Caesurae, Bridges, and the Colometry of Four Tocharian B Meteres

Christoph Bross

Dieter Gunkel
University of Richmond, dgunkel@richmond.edu

Kevin M. Ryan

Follow this and additional works at: https://scholarship.richmond.edu/classicalstudies-faculty-publications

Part of the Indo-European Linguistics and Philology Commons

This is a pre-publication author manuscript of the final, published article.

Recommended Citation
Bross, Christoph; Gunkel, Dieter; and Ryan, Kevin M., "Caesurae, Bridges, and the Colometry of Four Tocharian B Meteres" (2014). Classical Studies Faculty Publications. 26.
https://scholarship.richmond.edu/classicalstudies-faculty-publications/26

This Post-print Article is brought to you for free and open access by the Classical Studies at UR Scholarship Repository. It has been accepted for inclusion in Classical Studies Faculty Publications by an authorized administrator of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
Caesurae, bridges, and the colometry of four Tocharian B meters

Christoph Bross
Ludwig-Maximilians-Universität München
christoph.bross@lrz.uni-muenchen.de
Dieter Gunkel
Ludwig-Maximilians-Universität München
dieter.gunkel@lrz.uni-muenchen.de
Kevin M. Ryan†
Harvard University
kevinryan@fas.harvard.edu

Abstract

The Tocharians composed verse in hierarchical structures, with the verse dominating major cola, and the major colon in turn dominating one or more minor cola. After providing much-needed descriptive data on Tocharian meter, we assess the evidence for the distinction between major vs. minor caesurae in some of the most popular Tocharian B meters, finding support for the commonly assumed colometries in some but not all cases. Of particular interest is the recurring 4+3-syllable colon, since the violability of its internal (putatively minor) caesura varies significantly across meters. We argue that this varying strictness is indeed a function of the meter as opposed to position in the verse, verse length, idiosyncrasies of certain texts, and so forth. We then use a systematic prose comparison method to test the meters for bridges, finding evidence for monosyllable avoidance in (certain) colon-final positions, despite an overall preference for monosyllables in verse vis-à-vis prose. Finally, we discuss the implications that our study has for the restoration of fragmentary Tocharian texts.

Keywords: bridges; caesurae; colometry; corpus linguistics; metrics; Tocharian.

1 Preliminaries

In Tocharian B, poems are composed of stanzas that can be classified according to how many verses they contain and whether or not those verses are isosyllabic. Most stanzas consist of four verses, and most of those consist of four isosyllabic verses, e.g. 4x12 syllables, 4x14, 4x15, and 4x18. Anisosyllabic four-verse stanzas are not uncommon, e.g. 21/21/18/13, 14/11/11/11, and 20/22/10/15.

† We wish to thank Olav Hackstein, Ron Kim, Melanie Malzahn, Michaël Peyrot, two anonymous referees, and the audiences at the Forschungskolloquium zur historisch-vergleichenden Sprachwissenschaft (LMU Munich, 2013) and Tocharian Texts in Context (University of Vienna, 2013) for insightful questions, suggestions, and criticism.
There is one five-verse stanza, which is anisosyllabic, 13/13/13/13/21. The scribes often mark verse-end with a colon (:) or a raised dot (•), and they number the stanzas.

Caesurae articulate verses into cola. Longer cola are generally assumed to be subdivided into minor cola (e.g. Winter 1959; Malzahn 2012a: 34, 2012b: 154; Adams 2013: 3). For example, the 4x14 verse, which is usually composed of 4+3+4+3 syllables — referred to here as the “basic colometry” — contains two seven-syllable major cola (M), each of which contains two minor cola (m) of four and three syllables (σ). The hierarchical structure implicit in the standard metrical analysis can be represented as a tree diagram or with bracketing, as in Figure 1.

Verse

\[
\begin{array}{c}
M \\
m \\
M \\
m \\
m \\
((σσσσ)_m \\
(σσσ)_m)_M \\
m \\
(σσσσ)_M \\
\end{array}
\]

Figure 1: Hierarchical structure posited for 4x14 meter in Tocharian.

We will refer to this structure shorthand as [7||7] or [4|3||4|3], marking caesurae between putative major cola (major caesurae) with “|”, caesurae between putative minor cola (minor caesurae) with “||”, indicating violations of caesurae with “!” , and vowel sandhi with “⸗”, as in the following 4x14 stanza from the Udānālaṅkāra (THT 5 a4–6).

