rodenticides which target rodents, and 
insecticides which target insects. In Virginia, around 14,000 pesticide products are registered for 
use each year, many of which are popular name brands such as Roundup® or Sevin® (Virginia 
Department of Agriculture and Consumer Services (VDACS), n.d.). While pesticides are usually 
very effective at eradicating their targets, they almost always have additional unintended effects 
on other key ecosystem players. Due to their permeable skin, amphibians are often the most 
susceptible to these externalities, which can lead to severely reduced fitness or death in many 
frog species (Quaranta et al., 2009). By running off during rain events, pesticides applied onto 
the lawns of homes, businesses, and especially farms can enter nearby surface water systems 
until they are eventually ingested by aquatic species or neutralized by micro-organisms. One of 
the main concerns with pesticide presence in water stems from the use of surface water as 
brooding sites for frogs, where the pesticides can freely disrupt larval development. In the 
embryonic and tadpole life stages, frogs are particularly vulnerable to their ambient conditions as 
chemicals can easily penetrate the larvae’s protective barrier and alter the frogs’ formative 
processes.  

 
In scientific research, not all pesticides are tested equally. Due to the huge number of 

pesticides available in the United States, checking for pesticides in natural environments can be 
difficult. Currently, pesticide testing is routinely done by governmental agencies like the US 
Geological Survey, though their lowest thresholds for detection are often set too high to detect 
concentrations that could impact aquatic life (Food and Agriculture Organization of the United 
Nations (FAO), n.d.). However, pesticides can be naturally broken down in both surface water 
and soil through microbial processes and metabolic action (Food and Agriculture Organization of 
the United Nations (FAO), n.d.).  Currently, water quality test kits for a majority of widely used 
pesticides are commercially available, though these tests are designed to indicate high parts per 
million (ppm) limits in drinking water (SimpleLab, n.d.). For lower ppm testing, enzyme-linked 
immunosorbent assay (ELISA) test kits can be purchased, though these kits are often expensive 
and require prior chemical expertise (Creative Diagnostics, n.d.). 

 
 In current studies, the most commonly tested pesticides appear to be atrazine-based 

pesticides, glyphosate-based pesticides, and carbaryl-based insecticides. Atrazine is most 
commonly used in corn fields but is also found on many lawns and golf courses across the 
southern USA. It is the most commonly found pesticide in drinking water as well (Gilliom et al., 
2006). The glyphosate-based herbicide “Roundup®” is currently the most commonly used 
pesticide in the world due to its effectiveness at inhibiting aromatic amino acid production in 
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plants (Rissoli et al., 2016). The agricultural giant Monsanto has also developed genetically 
modified “Roundup Ready®” seeds that are designed to be immune to the potent amino acid 
blocking capabilities of the pesticide, allowing farms to spray Roundup® indiscriminately. 
Carbaryl also holds its own as one of the world’s most frequently used insecticides, explaining 
its frequency in scientific literature (Relyea & Mills, 2001). In their methods, many pesticide 
studies will choose to test just one or two target chemicals and will typically focus their 
observations on mortality rates. These studies usually aim to determine and report the levels at 
which their test pesticides would kill 50% of the test species after a single large dosage is 
suspended in air or water, notated in a format called the “LC50” (ScienceDirect, n.d.). These 
LC50s are used for safety purposes to determine the toxicity of a chemical for human and animal 
safety (“Pesticide Toxicity and Hazard,” 2017). Yet, LC50 levels are usually very high, ranging 
somewhere between 1.5-5ppm for most highly toxic pesticides, and these levels are very unlikely 
to be found in uncontrolled settings. One study found that even after direct, accidental spraying 
of the chemical atrazine over a stream, the parts per million concentrations would not exceed 1 
(Wan et. al, 2006). However, in addition to the LC50, some studies also report the milder effects 
of lower toxin concentrations, where disturbances can be observed in test species’ function, but 
fatality is not common. This lower concentration level is not typically regarded as useful, but 
these lower concentrations can reveal previously unconsidered problems for ecosystem health 
and help forewarn about potential dangers in the future.  
 
 Therefore, this study reviews current literature on atrazine, carbaryl, and glyphosate-
based pesticides to determine their lowest stated problematic concentrations in surface water. 
Then, the study uses first-hand experience and the Virginia Herpetological Society’s (Virginia 
Herpetological Society, n.d.) guide on native frogs to select 4 frog species that could act as 
indicators for these pesticides in the Gambles Mill Eco-Corridor (referred to as “Eco-Corridor”). 
These chosen frog species represent the spectrum of different frog behavior patterns: The Gray 
Treefrog (Hyla versicolor - arboreal), the Spring Peeper (Pseudacris crucifer – 
arboreal/terrestrial), the American Bullfrog (Lithobates catesbeiana – aquatic), and the Eastern 
Spadefoot (Scaphiopus holbrookii – fossorial). This paper then describes potential habitat for 
these frog species and suggests which species could be the best potential indicator species to use 
in the Eco-Corridor. This paper also synthesizes the current literature on lowest impactful 
pesticide concentrations for these frog species to suggest water testing thresholds, sources of 
pesticides for the Eco-Corridor watershed, and best water testing locations within the Eco-
Corridor. The main goal of this study is to answer whether the selected frog species and 
pesticides can be connected to provide motivation for using frogs as indicator species and 
contribute insight into water testing requirements for the Eco-Corridor.  
 
