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THE SECRETARY PROBLEM WITH A CALL OPTION* 

1 Johns. Rose 

University of Richmond 

In addition to accepting or rejecting a candidate arriving at 

timer, we may consider purchasing an option at a cost ex to recall 

the candidate at time r+x, but this privilege may be invoked only 

once. For large sample size, using the best - choice criterion and 

deducting option costs, the optimal strategy and return are 

obtained. 

Secretary problem; optimal choice, recall 

1. Johns. Rose, Department of Management Systems , Robins Schoo l 

of Business, _University of Richmond, Richmond, VA, 23173. 

* Partially supported by grants from the DuPont Company and the 

Committee on Faculty Research, University of Richmond. 



1. INTRODUCTION AND SUMMARY 

The classical model of the secretary problem can be found in 

Gilbert and Mosteller (3, Section 2a] or De Groot [2, pp. 325-331], 

and its solution is reviewed briefly in the next section. A 

restrictive assumption of the model is the impossibility of re-

' calling previously rejected applicants. This restriction was 

relaxed by Yang [7] .: at any stage of the process we may attempt to 

recall a previously _rejected applicant, whose availability is 

uncertain and (maybe) stochastically decreasing in time. Others 

have subsequently extended Yang's work; see Corbin [1] or Petruc­

celli [SJ. A different approach to the recall issue is proposed 

here. 

Let n be the population siz~ and suppose that, at some stage 

m, we observe an applicant which is preferable to the m-1 previously 

sampled, and rejected, applicants. Then, this applicant is a 

candidate (for the best). If we select (reject) the candidate, 

then we risk (not) finding a better one among the n-m applicants 

yet unsampled. In order to mitigate this risk, we may purchase an 

option granting us the privilege to recall the candidate at stage 

m+k, k=l, ••• , n-m. The cost to acquire such an option is bk, b~O. 

If the option is acquired, we say that we are holding the 

candidate fork periods; the interval {m+l, ••• , m+k} is called the 

holding period. The essential operational difference between our 

model and Yang's is that we must decide at the time of observation 

whether or not we shall later have the option to recall the 

candidate. 
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In Rose ["6), the call options were renewable, so it was suf­

ficient to consider only the one-stage holding period, k=l. Here, 

we expressly prohibit renewal so that the duration, k, of th ,e 

holding period becomes a crucial decision variable •. Conseque~tly, 

if no better applicant is observed during the holding period, the 

option will be exercised and the candidate selected - clearly, in 

this context, it is suboptimal to purchase an option and then let 

it expire. Should a better applicant appear during the holding 

period, then we might take out another option to recall this new 

candidate, giving rise to the rather awkward situation . in which 

two, or even more, applicants are being held simultaneously. This 

phenomenon is under investigation and will be reported on else- . 

where1 to avoid that complication here, assume that we are permit­

ted to hold only one candidate. Then, a better applicant appearing 

during the holding period will be accepted or rejected according 

to the classical procedure. Our qoal is to determine at what 

stages a candidate should be held, and for how long, in order to 

maximize the probability of selecting the best applicant less the 

holding costs. 

In the next section, letting n-+<o and _~O s~ch that nb+c, the 

infinite model is derived from the finite problem introduced 

above. The solution to the infinite model is summarized in the 

following theorem, whose proof is reiegated to Section 3. The 

function U(•) defined on [O,l) denotes the optimal return functioni 

see (1) and (8). The dependence of U on c is suppressed. 
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rHEOREM I~ If c~l, then the cl~ssical procedure is optimal and 

-1 U(r)=max{e , r}. 

II. For OSc<l, there exist s
1 

(c) and ·s 2 (c), with 

O<s
1

ss
2

<1, such that, for a candidate arriving at timer, it is 

optimal to: 

a. reject , rss 1; 

b. hold until time r/c, s 1<rss 2t 

c. hold until time 1, s 2 <r<l, 

provided that no candidate has been held previously. Furthermore, 

d. 
-1 

e <r/c<l, for s 1<rss 2 t 

e. 

f. 

g. s
1 

and s 2 are increasing inc. 