68a wñā-neś (po)yśi ‖ mā taṅ ṅyāṅtste ‖ (sol)antse :
68b mā rṣ asānmen ‖ laialne ‖ cem sklo kptärk ‖ pālskomen :''
68c kos twę ŋakta ‖ pelaikni ‖ (po) ąaišents ‖ ā’niaiwačci :
68d tary ąkṣa-ne ‖ pudũakte ‖ teki ktsaitsne ‖ srukalne 68

“The omniscient one spoke to him with compassion: ’Your life is not in danger, nor will you fall from the throne. Let this doubt go from your mind, even though, o master, unpleasant laws hold here for all the world.’

The Buddha proclaimed three to him: sickness; old age; and death.”

In addition to these metrical principles, a number of linguistic phenomena involving various components of the grammar are either confined to, or particularly frequent in, verse (cf. Pinault 2008: 401-405 and 6.2 below).

1 There is also one fragmentary poem apparently composed in two-verse stanzas, 2x14 (THT 133).
Evidence for a distinction between major and minor cola

The assumption of a specifically hierarchical distinction between major and minor cola in Tocharian is intuitive for 4x14 due to the rhythmic symmetry of the verse, i.e. the repetition of 4+3-syllable sequences. In verses without this symmetry, e.g. 4x12 (5+4+3), 4x15 (4+3+3+5), and 4x18 (4+3+4+3+4), the recurrence of 4+3 across the meters, especially verse-peripherally, is suggestive of its metrical coherence. Positing hierarchical structure within the verse permits insightful analyses of various metrical phenomena (cf. Prince 1989; Hayes and MacEachern 1998; Kiparsky 2006; Hayes 2010: 2515-2516). For example, the analysis of the iambic metron of Ancient Greek tragic trimeter given in Figure 2, which involves both hierarchical structure and a strong vs. weak distinction, allows for an intuitive explanation of the asymmetry between the anceps position (x) of the weak foot and the brevis (~) of the strong one.

Any asymmetry in the way that the Tocharian B poets composed cola can thus in principle reflect a difference in their metrical status. Whether that difference involves hierarchical structure, binary distinctions such as strong vs. weak, or something else, is a different matter, which we return to in Section 4. Crucially, however, it must be shown that such an asymmetry should be attributed to the meter per se rather than to some other aspect of the language, e.g. the syntax.

2.1 Distribution of clitics

Winter (1959) identifies such an asymmetry in the distribution of the sentential clitics ra, ka, spä, and no in 7-syllable cola in several Tocharian B meters. Positing the sort of structure given for 7-syllable cola in Figure 1, he points out that the clitics occur at the end of the minor colon (σ) ca. twice as often as they do at the end of the major colon (σ).

\[
(σσσσσσσ) (σσσσσσσ) \]

In a more thorough examination of the phenomenon, Malzahn (2012b) argues convincingly that the distribution should be attributed in the main to an aspect of Tocharian B syntax, specifically to the localization of second position clitics ("Wackernagel's Law"). Of the 205 sentential clitics in her

Winter considers both positions to be metrically weak; Malzahn (2012a, 2012b) argues that they are strong. On either analysis, the asymmetry — if metrical — would therefore be due to the major vs. minor distinction, not the strong vs. weak one.
verse corpus, 93% follow the first "orthotonic" word in their syntactic clause, just as they do in prose. Malzahn's study exemplifies the need to rule out potential confounds from syntax and other areas of the grammar when studying meter. Since poetic and prose texts in Tocharian B are roughly contemporary and compatible in genre, prose provides an excellent baseline for comparison. Any systematic differences between verse and prose can then be ascribed to the meter or to other characteristics proper to versification.5

2.2 Caesura violability

Von Gabain and Winter (1958: 33-34), the first to propose a distinction between major and minor cola, characterize the minor caesurae as more readily violable than major ones:

Wir dürften damit berechtigt sein, neben festen Hauptzäsuren auch Nebenzäsuren anzunehmen, d. h. fakultativ aufhebbare Grenzen zwischen Unterabschnitten innerhalb der Kolen.6 (von Gabain and Winter 1958: 34)

This characterization is repeated in Winter (1959) and later work, but has not yet been systematically studied. Accepting Malzahn's analysis of clitic distribution in verse, caesura violability is to our knowledge the only remaining diagnostic that has been proposed for the distinction between major and minor cola in Tocharian.

3 Violability in four meters

In this section, we investigate the violability of the caesurae in 4x12, 4x15, 4x14, and 4x18. We compare the violability of putative major caesurae with putative minor caesurae, and find that the caesurae in 4+3-syllable sequences differ significantly from other caesurae in the same meter. This can be taken as evidence for their minor status and supports the standard colometries found in recent descriptions of Tocharian meter. Against the standard colometries, however, caesura violability provides no evidence for the minor status of the caesura after the 10th syllable in 4x15. The following generalization holds for the meters studied here: from the standpoint of violability, the caesurae in 4+3-syllable sequences are minor caesurae; the others are major caesurae.