 
STUDY AREA AND METHODOLOGY  

The study area for this project was the Gambles Mill Eco-Corridor at the University of 
Richmond in Richmond, Virginia, a varied ecosystem with recent heavy disturbances from a 
large stream restoration project. The Gambles Mill Eco-Corridor contains a wide variety of 
ecological niches, including forested land, wetland, developed land, and meadows. These 
habitats include both long-established and newly constructed territories. As well, the stream 
restoration project introduced a storm water raingarden, increased standing water in wetlands, 
and established numerous viable amphibian breeding locations in the floodplains (B. Siegfried II, 
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personal communication). The corridor is enclosed by the Country Club of Virginia to the east, a 
moderately trafficked road to the south (River Road), and the University of Richmond campus to 
the north and west (Figure 1).   
 

Using available research tools such as the University of Richmond OneSearch and Web 
of Science, peer reviewed journal articles pertaining to different pesticide interactions for each 
above-mentioned target frog species were ascertained. Selected articles were then read through 
and scrutinized to determine whether their findings were likely applicable to the study area. As 
the goal was to collect all pertinent literature, there were no limitations to maximum or minimum 
number of articles used. 

 
 As well, to best assess the selected pesticides a thorough baseline understanding was 

established through use of the University of Richmond OneSearch and government databases on 
the target pesticides. For each pesticide, all available studies on the interaction between the 
toxins and target frog species were considered and read. After assessing all available literature, 
summaries of each pesticide’s interactions with the selected frog species were created. The 
lowest disruptive concentrations were organized into a table using Excel (Table 1). All results 
were converted to parts per million for consistency. 
  
 
RESULTS 
Atrazine 

Atrazine is the second most used herbicide in the United States, famed for its abilities to 
disrupt key proteins in plant photosynthesis (Almberg et al., 2018). Atrazine is controversial 
because it is a known endocrine disruptor that is shown to delay puberty and lengthen menstrual 
cycles in rats, leading it to be banned in the European Union (Zorrilla et al., 2010). The 
maximum allowed atrazine concentration in US drinking water is 0.003ppm, though atrazine 
concentrations have been found at levels over 0.5ppm in some waterways around the world 
(GovInfo, n.d.; Rimayi et al., 2018). In water, atrazine has a half-life of 96.5 days when exposed 
to sunlight and 252.6 days without sunlight (averages) (Farruggia, 2016). 

 
In current studies, atrazine was found to have an array of disruptive impacts on H. 

versicolor tadpoles at 1.25ppm, particularly in relation to energy usage for detoxification, tissue 
repair, and homeostasis maintenance (Snyder et al., 2017). Similarly, L. catesbeiana tadpoles 
were shown to face lipid degradation, higher lipid levels, and increased cholesterol levels when 
exposed to atrazine at a very low 0.0025ppm level, though no mortality was observed (Dornelles 
& Oliveira, 2016). Low concentrations (0.003ppm – US EPA standard for safe drinking water) 
of atrazine significantly reduced the survival of late-stage P. crucifer individuals, though high 
concentrations increased P. crucifer survival in early-stage individuals (Storrs & Kiesecker, 
2004). For L. catesbeiana, one author suggested that atrazine would not be toxic even up to 16 
ppm (Wan et al., 2006). Thus, disruptive and lethal concentrations of atrazine seem to vary 
between species, but the lowest ppm demonstrating species health concerns was 0.0025ppm 
(Table 1). 
 
Glyphosate - Roundup®  
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Glyphosate-based herbicides are one of the most commonly used pesticides in the world 
with popular name brands including Roundup® and Rodeo®. These herbicides work by 
constraining the production of amino acids, reducing plants’ abilities to synthesize proteins 
(Hanlon & Parris, 2014). The highest recorded concentration of glyphosate in a waterbody as of 
1980 was 5.2ppm (Edwards et al., 1980). Roundup® has a half-life of between 7-70 days (Giesy 
et al., 2000). In the United States, around 4 billion kilograms of glyphosate-based herbicides are 
applied to homes, gardens, forest, wetlands and 820 million hectares of cropland each year 
(National Center for Food & Agricultural Policy (NCFAP), n.d.). 

 
Roundup® is suggested to have little to no impact on the survival of P. crucifer tadpoles 

at 3.8ppm and may actually be beneficial for them by killing predatory insects (Relyea, 2005). 
One study noted that pure glyphosate impaired oxygen uptake and distribution for L. catesbeiana 
tadpoles at 1ppm, though they distinguished pure glyphosate from the Roundup Original® and 
Roundup Transorb R® products (Rissoli et al., 2016). This study proposed that while glyphosate 
itself was toxic, the “inert” components mentioned on Roundup® packaging did in fact have 
impacts on tadpole oxygen uptake (Rissoli et al., 2016). This was suggested to have stemmed 
from the inert compounds differentially impacting the tadpoles’ protective epithelial wall, which 
they partially use to breathe (Rissoli et al., 2016). At a low 0.018ppm concentration, glyphosate 
was demonstrated to increase lipids, increase cholesterol, and decrease proteins in L. 
catesbeiana, making it more difficult for the tadpoles to maintain homeostasis (Dornelles & 
Oliveira, 2016). Thus, for glyphosate-based pesticides, the lowest level of concern is 0.018ppm 
(Table 1). 
 
Carbaryl - Sevin® 
 Carbaryl, more commonly known as the insecticide brand Sevin®, is also one of the most 
frequently used pesticides worldwide. In the United States alone, around 10-15 million pounds of 
carbaryl are sprayed annually, which includes application for approximately 28 million homes 
and 31 million gardens (Relyea & Mills, 2001). Carbaryl impacts target species by inhibiting 
nervous system function at low concentrations and paralyzing individuals at high concentrations 
(Bridges 2009). Carbaryl’s half-life ranges from 2.4 hours to 90 days in water depending on 
temperature, sunlight, and water microbiome (Hanlon & Parris 2014). Carbaryl has been 
observed at concentrations as high as 4.8ppm in waterbodies (Hanlon & Parris 2014). 
 