III. For OSc<l, there .exist t 1 (c), t 2 (c), t 3 (c), t 4 (c), 

with O<t
1
st

2
st

3
st

4
<1, such that 

a. 

b. 

c. 

d. 

e. 

f. 

U(r)=U(tl), rstl; 

. -1 
U(r)=cr+e +rlog r/c, t 1<rst 2; 

-1 U(r)=cr+e +r-c, t 2<rst
3

; 

U(r)=cr-rlog c, t 3<rst 4 ; . 

U(r)=cr-rlog r+r-c, t 4<rSl; 

U(O)Se- 1+e-J/Z_ 

-1 
Note that, from (II.a,e), applicants arriving prior to c 1e , 

or approximately 12\ of the population, will be rejected automa­

tically, even if the option cost, c, vanishes. Holding a candid­

ate too soon, we may encounter a better applicant before time 
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-1 e , in which case nothing has been gained - the new applicant 

will be rejected according to the classical procedure • . There 

would be no such lower bound on s 1 (c) if several applicants could 

be held simultaneously. Even when c=O, the maximal return is only 

-1 -3/2 , e +e , the upper bound in (III.f), which is a relative 

-1 improvement of about 60% over the classical return, e • Again, 

if options could be taken on several applicants, then we should 

get U(O)=l for c=O. 

Also, consider (II.b,d,f). If c is not too small, then there 

.are times, r, for which it is optimal to hold for a period r/c-r, 

which is only part of the time remaining, 1-r. Contrast this 

result with those of (1; Special Case C-Additively Decreasing 

Recall, p. 211, in which it is optimal to observe the entire 

population before attempting recall, or of (61, in which it is 

optimal to renew the option until the end of the process an~ only 

then to exercise it. According to (II.d,e), we should hold a 

candidate appearing somewhat earlier than e-l until some time 

later than e- 1, which is the critical cut-off time for the classical 

problem (see (7)). Finally, it is implied in (II.a,b,c) that a 

candidate is accepted immediately upon its arrival only if the 

call option alternative was used to hold an earlier applicant. 

Numerical solutions of the finite problem 

are displayed in Table 1. Fortunately, these results 

are fairly well approximated by the solution of the infinite model 

as given in the Theorem. 
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2. FINITE AND INFINITE MODELS 

The optimality equations follow from the customary backward 

induction argument of dynamic programming. Keep in mind that our 

(net) return isl .or O minus option price. Define two events: 

A ={candidate appears at stage m}, and B ={first rn-1 applicants rn m . 

rejected}, rn=l, ••• , n. Let U (m) denote the maximum expected n 

return · given A and B. Also conditioning on A, let v (m,k) be rn rn rn n 

the probability that the best applicant is chosen, given that the 

candidate is held fork periods. Finally, let v (m) denote the 
n 

maximum expected return, given B 
1

• Then, 
rn+ 

U (m) = max {m/n, v (m), V (m,k)-bk}, n n n 
k=l, ••• ,n-m 

(1) 

where the three bracketed terms in (1) are the returns expected 

from accepting, rejecting, and holding (fork periods) the 

candidate, respectively. The second and third terms are computed 

recursively: 

v (rn) = [U (m+l)+mv (m+l))/(m+l), (v (n)=O) 
n n n n 

( 2) 

V (rn,k)=[U 0 (m+l)+mV (m+l,k-1) )/(m+l), (V (rn,O)=m/n) (3) 
n . n Q . n 

k=l, ••• ,n-rn, where u0 is the optimal return function under the 
n 

classical model (see (6) below). The interpretation of (3) should . 