3.1 Caesura violations in 4x12 (5+4+3)

The colometry of 4x12 (5+4+3) is standardly given as [5||7], with two major cola.7 Given the standard analysis of 4+3 sequences ("7ers"), this implies [5||4|3]. If the poets' preference for respecting the major caesura is stronger than their preference for respecting the minor one, we would expect them to violate the caesura after the 9th syllable significantly more frequently than the one after the 5th. Figure 3 plots the incidence of word boundary in 4x12, based on a corpus of 317 verses.8 Since the manner in which the poets realize caesurae suggests that they treated

6 "In addition to strict major caesae, this permits us to posit minor caesae, i.e. optionally violable boundaries between subconstituents within the cola." (Present authors' translation)
7 There is another, much less common 4x12 meter with 4+4+4 colometry.
8 The corpus consists of 12-syllable verses from the following texts: PK AS 16.3 (4 verses); PK AS 7B (33); PK AS 7C (47); PK AS 7D (9); PK AS 7K (27); PK AS 7M (41); PK NS 22 (8); THT 123 (2); THT 132 (2); THT 14 (29); THT 21 (36); THT 22 (47); THT 235 (2); THT 244 (8); THT 284 (22). Some of these verses are fragmentary. For such verses, we counted only positions for which the presence or absence of a boundary could be securely determined. It follows that the counts on
sequences of a lexical word followed by a monosyllabic clitic as a single word, we did so as well in both the verse and prose corpora.\(^9\)

Note that the numbers along the x-axis of the plot represent verse-internal word boundaries. The peaks at 5 and 9 reflect the caesurae after the 5\(^{th}\) and 9\(^{th}\) syllables. In support of the major vs. minor distinction, there is a boundary after 5 in 99.3\% of the verses, and after 9 in only 87.0\%. The error bars give a sense of which differences are significant; the absence of any overlap between the error bars at 5 and 9 in the plot suggests that the difference is significant.

We can confirm the statistical significance of the difference with Fisher’s Exact Test of Independence. We see from Table 1 that 38 of 547 caesurae are violated, and that 36 of those violations occur after 9. Assuming the null hypothesis that the poets treat the caesurae equally, Fisher’s Exact Test tells us what the probability is that the violations would be at least this unevenly distributed. The probability (\(p\)) is less than .00001, meaning that a difference this great would have arisen by chance less than .001\% of the time; we take \(p\) values less than .05 to be significant. Caesura violability thus supports the \([5|4|3]\) colometry.

![Figure 3: Percentage of verse-internal word boundaries in 4x12 meter. Error bars are 95%-confidence Clopper-Pearson (1934) intervals for proportions.](image)

We took the following clitics into account: \textit{ka, kca, ksa, ñke, nai, no, nta, pi, ra, ram(t), wa, wat, spä|šâp, šai|šey, ste, tsa.}\n
\(^9\) We took the following clitics into account: \textit{ka, kca, ksa, ñke, tne, nai, no, nta, pi, ra, ram(t), wa, wat, spä|šâp, šai|šey, ste, tsa.}
The opening stanza of the following passage of the Tocharian B version of the *Karmavibhaṅga* (PK AS 7B a4–a5) is fairly representative of the 4x12 corpus as a whole. The caesura after 5 is respected throughout, and the caesura after 9 is violated once, in verse 1b. Note that host-enclitic groups are joined with “+” here and throughout.

```
1a weñau n, nok yakne(m) || yāmōrntats tū || pāklyauṣso :
1b krenta yolaimnts || ētrīwaitsā' namts rano :
1c te keklyauṣormem || epastaṇñe || yāmnacer
1d yāmornā yāmsti || mā+spā trisme || makā-ykne :
```

“I will further tell the ways of the deeds—listen to this—of good and bad ones, of mixed ones also.

Having heard this, you will obtain the skills
to do deeds and you will not err in many ways.”

3.2 Caesura violations in 4x15 (4+3+3+5)

In 4x15, the 7er occurs verse-initially. According to the standard analysis, there are two major cola [7||8]; given the basic colometry 4+3+3+5, this would imply the structure [4|3||3|5]. However, the boundary data in Figure 4, based on a corpus of 242 verses, reflect caesurae after syllables 4, 7, and 10. As noted by Stumpf (1971a: 72 with fn. 10), the number of violations decreases numerically towards verse end with the caesura after 10 being the most rigidly enforced.

