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THE EFFICACY OF GALAXY SHAPE PARAMETERS IN PHOTOMETRIC REDSHIFT ESTIMATION:
A NEURAL NETWORK APPROACH

J. Singal1, M. Shmakova1, B. Gerke1, R.L. Griffith2, J. Lotz3

Accepted to PASP

ABSTRACT

We present a determination of the effects of including galaxy morphological parameters in photo-
metric redshift estimation with an artificial neural network method. Neural networks, which recognize
patterns in the information content of data in an unbiased way, can be a useful estimator of the ad-
ditional information contained in extra parameters, such as those describing morphology, if the input
data are treated on an equal footing. We use imaging and five band photometric magnitudes from the
All-wavelength Extended Groth Strip International Survey. It is shown that certain principal compo-
nents of the morphology information are correlated with galaxy type. However, we find that for the
data used the inclusion of morphological information does not have a statistically significant benefit
for photometric redshift estimation with the techniques employed here. The inclusion of these param-
eters may result in a trade-off between extra information and additional noise, with the additional
noise becoming more dominant as more parameters are added.
Subject headings: techniques: photometric - galaxies: statistics - methods: miscellaneous

1. INTRODUCTION

Obtaining sufficiently accurate photometric redshift es-
timates is of the utmost importance for the current and
coming era of large multi-band extragalactic surveys (see
e.g. Huterer et al. (2006) for a recent review). Unlike
spectroscopic redshift determination, photometric red-
shift estimation (photo-z) is highly subject to systematic
errors and confusion because the spectral information of
a galaxy is limited to the magnitude or flux in a number
of wavelength bands.
Photo-z estimation techniques have traditionally been

divided into two main classifications. So-called “Tem-
plate fitting” methods, for example the popular Lep-
hare package as described in Ilbert et al. (2006) and
Arnouts et al. (1999), and Bayesian Photometric Red-
shift (BPZ) as described in Beńıtez (2000), involve corre-
lating the observed band photometry with model galaxy
spectra and redshift, and possibly other model proper-
ties. In contrast, so-called “Empirical” or “Training set”
methods, such as artificial neural networks (e.g. ANNz,
Collister & Lahav 2004) and boosted decision trees (e.g.
BDT, Gerdes et al. 2010), develop a mapping from in-
put parameters to redshift with a training set of data
in which the actual redshifts are known, then apply the
mappings to data for which the redshifts are to be esti-
mated. There are advantages and disadvantages to each
class of methods. Template fitting methods require as-
sumptions about intrinsic galaxy spectra or their redshift
evolution, and empirical methods require the training set
to be ‘complete’ in the sense that it is representative of
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the target evaluation population in bulk in all character-
istics.
In regard to photo-zs, science goals such as using weak

lensing for cosmology are most affected by the number
of outliers - those objects whose estimated photo-zs are
far from the actual redshifts (e.g. Hearin et al. 2010). In
general, data sets with bands extending into the infrared
(e.g. J, H, and K bands) have more accurate photo-z
estimation and fewer outliers. However, most upcoming
large surveys, such as the Large Synoptic Survey Tele-
scope (LSST, Ivezic et al. 2008), will have optical and
near-infrared data only.
It is a reasonable hypothesis that galaxy morphology

and redshift are correlated in such a way that the addi-
tion of morphological information could improve photo-
z estimation. Reasons include the larger frequency of
mergers at higher redshifts, and, perhaps more impor-
tantly, the general evolutionary trend from spiral to el-
liptical shapes.
The inclusion of morphological parameters in photo-

z estimation has also been studied by Tagliaferri et al.
(2003) with an artificial neural network determination,
and by Vince & Csabai (2006) and Way & Srivastava
(2006) with other methods. All three works use Sloan
Digital Sky Survey (SDSS) data. Tagliaferri et al. (2003)
find possible modest improvement with the inclusion of
shape information, although they restrict their analysis
to quite low redshift (z≤0.7) galaxies. Way & Srivastava
(2006) consider several empirical methods and show
marginal improvement for some methods with the ad-
dition of morphological information. Vince & Csabai
(2006) claim an improvement of between 1 and 3 per-
cent in the RMS error in photo-z determination, however
it is not noted whether this result is significant and the
method of photo-z estimation is not discussed. We note
that SDSS galaxy photometric data is a bit unusual in
the context of data that will be used to constrain cosmo-
logical parameters from surveys such as LSST, in that
SDSS photometric data has a greater representation of

http://arxiv.org/abs/1101.4011v3
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nearby galaxies and thus fewer potential outliers.
In this work, we explore the efficacy of adding parame-

ters describing the morphological information of galaxies,
in the context of a neural network estimation technique
for photo-zs.