Carbaryl-based pesticides like Sevin® were found to be particularly devastating to H. 
versicolor tadpoles, with 1ppm of carbaryl causing 60% mortality after only 6 days (Relyea & 
Mills, 2001). These effects were worsened by 2-4 times in the presence of predatory stressors, as 
even at 0.07ppm predatory presence yielded over 40% mortality after 12 days (Relyea & Mills, 
2001). However, without predatory stressors, carbaryl was not found to reduce H. versicolor 
tadpole survivorship even at 0.54ppm. At 0.5ppm, carbaryl was found to significantly slow the 
hatching time in L. catesbeiana embryos (Puglis & Boone, 2007). Since the study area is not a 
controlled environment, predatory presence is unpredictable, so the lowest disruptive 
concentration may be higher than 0.07ppm, though 0.07ppm should remain as the lowest level of 
concern (Table 1).  
 
Literature Gaps  
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There is a severe lack of literature regarding the Eastern Spadefoot, both in general and in 
regard to chemical interactions. No articles could be located discussing their interactions with 
any target pesticides. Despite the Eastern Spadefoot’s wide habitat range and local abundance, 
they are likely not as well studied because of their preference to remain beneath the surface and 
explosive breeding patterns (only breed after severe rain events) which make them more difficult 
to collect in all life stages. Since Eastern Spadefoots spend so much of their time surrounded by 
soil, further research on the effects of toxic soil elements such as copper, lead, and pesticides on 
toad survival would be interesting. 
 

The literature review results are summarized in Table 1 and Table 2. 
 
 
APPLICATIONS 
 These results reveal major differences in literature availability for the target frog species. 
Previous research describing low concentration was not able to be consistently located for any of 
the frogs, so literature availability cannot be heavily weighted in selecting an indicator species 
(Table 1). However, this does not mean that generalized lowest concentrations of concern 
(depicted in Table 2) are invalid for use in determining useful pesticide detection thresholds. As 
such, the application of these results will vary between section. 

 
To apply the results of this literature review to management in the Gambles Mill Eco-

corridor, several items need to be established. First, current frog habitat needs to be established. 
This should include frog population estimations, locations of likely frog habitat, and 
understanding of frog behavior. Next, sources for pesticide run-off need to be identified. Then 
finally, best water testing locations should be described. The following sections will aim to do so 
in hopes of developing useful strategies for ecosystem management. 
 
Estimating Frog Populations 

To employ these results in the Gambles Mill Eco-Corridor and make use of frogs as 
indicator species, one may want to first establish frog population estimates. Determining frog 
occupation in the Eco-Corridor will allow managers to view whether frog populations are 
increasing or decreasing, revealing the ecosystem’s on-going health.  

 
For researchers to determine frog populations within a habitat, a variety of methods can 

be used. The most generally accepted method for determining frog populations is mark-recapture 
with statistical analysis, with frog toe clippings noted as the most common method for marking 
without decreased survivability (Ackleh et al., 2012; Ginnan et al., 2014). There are multiple 
methods for estimating populations using mark-recapture, though for this population, Schnabel 
mark-recapture methods should be followed. This would allow for the most accurate results, 
which is necessary to observe population changes over time. Lincoln-Peterson methods may also 
be used, though they tend to overestimate population size by only using two days of capture data 
(Olmos Alcoy, 2013). While frog populations are not guaranteed to be closed for these mark-
recapture studies, it’s doubtful that a significant amount of migration would occur during a 
survey period due to the short time-frame, abundance of water sources, and presence of available 
frog habitat in the Eco-Corridor. In addition to abundance, frog body length, body mass, and 
presence of deformities should also be noted (Simon et al., 2010). These factors can help indicate 
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increasing or decreasing presence of pollutants such as pesticides. For marking the frogs, toe-
clipping is a proven safe method, as is use of fluorescent elastomers.  

 
Population estimates are also not always required. If the goal is to compare a target 

ecosystem with other habitats in the area, presence or lack thereof is sufficient. For estimating 
species richness, sound loggers provide a valuable resource by recording frog calls to identify 
which species are present in an ecosystem, but this method is not as widely esteemed for 
estimating populations (Čeirāns et al., 2020). Richness estimates would allow managers to 
compare their study area with others in terms of species richness. 

 
It's important to note that while frogs may spend most of their time in one area, they can 

travel distances sometimes up to nearly 2000 meters to reach breeding ponds (Kovar et al., 2009; 
Marsh et al., 2000). Many male frogs will exhibit breeding site fidelity, emphasizing the use case 
for confined population estimates (Blaustein et al., 1994). As well, the presence of conspecifics 
at a site is important for the continued recruitment of new individuals, so understanding current 
population dynamics is vital for predicting how populations may change over time (Buxton et al., 
2015). 
 
Current Frog Habitat  

To apply scientific literature to a specific habitat, as many similarities need to be 
established as possible. Here, choosing four diverse frog species with known or assumed ranges 
in the University of Richmond Eco-Corridor allowed for a well-rounded basis of information to 
amplify site specific applications. Information from the Virginia Herpetological Society 
(Virginia Herpetological Society, n.d.) and scientific literature were used to provide insight into 
each of these species seen below, with photo references provided at the end. Figure 4 depicts 
areas of the Eco-Corridor referenced here: 

 
1. Gray Treefrog - Hyla versicolor (Photo Reference 1): 

Gray treefrogs are small, nocturnal, and arboreal. The current distribution of H. 
versicolor is highly disputed, as the identifying factors between Gray Treefrogs and Cope’s Gray 
Treefrogs (Hyla chrysoscelis) are very similar, though there are believed to be H. versicolor 
groups found throughout the midwestern, southern, and eastern portions of the United States. 
Gray Treefrog tadpoles are believed to have been spotted in the University of Richmond Eco-
Corridor as recent as the Fall of 2020, making this species highly relevant to the focus area. Gray 
Treefrog eggs are laid in water. 