![Figure 4: Percentage of verse-internal word boundaries in 4x15 meter.](image-url)

The poets violate the caesura after 4 significantly more frequently than the caesura after 7 \((p < .00001)\) and 10 \((p < .00001)\), supporting its minor status. While the putative major caesura after 7 is violated slightly more frequently than the putative minor caesura after 10, the difference can be

10 There is no support for the supposed alternative colometries 8+7 and 6+4+5 (Bross, Gunkel, and Ryan forthcoming).

11 The corpus consists of 15-syllable verses from the following texts: PK AS 6A (22 verses); PK AS 6B (24); PK AS 6C (26); PK AS 7H (27); PK AS 7I (36); PK AS 7J (14); THT 28 (18); THT 29 (29); THT 29.1a (7); THT 30 (39).
attributed to chance ($p = .25$), as suggested by the overlapping error bars in Figure 4. From the standpoint of violability, 4x15 could have the structure $[4|3||3||5]$ with three major cola (Bross, Gunkel, and Ryan forthcoming), though independent considerations, such as the symmetry of cola and the bridge data discussed in Section 7, might favor the traditional $[4|3||3||5]$ colometry.

<table>
<thead>
<tr>
<th>Caesura after 4</th>
<th>Violated</th>
<th>Not violated</th>
<th>Row total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Caesura after 7</td>
<td>67 (29.3%)</td>
<td>162</td>
<td>229</td>
</tr>
<tr>
<td>Caesura after 10</td>
<td>13 (5.8%)</td>
<td>212</td>
<td>225</td>
</tr>
<tr>
<td>Column total</td>
<td>7 (3.2%)</td>
<td>211</td>
<td>218</td>
</tr>
</tbody>
</table>

Table 2: Violations of caesurae after syllables 4, 7, and 10 in 4x15 meter.

Stanza 23 of THT 30 (a2–3) is representative of 4x15 meter. The caesura after 4 is violated once in verse 23c, and the other caesurae are respected.

```
23a cets ce, silñe | pälskontse | lakle+spä | wikässi poyši :
```

```
23b toṃ ślokanna | wertsyaine | ākṣa cets | palko tsärwässiš ·
```

```
23c emšketse ā’ratsiśco | yātatsiś | astarñeš šeko :
```

```
23d serke cmelñe | srukalñents- | emšketse | nautalñe yāmtsi 23
```

“To dispel this mental depression and sorrow of theirs, the omniscient one proclaimed these stanzas in the assembly to comfort their mind:

‘For permanent cessation, for continual capacity for purity, for permanent dispersion of the cycle of birth and death, ...’

3.3 Caesura violations in 4x14 (4+3+4+3)

In contrast to 4x12 and 4x15, the putative minor caesurae after syllables 4 and 11 in 4x14 are nearly as strictly enforced as the putative major caesurae. The boundary data in Figure 5 are based on a corpus of 265 verses.\[12\]

\[12\] The corpus consists of 14-syllable verses from the following texts: PK AS 16.2 (4 verses); PK AS 16.3 (3); PK AS 7A (15); THT 127 (8); THT 204 (13); THT 205 (1); THT 228 (12); THT 229 (9); THT 232 (23); THT 240 (3); THT 241 (27); THT 249.a (2); THT 254 (1); THT 255 (37); THT 274 (22); THT 295 (32); THT 296 (7); THT 4 (7); THT 5 (39).
The major caesura after 7 is never violated (in 250 relevant verses), while the minor caesurae after 4 and 11 are violated 9 and 8 times, respectively (in 254 and 252 relevant verses). While numerically small, both differences are significant ($p = .004$ and $p = .007$, respectively). Viability thus supports the standard analysis, $[4|3||4|3]$.

3.4 Caesura violations in 4x18 (4+3+4+3+4)

The colometry of 4x18 is standardly given as $[7||7||4]$, implying $[4|3||4|3||4]$, as if it were a 4x14 verse plus a 4-syllable colon. The boundary data in Figure 6, based on a corpus of 102 verses,\(^9\) support this colometry to a limited extent. The caesura after 14 is the strongest, being unviolated, and is borderline significantly different from the (putatively minor) caesurae after 4 and 11 ($p = .03$ in both cases), but not from the (putatively major) caesura after 7 ($p = .24$).\(^4\) Nevertheless, none of the caesurae after 4, 7, or 11 is significantly different from the others. The numerical trends, for their part, support $[4|3||4|3||4]$, with the caveat that not every "||" is significantly different from every "|" in this scheme. Given the relatively small size of the corpus and the ceiling effect, the p-values are not particularly informative in this case.

\(^9\) The corpus consists of 18-syllable verses from the following texts: IOL Toch 5 (22 verses); PK AS 4A (22); THT 10 (2); THT 11 (30); THT 221 (1); THT 266 (3); THT 271 (5); THT 296 (2); THT 8 (15).