be clear. With probability 1/(rn+l) a better applicant appears at · 

stage rn+l and we apply the classical procedure. Otherwise, we 

still hold the candidate, but for only k-1 periods beyond stage 

rn+l. The condition V (m,O)=rn/n means merely that an expired 
n 

option should be exercised. 
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From the recursions (2) and (3) we solve for v and V (•,k) 
n n 

in terms of U and u0 respectively, obtaining 
n n 

n 
V (m) 

n = m I: 
i=m+l 

U (i) /i (i-1), 
n 

V (m,k) 
n 

m+k 
= m I: u0 (i)/i(i-1) + m/n. 

i=m+l n 

(4) 

(5) 

Now, we need to review briefly the solution to the classical 

problem. There exists a positive inte ger, r*, such that the first 
n 

r*-1 applicants are rejected and the first candidate, if any, n 

observed thereafter is selected. The optimal return function is 

u0
(m) = 

n 

m/n, ~r• n 

n-1 
(r*-1)/n I: 1/i 

n i=r*-1 
n 

, m<r*. 
n 

-1 0 . . + 0 + 
In the limit, r*/n+e and U ((rn] )+U (r) as n+«>, where [p) 

n n 

(6) 

denotes the smallest positive integer equal to or greater than p, 

and 

l 
. -1 

r r>e 
u0 (r) ' 

- -1 -1 
e , r:S:e 

, O~r~a. (7) 

Follow the method given in Muc·ci {4) to obtain the infinite 

model. To standardize and extend the return functions on the unit 

interval, 

+ V ({rn) . , 
n 

+ + write f (r)=U ([rn] ), h (r)~v ([rn] ), and g (r,x)= 
n n n n . n 

+ [xn] ). Then (1) is rewritten as fn(r)= max + 
O<xSl-[rn] /n 

+ + 
l[rn] /n, h (r), g (r,x)-b[xn) }, and the expressions (4) and (5) n n 

can be appropriately rewritten, too. Now, take limits as n+co. 

The option alternative is dominated unless b+O; to keep the 
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holding cost linear, suppose that nb+c~O as n+co, 

h +v, and g +V where 
n n 

U(r) = max {r, v(r), V(r,x)-cx}, 
OSxSl-r 

1 2 v(r) = r fr U(y)dy/y ,. 

V(r,x) = r r;+rUo(y)dy/y 2 + r, 

Thus, f +U, 
n 

(8) 

(9) 

(10) 

OSrS:l, From the continuity of V(r,•), use of "max" in (8) is 

permis 'sible1 closing the interval with x=O is a trivial matter, 

since V(r,O)=r. The next section is devoted to solving (8)-(10). 

3. PROOF OF THEOREM 

Some abbreviated notation will be helpful. Let w (r ,x)=V(r ,x) 

-ex, let x*=x*(r) maximize w(r,x) on [0,1-r], and let W(r)=w(r,x*). 

LEMMA 3.1 

PROOF 

-1 
If U(r)=W(r) _for r<e 

Obviously, ·u (r) ~u0 (r) =e -l. 

-1 then r+x*~e • 

-1 Suppose r+x*<e • 

· -1 -1 Substituting (7) into (10) yields V(r,x*)<V(r,e -r)=e , so 

W(r)<e- 1 • D 

LEMMA 3.2 Let c<l and suppose U(r)=W(r). Then x*=l-r on r>c 

and x*=r/c-r on rsc. If c~l, then U(r)=U 0 (r) and (I) holds. 

PROOF 
. -1 

Using (7) and (10) and holding r+x~e , we obtain 

w (r,x)=r/(x+r)-c. For r>c, w (r,x)>O and x*=l-r1 and for rS:c, 
X X 

the maximum is achieved at x*•r/c-r. Now, suppose c~l and that 

o -1 U(r)>U (r) for some r. Then U(r)=W(r), so r+x*~e • However, 
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w (r,x)SO on r+x~e- 1
• Either r~e- 1 and x*=O, in which case W(r)= 

X 

o -1 -1 V(r,O)=r=U (r), or r<e and x*=e -r, in which case 

-1 -1 o W(r)<V(r,e -r)=e =U (r). D 

Henceforth, assume c<l. Also, as the next lemma shows, we may 

eliminate the "r" term from (8) and just compare the reject and 

hold decisions. 