2. DATA SET AND SHAPE PARAMETERS

For this analysis we desire data with magnitudes in
a number of optical bands, spectroscopic redshifts, and
enough imaging resolution to determine morphological
parameters. We use observations of the Extended Groth
Strip from the the All-wavelength Extended Groth Strip
International Survey (AEGIS) data set (Davis et al.
2007), which contains photometric band magnitudes in
u, g, r, i, and z bands from the Canada-France-Hawaii
Telescope Legacy Survey (CFHTLS, Gwyn 2008), imag-
ing from the Advanced Camera for Surveys on the Hub-
ble Space Telescope (HST/ACS, Koekemoer et al. 2007),
and spectroscopic redshifts from the DEEP 2 survey us-
ing the DEIMOS spectrograph on the Keck telescope.
The limiting i band AB magnitude of the CFHTLS
survey is 26.5, while that of HST/ACS is 28.75 in V
(F606W) band, and that of DEEP2 is 24.1 in R band.
From the HST/ACS imaging data in two bands, V

(F606W) and I (F814W), we form a set of parameters
characterizing the morphological properties of the galax-
ies as follows:
1. The Concentration C: C = 5 log r80

r20
This parameter

defines the central density of the light distribution with
radii r80 and r20 correspondingly 80% and 20% of the
total light.

2. The Asymmetry A: A =
Σx,y|I(x,y)−I180(x,y) |

2Σx,y |Ix,y|
− B180

This parameter characterizes the rotational symmetry of
the galaxy’s light, with I(x,y) being the intensity at point
(x,y) and I180(x,y) being the intensity at the point rotated
180 degrees about the center from (x,y), with B180 being
the average asymmetry of the background calculated in
the same way. It is the difference between object images
rotated by 180◦.

3. The Smoothness S: S =
Σx,y|I(x,y)−IS(x,y)|

2Σx,y|Ix,y|
−BS . The

smoothness is used to quantify the presence of small-scale
structure in the galaxy. It is calculated by smoothing the
image with a boxcar of a given width and then subtract-
ing that from the original image. In this case I(x,y) is
the intensity at point (x,y) and IS(x,y) is the smoothed
intensity at (x,y), while BS is the average smoothness of
the background, calculated in the same way. The resid-
ual is a measure of the clumpiness due to features such as
compact star clusters. In practice, the smoothing scale
length is chosen to be a fraction of the Petrosian radius.
4. The Gini coefficient G:

G = 1
X̄ n(n−1)

Σn
i (2i−n− 1)Xi, describes the uniformity

of the light distribution, with G = 0 corresponding to
the uniform distribution and G = 1 to the case when all
flux is concentrated in to one pixel. G is calculated by
ordering all pixels by increasing flux Xi. X̄ is a mean
flux and n is the total number of pixels.
5. M20: M20 = logΣMi/Mtot, is the ratio of the second

order moment of the brightest 20% of the galaxy to the
total second moment. This parameter is sensitive to the
presence of bright off-center clumps.
6. The Ellipticity ε: ε = 1 − b

a . The values a and b are

the semi-major axis and semi-minor axis of the galaxy.
A number of these parameters are discussed in e.g.

Scarlata et al. (2007). The remaining two parameters
are two of the fitting parameters to the Sérsic profile

form Σ(r) = Σe e
−k|(r/re)

(1/n)−1| (e.g. Graham & Driver
2005), where Σe is the surface brightness at radius re and
k is defined such that half of the total flux is contained
within re :
7. The Sérsic power law index n
and
8. re, the effective radius of the Sérsic profile.
Morphological parameters C, A, S, G, and M20 are de-

termined for these galaxies in Lotz et al. (2008), while
ε, n, and re are determined by Griffith et al. (2011) us-
ing the Galfit package (Peng et al. 2002; Häusler et al.
2007). For this analysis we require a magnitude in each
band, a spectroscopic redshift, and sufficient HST/ACS
image resolution to construct all eight shape parameters.
A total of 2612 galaxies spanning redshifts from 0.01 to
1.57, with a mean redshift of 0.702 and a median of 0.725,
and i band magnitudes ranging from 24.43 to 17.62, are
in the data set used here. The redshift distribution of
this particular set of galaxies arises because of the in-
tentional construction of the portion of DEEP2 spectro-
scopic catalog within the AEGIS survey to have roughly
equal numbers of galaxies below and above z=0.7; there-
fore it is not an optimized training set for a generic pho-
tometric data evaluation set, although a more optimized
training set for any given photometric data evaluation
set could be constructed from it. We emphasize that be-
cause in this analysis random subsets from the same 2612
galaxy catalog are used for training and evaluation, the
representativeness of the training set is not an issue here
for this analysis.
Template-based photometric redshifts estimations for

all of the galaxies used in this analysis have been reported
in Ilbert et al. (2006). This estimation also provides a
most likely galaxy type among template spectra corre-
sponding to elliptical, Sbc, Scd, Irregular, or Starburst.