\(^4\) If these p-values are corrected with a penalty for multiple comparisons (such as the Bonferroni correction), the two .03 values cross over .05. They may therefore be regarded as at best borderline in terms of significance.
The following stanza from PK AS 4A b2-4 (Udānastotra) is representative of 4x18 meter:

\[\begin{align*}
27a & \text{paiykalñesa} | \text{drohāvarga} | \text{akāl kṛitār-ñi} | \text{serkene} | \text{po cmelaśše} : \\
27b & \text{mamāntaś+ra} | \text{yolainne} | \text{mā ni t(ā)koy} | \text{māntalyñe} | \text{kṣe+ṣ krentāṁmne} : \\
27c & \text{kausuentai+ra} | \text{samañe} | \text{mā wer śono} | \text{wsi-ñā+nta} | \text{tarkoym traṅko} : \\
27d & \text{aknātsaimpa} | \text{še śmalyñe} | \text{mā ni tāko,} | \text{sāninmar} | \text{krentāṁmp-e eše 27} \\
\end{align*}\]

“May my wish come true in the circle of all births through the writing of the Drohavarga.

May I not bear malice towards an evil person, even if he is malicious, let alone towards those who are good.

May hate and enmity not reside in me at all, even towards a murderous enemy, and may I abandon sin.

May I not meet with an ignorant one, and may I come together with good people.”

4 Putative minor caesurae in the four meters

The poets treat the internal caesurae in 7ers significantly differently in at least three of the four meters. Figure 7 illustrates the variance in violability; the 7ers are arranged from most to least frequently violated and underlined.

\[
\begin{align*}
4\times\text{15} & (N=244) & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{70.7} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{94.4} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{96.8} \\
4\times\text{12} & (N=317) & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{99.3} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{87.0} \\
4\times\text{18} & (N=102) & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{94.3} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{97.7} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{94.4} \\
4\times\text{14} & (N=265) & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{96.5} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{100} & \sigma\sigma\sigma & |^{\sigma\sigma\sigma}_{96.8} \\
\end{align*}\]

Figure 7: Variance in violability of 7er-internal caesurae.
This cannot be a function of verse length or of verse-initial vs. verse-final location of the colon, as is clearly demonstrated by the near inviolability of both minor caesurae in 4x14. Nor can it be attributed to the difficulty of metrifying relatively long words in meters with relatively short cola. That would make the opposite prediction. For example, although 5-syllable words can be metrified more comfortably in 4x12 (5+4+3) than in 4x14 (4+3+4+3), the latter exhibits a less violable 7er-internal caesura.

We also checked whether certain texts in our corpus were skewing the results. It would be thinkable, for instance, that 7ers in 4x12 are generally quite rigid except in a particular text or group of texts, which could in turn be due to genre, the practice of particular poets, etc. That turns out not to be true: the violations in 4x12 and 4x15 are quite consistent across texts (cf. Figure 8 and Figure 9). For post-4 violations in 4x15, the mean per text is 27.9%, the median 29.9%; for post-9 violations in 4x12, the mean is 9.2%, the median 7.9%. An unpaired t-test on these two vectors is significant ($t(15) = -4.0, p = .001$). Thus, taking texts rather than lines as units of analysis, 4x15 is consistently the most violable, followed by 4x12, followed by 4x18 and 4x14, where the minor caesurae in 7ers are nearly inviolable and thus extremely consistent across texts.

![No Break after 4 in 4x15](image)

Figure 8: Violations after syllable 4 in 4x15 meter across texts. The counts on which each percentage is based are given above the bar (x exceptions/n lines in text).
The data invite us to consider the hypothesis that the violability of 7ers is a function of the flexibility of the meter as a whole. The most violable 7er-internal caesura is in the meter that also has the most violable major caesura, and the least violable ones are both in 4x14, which also has the strictest major caesura, perhaps encouraged by its symmetry. Furthermore, a sample of three stanzas from each of the meters suggests that enjambment is most frequent in 4x15, and least frequent in 4x18 and 4x14. The correlation is not perfect in either case, however, since 4x12 and 4x18 do not conform to the expected order.

5 Interim summary

To summarize, in Section 3 we showed that the caesurae in 4+3 sequences (“7ers”) are significantly more violable than the other caesurae in the same meter, supporting their minor status. In Section 4, we demonstrated that the violability of the minor caesurae in 7ers is also significantly different across meters. In other words, the 7ers are different from each other. This variance in violability of 7er-internal caesurae cannot be attributed solely to a categorical major vs. minor distinction of the sort sketched in Section 2. It appears to be a function of the meter, and may not be a property that is confined to 7ers, but a property of the meter as a whole.

