Osmosis Magazine

Volume 2019
Issue 1 Osmosis Magazine - Spring 2019

2019

Necessity of Receiving the Flu Vaccine and Recent Research Trials

Lizzie Godschall
University of Richmond

Follow this and additional works at: https://scholarship.richmond.edu/osmosis

Part of the Life Sciences Commons, and the Medicine and Health Sciences Commons

Recommended Citation
Available at: https://scholarship.richmond.edu/osmosis/vol2019/iss1/7

This Article is brought to you for free and open access by the University Publications at UR Scholarship Repository. It has been accepted for inclusion in Osmosis Magazine by an authorized editor of UR Scholarship Repository. For more information, please contact scholarshiprepository@richmond.edu.
Necessity of Receiving the Flu Vaccine and Recent Research Trials

Lizzie Godschall

To this day, smallpox is the only disease confirmed to be eradicated worldwide. This would not have been possible without the first widely utilized vaccine developed nearly 300 years prior by Edward Jenner. Inspired by Jenner’s methodology of using the cowpox virus to protect against smallpox in humans, vaccine innovations and their significance to public health took off after Louis Pasteur’s discovery of the rabies vaccine in 1885. Vaccines are perhaps the greatest immunological feat and have significantly reduced flu-related hospitalizations and fatalities (Nichols, 2018). The effectiveness of the flu vaccine varies from year to year depending on how well the projected vaccine antigen sequences matches the actual seasonal viral antigen. Although some years have better predictions than others, the overall effectiveness of the vaccine tends to be 40-60% (CDC).

What is the Flu Virus?
The influenza virus is characterized by two envelope proteins. Hemagglutinin (HA) is the protein that allows the virus to attach to host cells, while neuraminidase (NA) release the virus from the host cell (Morgridge). There are six known types of hemagglutinin and nine known types of neuraminidase, which gives 144 different possible combinations of these proteins (Mor- gridge). Different viral strains contain distinct hemagglutinin and neuraminidase proteins, such as H1N1, the most common influenza A known as the “swine flu.” Influenza vaccines contain three to four of the most common influenza strains, which are typically H1N1, H2N2, H2N3, and influenza B. The flu vaccine tends to be twice as effective in preventing H1N1 than H2N3 and influenza B (Rondy et al., 2018). This is one reason why the vaccine is not effective for everyone.

Nerves of first influenza outbreak 1918 (Potter, 2008)

Why Do We Need the Flu Shot Every Year?
There is a need for a new vaccine every year due to antigenic drift. The antibodies that your body produced in response to last year’s flu shot are specific to the viral antigens from that year’s version of the vaccine. When a mutated version of that virus enters the body, these antibodies are no longer able to evoke an immune response (Potter, 2008). Since the virus mutates slightly each season, new vaccines with slightly different antigen combinations must be developed to recognize the hemagglutinin and neuraminidase proteins of the mutated virus. Once the vaccine is administered, your innate immune system will create a cascade effect to activate B-cells to produce antibodies. If you were to contract the influenza virus, ideally your body would already have the necessary antibodies to fight the virus and produce minimal flu-like symptoms. The vaccine enables our bodies to combat the virus by generating antibodies in advance. Within two weeks of vaccination, the adaptive immune system should have generated appropriate defenses against contracting the seasonal strain of the flu (CDC).

How Do I Choose a Vaccine?
The two most conventional types of flu vaccinations are egg based. These include the killed vaccine, taken as an intramuscular injection, or live attenuated nasal spray vaccine (CDC). The killed vaccine involves injecting a fertilized hen egg with the influenza virus and later harvesting the viral fluid to acquire the inactivated viral antigen. The live attenuated vaccination is a weakened version of four common strains of live influenza virus, but the inactivated nasal spray is not recommended for people over 50 or immunodeficient recipients. Live attenuated vaccine is cold adapted, so the virus cannot survive and replicate in the warm environment of the lungs and cause an infection. Although vaccines are developed using viruses, the flu shot cannot cause the flu.

Innovations within the past five years include cell-based and recombinant technology (National Vaccine Information Center). The inactivated cell-based flu shot is produced in a similar way to the egg-based killed vaccine, but the viral antigen is extracted from a mammalian cell culture rather than utilizing chicken eggs. The recombinant vaccine requires isolating a gene expressing viral specific protein. Typically the gene encoding for HA is injected into an insect virus, so it can be replicated within insect cells. This process is faster than other methods because the virus does not need to undergo an attenuation phase to grow in eggs or cell cultures (CDC).

Recent Trials for Vaccine Development
Since the first influenza outbreak 100 years ago, a universal flu vaccine may become available in the near future. BiondVax’s M-001 peptide vaccine has reached a phase 3 clinical trial in Europe. Instead of targeting the seasonally variable influenza surface of hemagglutinin and neuraminidase proteins, M-001 targets nine highly conserved epitopes of the flu virus. These epitopes, what is known as a “universal” antigen that are recognized by the immune system, don’t change seasonally. So, ideally you would only need one universal flu shot that would be effective for your lifetime. This approach allows for protection against all strains of influenza virus B (getting the universal vaccine in conjunction with the seasonal vaccine stimulates antibody production against hemagglutinin and has the most promising immunological success rate according to data acquired so far from the clinical trials (Taylor, 2018)). About a dozen more influenza universal vaccines, each founded upon slightly modified approaches, are in the earlier stages of clinical trials or in the preclinical stage coupled with advancements in biomedical vaccination technology will hopefully lead to the stark decrease and eventual eradication of influenza viruses.

References
CDC - https://www.cdc.gov/flu/protect/keyfacts.htm
National Vaccine Information Center - https://www.nvic.org/vaccines-and-diseases/influenza/vaccine-history.aspx#dfn1

Images:
- Map - https://www.epa.org/images/h1n1-flu-image_tcm17-157450.jpg
- H1N1 image - https://www.epa.gov/images/h1n1-flu-image_tcm17-157450.jpg

www.cdc.gov/flu/protect/keyfacts.htm
https://www.nvic.org/vaccines-and-diseases/influenza/vaccine-history.aspx#dfn1
National Vaccine Information Center
https://www.nvic.org/vaccines-and-diseases/influenza/vaccine-history.aspx#dfn1

Images:
- Map - https://www.epa.org/images/h1n1-flu-image_tcm17-157450.jpg
- H1N1 image - https://www.epa.org/imag...n/11-flu-image_tcm17-157450.jpg