3. MORPHOLOGICAL PRINCIPAL COMPONENTS

In order to most efficiently determine the effect of the
extra information provided by morphological parameters
on the photo-z estimation, we form principal components
of the morphological parameters. The morphological
principal components are given as linear combinations
of the eight morphological parameters discussed in §2 by
Table 1.
Principal components (e.g. Jolliffe 2002) are the re-

sult of a coordinate rotation in a multi-dimensional space
of possibly correlated data parameters into vectors with
maximum orthogonal significance. The first principal
component is along the direction of maximum variation
in the data space, the second is along the direction of re-
maining maximum variation orthogonal to the first, the
third is along the direction of remaining maximum vari-
ation orthogonal to both of the first two, and so on.
Given the available galaxy type estimations discussed

at the end of §2, we can check for correlations between
principal components of the morphological parameters
and galaxy type, as in Figure 1. It is seen that the
first principal component is well correlated with galaxy
type, and correlations persist through several of the other
principal components. These correlations indicate that
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Fig. 1.— Distribution of morphological principal component val-
ues for galaxies of different type, for the 2612 galaxies used in this
analysis. Galaxy type is estimated by Ilbert et al. (2006).

TABLE 1
Contents of morphological principal component vectors

· · · PC1 PC2 PC3 PC4 PC5 PC6 PC7 PC8
C -.52 +.13 +.01 -.17 -.03 +.19 .09 -.8
A +.10 -.41 +.62 -.18 -.61 +.15 +.07 -.007
S +.06 +.29 +.72 -.18 +.60 -.02 +.04 +.03
G -.47 -.07 +.09 -.19 -.09 -.67 -.51 +.12
M20 +.49 +.05 +.004 +.03 -.09 -.67 +.32 -.44
ε +.07 +.62 -.14 -.63 -.34 +.03 +.13 -.23
n -.50 -.006 +.07 +.21 -.04 -.20 +.74 +.32
re -.02 +.58 +.24 +.65 -.36 +.01 -.22 -.03

Fig. 2.— TOP: The estimated photo-z versus the actual red-
shift, as determined by the custom artificial neural network used
in this work, for the case of no morphological parameters included.
This determination is of the type used in this analysis, with 350,000
training iterations, where the training set is formed from 700 galax-
ies and the evaluation set, for which the results are plotted, consists
of the remaining 1912 galaxies. ‘Outliers’ in a determination are
defined as those where |zphot − zspec| / (1 + zspec) > .15, shown as
the two diagonal lines.
BOTTOM: The photo-zs for the same galaxies as in the top plot,
as estimated with the Lephare template fitting code as reported in
Ilbert et al. (2006). The template fitting method has a lower scat-
ter for non-outliers but a larger number of catastrophic outliers (ie
those where |zphot − zspec| / (1 + zspec) >> .15) than the custom
neural network for these galaxies.

the morphology may provide an additional handle on the
photo-z estimation, since outliers often occur because a
spectral feature (such as a break) of one galaxy type at
a given redshift may be seen by the observer to be at
the same wavelengths as a spectral feature of another
galaxy type at different redshift. Thus morphological in-
formation indicative of galaxy type may help break this
degeneracy.

4. PHOTO-Z ESTIMATION METHOD

Artificial neural network techniques have been popu-
lar empirical methods for photo-z estimation, including
with such software packages as ANNz (Collister & Lahav
2004). In the case of neural network photo-z determina-
tion, the network functions as a ‘black box’ which finds
patterns contained in the relation between band magni-
tudes (and, in principle, other information) and redshift
in an unbiased way. Thus, a neural network photo-z
estimation can be a useful tool to explore whether addi-
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tional parameters beyond the band magnitudes, such as
morphology in this case, provide additional useful infor-
mation.
An artificial neural network, in analogy with a biolog-

ical one, contains layers of nodes called “neurons” and
relationships between neurons in different layers of vary-
ing weights which can be altered. Each neuron in the
network beyond the input layer assumes a value deter-
mined by passing through an activation function the sum
of the product of all of the values of the neurons feeding
the neuron in question times the weight of the connection
between the two neurons. Neurons at the input accept
values of data and the output of the network is the value
of one or more output layer neurons.
The weights between neurons are adjusted by ‘train-