6 Word boundary incidence in verse and prose

So far, we have examined the poets’ treatment of caesurae using meter-to-meter comparisons. Prose-based comparison is useful for assessing possible bridges in the meters, which, if present, are subtler than caesurae in Tocharian B verse.

6.1 Prose corpus

For this purpose, we assembled a 2,107-word corpus consisting of the non-metrical, non-fragmentary passages from the following texts: THT 88, 107, 108, 192, 560; IOL Toch 4, 178, 247–248;
PK AS 17 A–D, H–K, 16.2–3. The tests require us to identify intonational constituents (ICs) in the prose corpus. We assume that the following clause- and phrase-level syntactic constituents were mapped to Intonational Phrases (cf. Nespor and Vogel 2007; Selkirk 2011); scribal punctuation after these constituents was apparently optional, but provides some support for their reality.

<table>
<thead>
<tr>
<th>Constituents</th>
<th>Examples of punctuation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clause-level</td>
<td></td>
</tr>
<tr>
<td>Statements</td>
<td>THT 88 a1; IOL Toch 247 a5</td>
</tr>
<tr>
<td>Commands</td>
<td>IOL Toch 248 b6</td>
</tr>
<tr>
<td>Questions</td>
<td>THT 88 b3</td>
</tr>
<tr>
<td>Correlative clauses</td>
<td>IOL Toch 4 a5</td>
</tr>
<tr>
<td>Conditional protases</td>
<td>IOL Toch 247 b1</td>
</tr>
<tr>
<td>Temporal and causal clauses</td>
<td>IOL Toch 247 a3</td>
</tr>
<tr>
<td>Absolut(iv)e constructions</td>
<td>IOL Toch 178 b8</td>
</tr>
<tr>
<td>Relative protases</td>
<td>IOL Toch 248 a6–b1</td>
</tr>
<tr>
<td>Circumstantial participial clauses</td>
<td>——</td>
</tr>
<tr>
<td>Complement infinitive clauses</td>
<td>——</td>
</tr>
<tr>
<td>Phrase-level</td>
<td></td>
</tr>
<tr>
<td>Noun phrases in lists</td>
<td>PK AS 16.3 b2–3; THT 108 b4</td>
</tr>
<tr>
<td>Utterance-initial vocatives</td>
<td>THT 107 b1</td>
</tr>
<tr>
<td>Utterance-initial interjections</td>
<td>IOL Toch 247 a5–6</td>
</tr>
</tbody>
</table>

Table 3: ICs in prose.5

The following passage (THT 88 a4–5) illustrates our identification of ICs in the prose corpus.

(tu lyelyakormen) (vrkšavāsike řakte śle māntsalyñe śanoś weśṣam)
this see:ABS tree.dwelling god with sorrow wife:ALL say:3SG.PRS
(lariya) (pālka+nai mā-šekamñe wāntarwats sparkālye āke)
dear see:SG.IPV-PTC impermanence thing:GEN.PL disappearance end

“Having seen this, the tree-dwelling god says to his wife with sadness:
‘Darling, look at the impermanence of things and their ultimate disappearance!’”

We treated host-enclitic units in the prose corpus in the same way that we treated them in the verse corpora.

6.2 Average word length

An important difference between the prose corpus and the metrical corpus is the average length of words: 2.5 syllables in prose vs. 2.2 in verse. This is likely due in great part to the restrictions that colon size places on verse composition. In 4x14, for example, a word of 5 or more syllables cannot be localized anywhere in the verse without violating a caesura, and 4-syllable words can only be localized spanning positions 1–4 or 8–11. A simple way to quantify average colon size for the different metrical corpora is to divide the number of syllables per verse by the number of cola. This gives a kind of average ideal colon size, since it does not take differences in caesura violability into

5 IOL Toch 248 a3 may provide an example of punctuation after a new (i.e. non-given) topic, uppalavarṇaññ aśīyantse ...
"To the nun Utpalavāṇñ ...".
account. The relationship between colon size and verse length is given in Table 4; all monosyllables are treated as autonomous words.

<table>
<thead>
<tr>
<th></th>
<th>Average colon size</th>
<th>Average word length</th>
<th>Number of words</th>
</tr>
</thead>
<tbody>
<tr>
<td>4x14</td>
<td>3.5</td>
<td>2.167</td>
<td>1645</td>
</tr>
<tr>
<td>4x18</td>
<td>3.6</td>
<td>2.162</td>
<td>748</td>
</tr>
<tr>
<td>4x15</td>
<td>3.75</td>
<td>2.206</td>
<td>1536</td>
</tr>
<tr>
<td>4x12</td>
<td>4</td>
<td>2.170</td>
<td>1544</td>
</tr>
<tr>
<td>Prose</td>
<td></td>
<td>2.452</td>
<td>2066</td>
</tr>
</tbody>
</table>

Table 4: Correlation between average ideal colon size and average word length.