 
Since H. versicolor is a small nocturnal arboreal frog, doing traditional mark-recapture 

studies can be difficult. One recommendation is to conduct mark-recapture when temperatures 
begin to cool, since H. versicolor begins to move closer to the ground in preparation for 
overwintering (Johnson et al., 2008). This would allow for easier capturing, as H. versicolor 
specimen would occur more frequently at reachable heights. Sampling can also be conducted 
during the day (when they are inactive) to increase ease of capture. Artificial pipe refugia could 
be created as well to allow for consistent capture locations within the study area (Johnson et al., 
2008). Another option would be to conduct surveying at night and have researchers divide the 
study area into quadrants, using gray treefrog calls to pinpoint frog locations for capture (Pham 
et al., 2007).  
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Gray Treefrogs surveying in the Eco-Corridor would be most successful within the 

forested area between the creek and walking path. However, the Gray Treefrog tadpoles were 
spotted by Dr. Kristine Graysen, a Biology professor at the University of Richmond, in the 
vernal pools and raingarden along the pathway. While tadpoles are great for knowing frog 
species presence, they provide little in terms of use for population estimating, as methods for 
tadpole mark-recapture are not as developed and many tadpoles may perish during pre-
metamorphic life stages (Lima et al., 2018). Thus, adult Gray Treefrogs are better suited for 
mark-recapture population estimating. 
 

2. Spring Peeper - Pseudacris crucifer (Photo Reference 2): 
Spring Peepers are nocturnal, terrestrial frogs with the capabilities to climb trees, though 

they are more frequently found on the forest floor. The optimal habitat for Spring Peepers has 
been described as “moist, upland woods with shallow ponds,” but they are also found in many 
wetlands at the source of streams. Spring Peepers are distributed throughout a majority of the 
eastern continental U.S.A. Spring Peepers are believed to have been heard in the University of 
Richmond Eco-Corridor over the summer of 2020, making them an appropriate species to 
consider. Spring Peeper eggs are laid in water. 

  
Spring Peepers were also noted to have been present in the Gambles Mill Eco-Corridor, 

as Jennifer Sevin, visiting Biology lecturer at the University of Richmond recognized them by 
call in the Spring of 2020. While Spring Peepers are nocturnal like the Gray Treefrog, they do 
not spend most of their time in treetops and prefer to be under leaf litter on the forest floor. Thus, 
hand-collecting individuals for mark-recapture should not be difficult if collection is done at 
night using audio cues. Spring Peepers are also likely to be found in the forested area between 
the creek and the path. They may also be found in the wetlands further down the creek, 
surrounding the forested areas. 

 
3. American Bullfrog - Lithobates catesbeiana (Photo Reference 3): 

American Bullfrogs are a notably large species that spend most of their lives in warmer 
aquatic habitats where they can be found in pond shallows or along stream shorelines. While the 
native range of the American Bullfrog spans across most of the eastern USA and into the Great 
Plains region, they were introduced throughout the world for culinary purposes where they now 
run rampant as an invasive species. Despite being competitively dominant, American Bullfrog 
populations have been declining due to pollution, habitat loss, and pesticide introduction. 
American Bullfrog eggs are laid in water. 

 
 American Bullfrogs are highly mobile and can sometimes be difficult to capture. Since L. 
catesbeiana is an invasive species worldwide and in the Western USA, much research has gone 
into Bullfrog capture and removal methods. Some of these techniques can also work for 
population estimating. Multiple capture traps, which are essentially large cages with one-way 
plastic doors, were shown to be highly effective at capturing male bullfrogs. (Snow & Witmer, 
2011). Capture for American Bullfrogs is recommended to take place in early fall or summer 
(Howell et al., 2020). For those interested in using multiple capture traps, they would likely have 
to be purchased or retrofitted from traps used to catch Cane Toads (Rhinella marina). Traps 
should be set out in the evening and checked in the morning to avoid desiccation of capture 
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individuals. American Bullfrogs could also be hand-captured at night, though this method 
requires skill and can be difficult if the frogs cannot be spotted by sight or sound. Bullfrog 
tadpole populations can also be estimated using double fyke net capture methods (Louette et al., 
2013). It is unknown if American Bullfrogs are currently in the Gambles Mill Eco-Corridor, but 
their likely habitat would be in the wetlands and floodplains, particularly along the creek edges 
and in vernal pools. 

 
4. Eastern Spadefoot - Scaphiopus holbrookii (Photo Reference 4): 

Eastern Spadefoots are a fossorial frog species with a wide range across most of the 
eastern coast of the USA. Eastern Spadefoots spend most of their life underground and breed 
explosively following major rain events, which can make them difficult to survey. These frogs 
will often return to the same burrowing areas for years on end. Of the frog species considered, 
this is the only species that can also be classified as a toad. Eastern Spadefoot eggs are laid in 
water. 

 
The Eastern Spadefoot is much more difficult to survey. Few papers exist to discuss 