LEMMA 3.3 

PROOF 

For r<l, U(r)>r. 

-1 o -1 -1 If r<e , then U(r)~U (r)=e • Suppose r~e • Then, 

U(r)~w(r,x)=r+rlog(l+x/r)-cx, from (7) and (10). For x suffi-

ciently small, iog(l+x/r)>cx/r, so U(r)>r. 0 

Finally, we state a lemma which will be proved several times for 

different values of rand c. 

LEMMA 3.4 If W(r)>v(r), then W(s)>v(s), s>r. 

The constant c 1 appearing in (II.e) is the solution of 

t = exp(-3/2(t+l)). (11) 

The role of this equation becomes apparent subsequently. It is 

convenient now to consider separately the three cases: c~e- 1 ; 

3.1 
-1 THE CASE c~e • First, hold r>c. 

x*=l-r, so W(r)=w(r,1-r)=cr-rlogr+r-c. 

8 
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PROOF of Lemma 3.4: Let D(r)=W(r)-v(r), where vis given in (9). 

2 2 Then, d/dr[D(r)/r]=-1/r+c/r +U(r)/r )0, since U(r)~r. It follows 

that D(r) is increasing. D 

Now, let r be such that W(r)>v(r). By Lerrana 3.4, we may substi­

tute W(•) for U(•) in (9), obtaining v(r)=W(r)-r-crlogr+(r/2)log
2
r. 

2 It is easy to show that 1/2109 r-clogr-1<0, so v(r)<W(r). Thus, we 

have established (II.c) and (III.e), with s 2=t
4

=c • . 

-1 
Next, keep e <rSc and follow the approach used in the pre-

ceding paragraph. Here, x*=r/c-r and W(r)=cr-rlogc. The proof 

of Lemma 3.4 is even simpler: d/dr[D(r)/r)=U(r~ 2>o. Assume W(r)> 

V (r). 
-1 On (e ,cl substitute W(•) for U(•), while on (c,l] use 

U( •) given in (III.e), thereby obtaining from (9), v(r)=W(r)-r/2• 

2 2 log c+rlogclogr-crlogr-r. Let f(c)=(l+l /2 log c)/(logc-c). Then, 

v(r)<W(r) provided logr>f(c). 
-1 Because r>e , it suffices to show 

f(c)<-1, which is readily obtained. Hence, (III.d) is proved with 

-1 
t

3
=e • 

-1 
Finally, let rSe and repeat the same sort of argument. The 

optimal holding period is still x*=r/c-r and, in evaluating 
. -1 

V(r,x*), use Lemma 3.1 to get W(r)=cr+e +rlogr/c. Also by Lemma 

-1 3.1, if r<ce , then v(r)>W(r). To verify .Lemma 3.4, we get 

-1 2 2 1 d/dr[D(r)/r} =-e /r +1/r+U(r)/r >0, since U(r)~e-. Again, assume 

W(r)>v(r). In t .he computation of v(r), U(•) is given by W(•) on 

-1 -1 (r,e ] , by (III.d) on (e ,c), and by (Ill.e) on (c,1}. We get 

2 v(r)=W(r)-rg(r), where g(r) is quadratic in logr: g(r)=l/2log r+ 

2 (l+c-logc)logr+l/2log c+3/2. Hence, v(r)<W(r) if and only if 
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g(r)>0. Let r 1 denote the 

exp(-(l+c)+logc+fci), where 

larger root of g(r)=0, so r 1=r 1 (c}= 

. 2 
d=d(c)=(l+c) -.2(1+c)logc-3 • . It is 

· -1 -1 
fairly straightforward to show that ce <r 1<e and that g(r) 

-1 is strictly increasing once Sr<r
1

• Hence, we have now verified 

-1 (II.a,b,d,e,f,g) and (III.b), where s
1
=t

1
=r

1 
and t 2=e • 

Because t
2
=t

3
, (III.c) is trivial. To verify (III.a), note 

that U(r)=v(r) on rsr
1

• Then, substitute the appropriate values 

for U(•), as calculated above, into (9) and solve the resulting 

differential equation for v(r), given v(r
1
)=cr 1+e- 1+r 1logr 1/c. 