The word length data is plotted in Figure 10. It is clear that longer words are avoided in verse. The higher percentage of shorter words in verse is at least in part an artifact of the underrepresentation of longer words, but the higher skew of monosyllables towards verse than di- or trisyllables seems to reflect a favoring of monosyllables in particular, perhaps because they were useful to fill out cola or to fill particular (e.g. weak) metrical positions. We leave this topic for further investigation.

The poets employ various tactics to avoid longer words in verse, several of which are exemplified in the stanzas cited above. These include choosing between lexical and morphological alternatives, e.g. the choice between -toolbar and -toolbar ‘(together) with’ in 4x18 and the use of nominative plural -toolbar in 4x14 for regular -toolbar -toolbar ‘laws’ (cf. Peyrot 2008: 115-116), morphophonological deletion of underlying “weak” vowels, e.g. -toolbar for -toolbar -toolbar ‘in the assembly’ in 4x15 (cf. Winter 1990), and vowel sandhi, e.g. -toolbar for -toolbar -toolbar -toolbar ‘PTC throne:ABL’ and -toolbar -toolbar for -toolbar -toolbar -toolbar ‘world:GEN unpleasant:NOM.PL’ in 4x14 (cf. Stumpf 1971b). This is

6 No words of 6 or more syllables occur in the verse corpus; the three tokens that occur in the prose corpus, one each of 7, 9, and 10 syllables, are not plotted.
not to say that the poets simply shorten words wherever they can, of course. In syllable-counting meters, processes that affect syllable count — including augmentation processes such as the retention of an underlying word-final high vowel as “mobile” -o or -ä, e.g. şeko for şek in 4x15 and wși-ńä for wși-ń in 4x18 (cf. Malzahn 2012a) — are more generally useful. In the aggregate, however, words are shorter in verse than they are in prose.

7 Bridges

Metrical bridges are positions within the verse where poets avoid word boundary. Generally speaking, in order to identify bridges, we want to compare the incidence of colon-internal word boundaries that we observe in verse with what we would expect if the poets were only concerned with respecting caesurae. We can model this expectation by using the syntactic/intonational constituents (ICs) from our prose corpus to construct pseudo-verse corpora with caesurae to match the actual verse corpora. In addition to matching caesura position and frequencies, we require the beginnings and endings of constructed verses to align with beginnings and endings of prose ICs, which mimics the poets’ avoidance of enjambment. Drawing from prose ICs at random and respecting these constraints, we assembled a 100,000-verse corpus for each of the four meters.

A general pattern that emerges in the following four figures is that there are fewer word boundaries than expected in colon-penultimate position. In the plots, these are the points where the solid line dips below the broken one. This holds for all colon-penultimate positions in all four meters, but not for all verse-penultimate positions.

Figure 11: Observed vs. expected boundary incidence in 4x12 meter.
Figure 12: Observed vs. expected boundary incidence in 4x15 meter.

Figure 13: Observed vs. expected boundary incidence in 4x14 meter.
To test for the significance of the difference between the observed and expected boundary incidence in these positions, we employ a χ^2 Goodness of Fit Test. Table 5 gives the observed vs. expected boundary incidence after position 6 in 4x15, one of two potential bridge positions where the discrepancy is significant ($p = .0008$), even at a Bonferroni-corrected criterion. This indicates a difference between the poets’ treatment of the second and third colon and could be taken to support the traditional colometry [4|3]|3|5].

<table>
<thead>
<tr>
<th>Source</th>
<th>Boundary</th>
<th>No boundary</th>
</tr>
</thead>
<tbody>
<tr>
<td>Observed</td>
<td>21 (9.1%)</td>
<td>209</td>
</tr>
<tr>
<td>Expected</td>
<td>17,495 (17.5%)</td>
<td>82,505</td>
</tr>
</tbody>
</table>

Table 5: Observed vs. expected boundary incidence after syllable 6 in 4x15 meter.

However, neither the other significant bridge after 8 in 4x12 ($p = .003$) nor the borderline significant caesura after 3 in 4x14 ($p = .015$) is associated with a major caesura.\footnote{The p-values for the other positions are as follows. 4x12: 4 ($p = .10$), 4x15: 3 ($p = .07$); 9 ($p = .86$), 4x14: 6 ($p = .20$); 10 ($p = .21$), 4x18: 3 ($p = .45$); 6 ($p = .97$); 10 ($p = .51$); 13 ($p = .25$).} The motivation for the bridges remains unclear.