Eastern Spadefoot capture techniques and population estimation capabilities. One study analyzed 
Eastern Spadefoot burrowing substrate preferences in an urban context and found that while the 
toads could burrow in all substrates except sod, they have the easiest time burrowing in sand, 
followed by mixed soil (Jansen et al., 2001). The Eastern Spadefoot was also found to prefer soil 
substrates topped with forest leaf litter, though they do not seem to have a preference whether the 
soil exists in a forest or in clear cut land (Baughman & Todd, 2007). The best time to collect 
Eastern Spadefoot seems to be during the morning in periods after breeding when the 
metamorphoses are travelling from seasonal wetland (Baughman & Todd, 2007). Since the 
Eastern Spadefoot is an explosive breeder, only emerging to breed after heavy rain events, it’s 
likely that they would be found on occasions like these. During heavy rain events, researchers 
should listen for the crow-like call of the Eastern Spadefoot to determine if breeding is likely to 
occur (Virginia Herpetological Society, n.d.). Spadefoot eggs are also laid underwater and would 
be difficult to see, so researchers should wait between 3-6 weeks after a major rain event so the 
toads will have hatched and metamorphosed to a terrestrial form (Virginia Herpetological 
Society, n.d.). Eastern Spadefoot breeding also depends on temperature, so this may occur at 
nearly any time of year depending on how moderate the temperature is. Realistically, Eastern 
Spadefoot population estimates would probably be near impossible without modelling, so 
researchers may just want to wait for happenstance to observe S. holbrookii presence in the Eco-
Corridor. Eastern Spadefoots would likely find habitat in the forested areas nearest to the creek, 
where soil would be soft enough to burrow into and leaf litter would be present. It is unknown 
whether there are current Eastern Spadefoot populations in the Gambles Mill Eco-Corridor. 
 
Recommended Indicator Species  
 Spring Peepers would likely be the best indicator species for ecosystem health in the Eco-
Corridor because their presence is already known, they would be easiest to survey, and they are 
sensitive to atrazine at low ppm concentrations. Spring Peepers have also been previously tested 
as indicator species, with one study suggesting that they are the best indicator for a wide range of 
anthropogenic stressors (Price et al., 2007). As well, Spring Peepers tend to be the first frogs to 
start calling in the Spring (hence their name), which could be beneficial for managers by 
allowing them to sample for P. crucifer earlier than other frog species (Lovett, 2013).  
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Due to the variety in amphibians’ evolutionary history, not all frogs are expected to 
interact the same way with potential stressors (Knutson et al., 1999). This means that, while 
presence of Spring Peepers (or any other amphibian) is a good sign of ecosystem health, there 
may be underlying issues that the target species just does not react to. This justifies the selection 
of P. crucifer as an indicator species despite a lack of literature availability for its interactions 
with carbaryl, and the findings of its apparent lack of interaction with glyphosate at very high 
concentrations (Table 1; Relyea, 2005). As such, mark-recapture study efforts in the Eco-
Corridor should still prioritize obtaining Spring Peeper population estimates over the other 
proposed indicator species 
 

American Bullfrogs could also work as an indicator species for the Eco-Corridor, though 
they may be more difficult to capture, are not previously known to be in the Eco-Corridor and 
are not considered to be as successful indicators when compared to populations in other wetlands 
(Price et al., 2007). However, American Bullfrogs could be good indicators for on-going 
pesticide levels, as they were shown to be sensitive to two of this study’s target pesticides (Table 
1). There is also a large amount of available literature on the American Bullfrog, so if it were 
selected as an indicator species and populations were declining, researchers may be able to apply 
previously studied concepts to discover the reasons for the declines.  
 
Potential Pesticide Sources  
 Then, for evaluating the use of pesticides in the Gambles Mill Eco-Corridor, it is 
important to identify the main areas where pesticides could be coming from. Since this study 
focused on problematic low concentrations of pesticides, it’s probably that all potential sources 
are valid to investigate. Below are the three most likely regions where pesticides could come 
from. These regions all make up parts of the local watershed for the Little Westham Creek 
(Figure 2): 
 

1. The County Club of Virginia – Westhampton: 
 Located directly adjacent to the Gambles Mill Eco-Corridor sits the Country Club of 
Virginia (CCV), Westhampton location. This private country club includes amenities such as 
tennis courts, a club house, swimming pools, and most importantly a golf course (Figure 3). The 
18-hole golf course features rolling hills and a pristinely kept turf, assumedly maintained through 
the use of pesticides and fertilizers. While no listing of the specific chemicals used at the CCV 
could be found, the Virginia Department of Agriculture and Consumer Services (VDACS) 
maintains a public document describing the types of pesticide permits acquired by public 
businesses in the state of Virginia (Virginia Department of Agriculture (VDACS), n.d.). On this 
list, the CCV is permitted to use class 3A, 3B, and 6 pesticides (Virginia Department of 
Agriculture and Consumer Services Commercial Certified Pesticide Applicators, 2020). Class 
3A covers pesticide use on ornamental plants (both indoors and outdoors), class 3B covers 
pesticide use on turf, and class 6 covers pesticide use to maintain public rights-of-way such as 
sidewalks and roads (Lee, n.d.). Unfortunately, the VDACS does not appear to distinguish which 
chemical-bases can be used for which class, and states that around 14,000 new pesticides 
products are registered in their system each year, meaning there is seemingly little to no way to 
determine which pesticides are being used at the CCV without firsthand knowledge or testing 
(Virginia Department of Agriculture (VDACS), n.d.).  
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As well, in 2012 the Virginia Golf Course Superintendents Association prepared a guide 
on best environmental management practices for golf courses in Virginia (Virginia Golf Course 
Superintendents Association, 2012). This manual is non-binding, indicating that golf courses are 
not necessarily required to follow its recommendations. However, in the manual, the use of 
Integrated Pest Management (IPM) is encouraged. IPM is a type of pest management that 
combines pre-emptive planning, biological controls, and physical barriers to reduce reliance on 
chemical pesticides in pest reduction, though chemicals are still often used as a last resort (How 
to Prevent Water Contamination – Pesticide Environmental Stewardship, n.d.). While this is 
great for the state of Virginia, there is no indication in this manual or on the CCV website that 
the CCV follows these guidelines, so this guide is not necessarily helpful here. However, this 
association could be contacted by a more official correspondent in the future, with hopes of 
ascertaining information about the CCV’s pest control methods. 
 