-2 -1 
Fi~ally, note that v(r

1
) is decreasing inc, so U(0)=v(r

1
)se +e , 

and (III.f) holds. 

The remaining two cases are handled similarly. For the sake 

of parsimony, we omit most of the argument and concentrate on the 

rough spots. Once the sand t values are known, the results can 

be verified directly by substitution into (8)-(10), anyway. 

3.2 
-1 

THE CASE cl<c<e • 
-1 -1 

Here, t 4=t
3
=e and, on r>e , U(r)= 

W(r) is given by (III.e), as in the previous section. 
-1 For c<rSe , 

-1 x*=l-r, W(r)=cr+e +r-c, and Lemma 3.4 holds. If U(s)EW(s) on 

s>r, then v(r)=W(r)-r(3/2+(c+l)logr). 

if r>h(c), where h(c)=exp(-3/2(c+l)). 

-1 -1 
increasing, with h(0)>O and h(e )<e • 

Thus, v(r)<W(r) if and only 

-1 On (0,e . ), his concave 

Because c>c 1 , as given by 

(11), it follows that h(c)<c. Therefore, r>h(c) and (11.c) and 

(III.c) are established with s 2=t 2=c • . Finally, if rsc, then 

(II.a,b,f,g) and (III.a,b,f) are readily obtained as before, . with 

-1 Also, ce ~r
1
<c, so (II.d,e) hold. 
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3.3 THE CASE c~c 1• The previous results are applicable here, 

-1 -1 for r>e For c<rSe , we still get v(r)<W(r) if and only if 

r>h(c). However, since csc 1 , h(c)~c. Thus (II.c) and (III.c) 

hold now with s 2=t 27h(c). Furthermore, U(r)=v(r)>W(r), c<r<h(c), 

and it remains to show that U(r)=v(r) on rsc. To this end, sub­

stitute (III.c,e) for U(•) into (9) and solve the differential 

equation for v, obtaining v(r)=v(s
2

)=W(s
2

)=cs 2+e- 1+s
2
-c, a 

-1 constant. For rsc, W(r)=cr+e . +rlogr/c<W(s 2), and the result is 

established. That also proves (II.a,d,g) and (III.a), with 

s 1=t 1=h(c), and finally establishes the "if" part of (II.f). 

-3/2 ..;1 
Finally,s

1
=s

2
=h(c)>h(O)=e >c

1
e , so (II.e) and (III.f) are 

verified . 
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Cost 
(c) 

0.0 
• 2 
.35 
.5 
.9 

Table 1 

Optimal Procedure (s
1
/n,s

2
/n) and Maximal Return (Un(0)) for b=c/n(l) 

25 
. 24,.24,.6121 
.32,.32,.5322 
.36, .36, .4823 
.40, .48, .4402 
.40, .88,. 3842 

Population Size (n) 

100 
.23,.23,.5962 
.29,.29,.5167 
.34, .35, .4671 
.36,.50,.4266 
.38,.90,.3733 

500 
.224,.224,.5920 
.288,.288,.5127 
.330,.350,.4633 
.354,.500,.4229 
.370,.900,.3705 

... 
.2231,.2231,.5910 
.2865~.2865,.5117 
.3287,.3500,.4623 
.3534,.5000,.4220 
.3678,.9000,.3698 

(1) For a candidate arriving at stage m, the optimal procedure 
prescribes rejecting if m<s1, holding for a period k<n-m if 
s 1Sm<s2 , and holding for a period n-m if m~s2• 
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