8 Implications for textual restoration

The relatively fragmentary state of the Tocharian corpus regularly requires editors to propose restorations. This can be done with a fair degree of accuracy, especially in cases where parallel texts in other languages exist, which often supply the approximate content of the lacunae. In addition to obvious restrictions such as the physical size of the lacuna in the manuscript, the meter constrains the number of possible restorations. The more exact understanding of the meters that we have arrived at requires that editors review restorations that have already been proposed and
check whether they respect the compositional practice of the Tocharian poets. The same holds for new conjectures. We briefly exemplify a number of potentially problematic restorations below.

The restoration of verse 71a at THT 5 b1 proposed by Sieg and Siegling (1949: II, 10 fn. 6) violates the caesura after the 11th syllable in 4x14 and thus has only a 3.2% chance of being correct from a metrical standpoint, to judge from our corpus, where that caesura is violated in 3.2% of the verses.

\[71a \text{ mäkte meski } \overset{\text{śeśś}}{\text{(anmoṣ}} \overset{\text{koklentse}}{\text{sänmänmasa)} :} \]

“Just as the joints (of the chariot are connected with straps), ...”

Changing the order of the last two words to \(\overset{\text{sänmänmasa koklentse}}{\text{śeśś}} \) would yield a metrically unproblematic restoration.

Restorations that violate the caesura after the 10th syllable in 4x15 likewise have only a 3.2% chance of being correct according to our data.

PK AS 7J a2 (restoration proposed by Sieg 1938: 44-45)

\[79c \text{ takāññene} \overset{\text{śpā wlaśke}}{\text{yetse (māśketrā cmelane :)}} \]

“And his skin (is) soft to the touch (in the rebirths).”

PK AS 6A b1–2 (restoration proposed by the CEToM editors)

\[12d \text{ (kā́)rt(au)n(e)nta } \overset{\text{kraupamar}}{\text{mā̃(ka spān'taitse) nervānne 12}} \]

“I will accumulate virtues in gre(at number having faith) in the nirvāṇa.”

Restorations that violate the caesura after 7 in 4x15 have a 5.8% chance of being correct, e.g. the restoration proposed by Sieg and Siegling (1949: II, 50 fn. 8) for THT 30 b1–2

\[28d \text{ keše aiksnar } \overset{\text{wā(ntoṣ rup'ne swānçaintsa ye)t(se) yśāsse 28}}{\text{swañcaintsa cwi ye)t(se) ysāsse 28}} \]

“... the golden (skin of his body, covered) completely with fathom-wide (rays).”

The metrical abnormality of their restoration was discussed by Thomas (1983: 197), who suggests a metrically more regular regular alternative:

\[28d \text{ keše aiksnar } \overset{\text{wā(ntoṣo}}{\text{ swańcaintsa cwi ye)t(se) yśāsse 28}}{\text{swañcaintsa cwi ye)t(se) yśāsse 28}} \]

“... (his) golden (skin, covered) completely with fathom-wide (rays).”

A restoration that violates the minor caesura after the 9th syllable in 4x12 has a 13% chance of being correct from a metrical standpoint.

PK AS 7B b6 (restoration proposed by Sieg 1938: 10)

\[8d \text{ mā kwipeññentra } \overset{\text{mā onmi(m ya'maske)n(trā)}}{\text{mā onmi(m ya'maske)n(trā) 8}} \]
“They are not ashamed, they do not show remorse.”

There are of course metrically aberrant verses in Tocharian poetry, which means that a metrically abnormal restoration is not impossible. The point of this section is that restorations should roughly follow the metrical practice of the poets as quantified and analyzed in this study.

9 Summary

Caesura violability provides evidence for the following colometries, with the caveat that in the relatively small 4×18 corpus, not every major caesura (“||”) is significantly different from every minor caesura (“|”). An overview of this is provided in Table 6.

<table>
<thead>
<tr>
<th>Meter</th>
<th>Colometry</th>
</tr>
</thead>
<tbody>
<tr>
<td>4×12</td>
<td>5</td>
</tr>
<tr>
<td>4×14</td>
<td>4</td>
</tr>
<tr>
<td>4×15</td>
<td>4</td>
</tr>
<tr>
<td>4×18</td>
<td>4</td>
</tr>
</tbody>
</table>

Table 6: Colometries of four Tocharian B meters.

From the standpoint of violability, all caesurae in 4+3 sequences are minor, and all other caesurae are major. Systematic comparison with prose texts reveals avoidance of colon-final (but not verse-final) monosyllables. It is unclear whether these bridge-like phenomena are metrical in nature or otherwise motivated.

The violability of the internal caesurae in the 4+3 sequences (“7ers”) in 4×12 and 4×15 also varies significantly across meters. This cannot be explained by a categorical distinction between major and minor metrical constituents alone. It appears to be a function of the individual 7ers or of the individual meters.

References