Based on available information, it still remains unclear whether pesticide runoff from the 
CCV would be an issue. One study estimated that only .5% of applied carbaryl runs off from golf 
course fairways, which translates to approximately 191 gallons/hectare per year (Haith & 
Duffany, 2007). This same paper also stated that it was unlikely that pesticide runoff from golf 
courses is a frequent occurrence, as the application of these pesticides would need to coincide 
with rain events to yield significant levels of runoff (Haith & Duffany, 2007). Since atrazine is 
noted to be commonly used on golf courses in the Southern United States, the use of atrazine 
would not be surprising at the CCV. If atrazine is detected in surface water near CCV, this could 
be problematic since studies have shown that surface water could receive a up to 75% of applied 
atrazine over 70 days following the first post-application rainfall event (Ng & Clegg, 1997; 
Wang et al., 2018). In fact, these specific results are for areas with loamy soils similar to those in 
the Eco-Corridor (George, 2019). As well, due to its long half-life of 168 days in water exposed 
to sunlight, multiple applications of atrazine throughout a single year could lead to drastic 
bioaccumulation (Farruggia, 2016). Thus, leaching and runoff amounts, while small, may still 
have an impact on the Gambles Mill Eco-Corridor. Unfortunately, the main issue still stands that 
there is no easy way to determine which pesticides are currently in use at the CCV.  

 
2.   University of Richmond Campus: 

Like the Country Club of Virginia, the University of Richmond (UR) also likes to 
maintain a well-trimmed and weed-free lawn. Luckily, the university’s methods for keeping pest 
species away is readily available. On the UR Facilities’ website, there is the university’s 
integrated pest management (IPM) plan that details specific approaches and pesticides used by 
the groundskeepers (Sandman, 2019). UR’s IPM plan is reviewed annually and includes pest-
specific control techniques to minimize pesticide application (Sandman, 2019).  

 
While IPM is great alternative to non-descript pesticide application, it does still include 

some chemical pesticide use. In fact, the University of Richmond’s IPM even includes one of 
this study’s target pesticides. When broad-leafed or grassy weeds are located in sidewalk cracks, 
patios, or curbs and cannot be removed manually, spot treatment is recommended using a 
mixture of 2.6 ounces of glyphosate 41% (Roundup® strength), 0.55 ounces of prodiamine 65%, 
and one gallon of water (Sandman, 2019). When converted, this formula would end up including 
19494ppm of glyphosate and 4123.74ppm of prodiamine. However, it’s extremely unlikely that 
the entire gallon mixture would be applied, plus most of it would be broken down in the soil. Soil 
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type, pesticide makeup, and soil arrangement are just a few of the factors that can increase or 
decrease pesticide runoff, and since soil compaction and makeup differs between areas of the UR 
campus, an exact amount of runoff would be unknown without testing (Briceño et al., 2007). 
Since the recommendation is for spot treatment, one can hypothetically imagine that the amount 
used at once would be very low, let’s say 0.5% of the total gallon (though it would likely be less 
in actuality). This translates to 97.47ppm. If then, basing calculations off Haith & Duffany 
(2007) who said that 0.5% of carbaryl would runoff from golf courses, that would be of 0.5% of 
the 97.47ppm (that is, if carbaryl and glyphosate ran off at the same rate between golf course turf 
and the campus lawn). This would be approximately 0.48735ppm. So hypothetically, 
0.48735ppm of the total mixture would end up as run off per spot treatment. That’s a very small 
amount, especially when considering how diluted it would become in a body of water the size of 
Westhampton Lake or Little Westham Creek. However, if pesticides were applied elsewhere in 
large quantities or frequently, it seems clear how pesticide use could become an issue when 
compared to the disruptive concentrations revealed in this study. 

 
 In all likelihood, the use of IPM on the UR campus does help reduce pesticide usage to 

levels much lower than would otherwise be needed to maintain a campus so large (350 acres). As 
well, IPM does not prioritize chemical pesticide application, so the realistic amount of run off 
from the UR campus is likely not high. However, if pesticides are applied before storm events, 
some pesticide could still run off into the Westhampton Lake, which connects to the Little 
Westham Creek in the Eco-Corridor. As well, in the UR IPM guide, it states that facilities 
workers will sweep any pre-emergent pesticide pellets off paved paths when application is 
finished, but this does not guarantee that some pellets will not still run off from their application 
area (Sandman, 2019). Thus, the risk of pesticides leaching or running off and eventually 
reaching the Eco-Corridor should not completely ignored. 

 
3. Surrounding Neighborhoods: 

 The greater Little Westham Creek watershed also expands into the neighborhoods that 
surround the University of Richmond as well (Figure 2). The main neighborhood in the 
watershed is Westham, Virginia, a subsection of Tuckahoe, Virginia. This area has an average 
income of around $77,000, and the homes here typically have well-kept lawns (Tuckahoe, VA | 
Data USA, n.d.; observation). Because there are so many homes to consider in this area, and so 
many pesticides available, it’s impossible to know which pesticides would be in use if any. As 
well, it’s likely that some of these homeowners do not tend to their own lawns, and instead hire a 
lawn care surface to do that for them, adding another layer of mystery. It’s also more likely that 
these households follow less strict guidelines when apply pesticides due to lack of knowledge. 
Yet, pesticide use in these homes likely does still have an impact. Because the area surrounding 
the University of Richmond campus forms a basin leading towards Westhampton Lake, any 
pesticides that run off will run-off straight to the Little Westham Creek’s source. As well, the 
Westham neighborhood has wide roads with houses relatively close together, meaning there is a 
significant amount of impermeable surfaces. While there is storm water drainage infrastructure 
in-place in this neighborhood, not all rainwater enters this system. Some will run off directly into 
Westhampton Lake and eventually move into Little Westham Creek, especially on roads 
adjacent to the lake or creek. The type of grass on a lawn also plays a role. Some grasses are 
more absorptive, more drought-resistant, or more hardy than other grasses. Depending on the 
type of grass planted on a lawn, there may be no need for pesticides on a majority of these 
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homes’ lawns, keeping pesticide use restricted to homes with installations like gardens. 
However, because there is no efficient way to determine the amount pesticides in use or the 
amount of pesticides that could run off from lawns, the surrounding neighborhoods should not be 
ruled out as sources for pesticides in the Eco-Corridor.   
 
Checking for Pesticides 
 Lastly comes the actual identification of pesticides in the Eco-Corridor. The goal of this 
study is to use frogs as indicator species to denote ecosystem health, so managers should want to 
see if the target pesticides are present and impacting frog fitness in the Eco-Corridor. If the 
pesticides were present at their LC50 levels, no frog species would be present to use as 
indicators, but since H. versicolor and P. crucifer are known to be present in the Eco-Corridor, 
the LC50 isn’t currently relevant to the study area. As shown above, testing is likely the only 
way to determine which pesticides could be in Eco-Corridor water. Other options like sending 
questionnaires to the surrounding neighborhoods would probably yield low responses and be 
difficult to implement. For this study, the CCV was attempted to be contacted, but no email 
address was available on their website, and phone calling was unsuccessful. To reiterate, 
pesticide testing has not yet been done in the Eco-Corridor, so the true presence of pesticides is 
currently only speculative. Test kits also do not give exact concentrations. Instead, they can be 
ordered to have a specific threshold for indicating presence. For example, a water body may have 
a concentration of 0.002 ppm, but if the threshold for the test kit is 0.005ppm, it will not indicate 
presence. Thus, the results of this study can be used to justify acquiring low threshold test kits to 
use in the Eco-Corridor. To determine where to test, a combination of probable frog habitat with 
potential pesticide sources can be used. Below are these locations, with visual references in 
Figure 4: 
 

1. Where to Test 
As mentioned before, atrazine is one of the most commonly used herbicides in agriculture 

and golf course settings throughout the Southeast United States (US EPA, 2015). This makes 
atrazine application a strong candidate for the Country Club of Virginia’s preferred turf 
maintenance technique. The Gambles Mill Eco-Corridor is located directly downhill from the 
CCV, so runoff from the turf is likely to travel towards the Eco-Corridor. However, in the Eco-
Corridor, there sits a stormwater raingarden which, according to Bob Siegfried II of RES, is 
entirely fed by the CCV. Pesticide testing should definitely be conducted within the storm water 
raingarden, as this area would be most indicative of the CCV’s pesticide usage and it provides 
probable frog egg laying habitat due to its relative consistency and shallow depths (Figure 4).  

 
Another newly altered waterway in the Eco-Corridor includes the step pools. These step 

pools were introduced in the Eco-Corridor as a method to reduce the energy flow of water 
entering Little Westham Creek (Kirkpatrick, 2019). Due to the high flow rate of the water 
passing through these step pools, it is unlikely that any frogs would be able to safely lay eggs in 
these waters (B. Siegfried, personal communication). However, one of the step pool paths flows 
directly down from the Country Club of Virginia (Figure 4). This means that while pesticide 
contamination in these pools is not of particular concern for this study, the chemicals that flow 
through the step pools may reach the Little Westham Creek. So, testing should be done at the 
highest pool in the area and at the lowest pool in the area to determine if pesticides are present in 
the step pools and compare the step pools’ filtration capabilities. 
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With the renovation of the Gambles Mill Eco-Corridor also came improved stormwater 

management. As the streambed was reformed, the creek’s flow was slowed down which allows 
for increased sediment deposit into the creek bottom, which in turn filters out unwanted materials 
(Singh et al., 2018). The Little Westham Creek restoration also allows for greater flood 
mitigation in part due to floodplain connectivity and the moderate to high permeability of the 
surrounding loamy soil (George, 2019). Due to the reduced water flow speed associated with the 
restoration project, it’s likely that many more pesticides will remain suspended in the creek or 
sink to the underlying substrate. This may both increase the amount of pesticides within the 
creek (by reducing the amount that flows straight through to the James River), while also 
beneficially increasing the overall spread of suspended pesticides, which may increase the rate at 
which micro-organisms can break them down (Environ. Sci. Technol, 2011). Thus, target 
pesticide testing should be conducted at the mouth of the creek (where the water flows down 
from Westhampton Lake), and at the end of the creek (where it is backwatered to the connecting 
canal) (Figure 4). This will allow for an analysis of the stream’s pesticide filtration and 
distribution effectiveness. However, it is unlikely that any frogs would lay their eggs in these 
deeper running waters, so tests should also be conducted in the connecting floodplains and 
wetlands when vernal pools are present.  
 

2. Difficulties with Testing 
 As demonstrated by this study, pesticide testing in the Gambles Mill Eco-Corridor is vital 
for determining ecosystem health and for establishing baselines to use for future changes. 
However, water quality testing is not an all-telling process. In many cases, pesticides do not 
work alone to reduce ecosystem well-being. Often, pesticides will interact with other elements in 
the water to create additional positive and negative effects. For example, one study suggested 
that the pesticide Roundup® (glyphosate based) may actually lengthen the lifespan of H. 
versicolor tadpoles by inhibiting the growth of Batrachochytrium dendrobatidis (chytrid) fungus 
(Hanlon & Parris, 2014). However, another study found that a mixture of atrazine, carbaryl, and 
glyphosate did not have this same effect on chytrid fungus exposure or viral load for P. crucifer, 
demonstrating how interactions vary between both pesticides and frogs (Jones et al., 2017). As 
well, some pesticides actually have a non-monotonic impact on frogs, meaning that pesticides 
found to be highly toxic at low concentrations may become less toxic as their concentration 
increases (Storrs & Kiesecker, 2004). Thus, it seems clear that presence testing for pesticides at 
both high and low concentrations is not perfect, but that’s why indicator species like frogs can be 
used to tell the true story of ecosystem health.  
 
Study Challenges 

This study faced many difficulties during its working process. For one, species specific 
knowledge was limited in terms of literature availability. While there is a lot of scientific and 
governmental research on pesticides, few studies approach the topic specifically through the lens 
of amphibian species, and much fewer do so through the lens of the four species selected for this 
study. Often, multiple studies on a species would be conducted by the same person, reducing the 
variety in knowledge sources. As well, it is important to keep in mind that these tests occurred in 
lab settings, so it is difficult to apply them to real-world scenarios with confidence. Some 
researchers dislike controlled setting reports because they typically apply the chemicals all at 
once, not reflecting the slow accumulation that occurs in natural environments (Measures of 
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Toxicity, n.d.). In retrospect, the selection of target frog species was also both a hinderance and a 
benefit. Setting explicit parameters for literature studies helps narrow the viewpoint and increase 
site specific applicability, but it also greatly reduces the amount of usable research, constraining 
study capabilities. As displayed in Table 1, there is already a great lack of available low 
concentration pesticide studies, further increasing difficulty for this study. 

 
Another major blockade for this study was the inability to conduct in-person field 

research. Preferably, water quality testing and frog surveying would have been carried out during 
the Fall 2020 semester. However, this study was limited by a lack of prior knowledge about 
pesticide detection methodology, lack of time, poor time management, and lack of funding to 
purchase specific test equipment. Also, frog species were not able to be surveyed during the 
study time frame due to overwintering, a process in which the frogs bury themselves 
underground during the colder months to help maintain homeostasis. This also meant that no 
acoustic presence surveys could be done as frogs only call during the warmer spring, summer, 
and early autumn months. In future studies, field data collection of both frog and pesticide 
presence should be conducted.  

 
 

CONCLUSION 
This study has hopefully provided an adequate framework and focus for future 

researchers to conduct population estimations and pesticide prevalence tests in the Gambles Mill 
Eco-Corridor. Overall, this study has revealed that impactful concentrations of pesticides for 
frogs are low, so sensitive test kits are needed. As well, feasible pesticide sources have been 
shown to exist for the Gambles Mill Eco-Corridor, with run off likely stemming from the 
Country Club of Virginia and surrounding neighborhoods. Furthermore, there do seem to be 
viable indicator species present in the Eco-Corridor, though there is a lack of consistent literature 
documenting their reactions to low concentration pesticides. Yet together, these pieces can be 
used to guide managers and researchers in ensuring that the Eco-Corridor remains a hub for 
biodiversity, and model of ecosystem health for years to come.  
  



18 
 

FIGURES AND TABLES 

 

 

  

Figure 1: Map depicting the Gambles Mill Eco-Corridor and its three surrounding areas. The University of Richmond campus is to the north 
and west, the Country Club of Virginia is to the east, and River Road is to the south. 

Figure 2: Map depicting the 8.4 km2 Little Westham Creek Watershed. The Gambles Mill Eco-
Corridor, Westhampton Lake, and Westham neighborhood are highlighted. Some annotations 
were added for this project. Map sourced from the University of Richmond Office of 
Sustainability Storymap: 
https://www.arcgis.com/apps/MapSeries/index.html?appid=2a4bc41dbe444157a1bb1ece4687b
49a 
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Figure 3: Map of the Country Club of Virginia (CCV)compound. This depicts the 18-hole golf course, tennis courts, pools, and 
other amenities. The direct border with the Gambles Mill Eco-Corridor can be seen along the western edge (left). Map sourced 

from the CCV website: https://www.theccv.org/documents/10184/12561/WH+Golf+Course+Illustration.pdf 

  

Figure 4: Map depicting the different areas of the Gambles Mill Eco-Corridor referenced throughout this paper. As 
no updated satellite imagery was available, all locations are approximate. Annotations were added for the purpose of 
this study. This map base is sourced from Water Street Studio: https://waterstreetstudio.net/work/u-of-r-gambles-mill-

eco-corridor 

 

Creek Beginning 
Creek End 

COUNTRY CLUB OF VIRGINIA 

UNIVERSITY OF RICHMOND 
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Atrazine Glyphosates Carbaryl
H. versicolor 1.25 N/A 0.07

P. crucifer 0.003 No Effect at 3.8 N/A
L. catesbeiana 0.0025 0.018 0.5
S. holbrookii N/A N/A N/A

Lowest Concentrations of Concern (ppm)

Table 2: Results of the literature review, summarized by chemical, lowest concentration of concern for that chemical, 
and the name of the study from which the results were taken. 

Chemical Concentration (ppm) Study Name
Atrazine 0.0025 Dornelles & Oliveira 2016

Glyphosates 0.018 Dornelles & Oliveira 2016
Carbaryl 0.07 Relyea & Mill 2001

Lowest Concentrations of Concern

Table 1: Results of the literature review, summarized by target frog species. N/A indicates that no studies could be located for that 
species and pesticide. 
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Photo 1 - Gray Treefrog (Hyla versicolor) 
https://fw.ky.gov/Wildlife/PublishingImages/easterngraytreefrog2.jpg 

Photo 2 - Spring Peeper (Pseudacris crucifer) 
https://cottagelife.com/wp-content/uploads/2019/05/shutterstock_413167021.jpg 

Photo 3 - American Bullfrog (Lithobates catesbeianus) 
https://upload.wikimedia.org/wikipedia/commons/a/aa/North-American-bullfrog1.jpg 

Photo 4 - Eastern Spadefoot (Scaphiopus holbrookii) 
https://fw.ky.gov/Wildlife/PublishingImages/Easternspadefoot2.jpg 
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