ing’ the network to best give desired outputs for a set
of inputs. Training is dependent on a training set con-
taining a number of cases with inputs and output(s). In
the case of photo-z estimation, the training set contains
band magnitudes and possibly other information as in-
puts, and the actual known (spectroscopic) redshifts as
the output. With the weights set in this way, the network
can be used to estimate the redshift of other galaxies in
an evaluation set, and the results can be compared to the
known redshifts of the evaluation set to determine the
quality of photo-z estimation. A comprehensive discus-
sion of artificial neural networks is presented in Haykin
(1999), and a specialized discussion for the context of
photo-z estimation is presented in e.g. Vanzella et al.
(2004).
The artificial neural network package used in this anal-

ysis is a ‘multi-layer perceptron’ developed for the IDL
environment by one of the authors (JS).4 Perceptrons
are standard artificial neural network architectures for
pattern recognition, consisting of input, hidden, and out-
put neurons as described above. The primary motivation
for the development of this code was to treat additional
available galaxy information beyond photometric data
(for example shape parameters) on an equal footing with
the photometric data. The IDL code can be relatively
easily modified, and could in principle be configured for
a wide variety of input data situations. As training con-
vergence is relatively slow in this network, it is most use-
ful in situations where a robust training set is available
from the outset.
As implemented here, the network has an input layer

of neurons, five of which accept the observed magnitudes
in each optical band, and an additional variable number
of input neurons which accept values of as many morpho-
logical parameters as desired. The input layer treats all
input information on an equal footing, normalizing each
input parameter across all objects in the training set so
that the inputs for each neuron on the input layer are dis-
tributed between 0 and 1. There are two hidden layers of
30 neurons each, and an output layer with a single neu-
ron obtaining a value between 0 and 1 which is a proxy
for the estimated redshift, with the linear conversion de-
fined during the training when the known redshifts of the
training set are supplied subject to the conversion.
The network uses a hyperbolic tangent activation func-

tion for the neurons beyond the input later, and the
weights are adjusted during training via the back propa-

4 available from www.slac.stanford.edu/∼jacks

gation technique (e.g. Haykin 1999) where in each train-
ing iteration the weights are altered in a way to move
‘downhill’ in the high dimensional surface of summed
training set redshift errors in the space of weights. Each
iteration during training consists of the network evalu-
ating the entire training set and adjusting the weights.
In addition to standard back propagation, this network
features an algorithm to ‘kick’ the weights away from pos-
sible local minima in the summed error. The top panel
of Figure 2 shows the estimated photo-z versus spectro-
scopic redshift for the galaxies in the evaluation set of a
particular determination with no morphological informa-
tion included. This determination features 350,000 train-
ing iterations, 700 galaxies in the training set, and 1912
galaxies in the evaluation set, which is the standard used
in all determinations here. The bottom panel of Figure
2 also shows photo-z estimations for the same galaxies
with the Lephare template fitting method as reported in
Ilbert et al. (2006). The custom neural network deter-
mination apparently leads to fewer catastrophic outliers
(ie those where |zphot − zspec| / (1 + zspec) >> .15) than
with the Lephare template fitting method, although has
a larger scatter for those galaxies in which the photo-z
estimate is close to the actual redshift.

5. RESULTS ON INCLUSION OF SHAPE PARAMETER
INFORMATION

To determine the effect of including a given or multi-
ple principal components in addition to the band mag-
nitudes, we complete six realizations of the training and
evaluation process for every case, with a training set of
700 galaxies with 350,000 training iterations and an eval-
uation set of the remaining 1912 galaxies, and record the
number of outliers, and the RMS error, in the evaluation
set. In this work we follow convention (e.g Ilbert et al.
2006) and define outliers in a given realization as those
galaxies where

Outliers :
|zphot − zspec|

1 + zspec
> .15,

where zphot and zspec are the estimated photo-z and ac-
tual (spectroscopically determined) redshift of the object
respectively. The RMS photo-z error in a realization is
given by a standard definition

σ∆z/(1+z) ≡

√

1

ngals
Σgals

(

zphot − zspec
1 + zspec

)2

,

where ngals is the number of galaxies in the evaluation
set and Σgals represents a sum over those galaxies. Note
that we do not exclude outliers from the calculation of
the RMS photo-z error. Because in each realization the
membership of the training set varies, and because as
the training process contains ‘kicks’ to knock the weights
away from local minima in the summed error (see §4),
each realization for a given input parameter set produces
a slightly different number of galaxies in the evaluation
set with outlier level errors, and a slightly different av-
erage error. For comparison, the template fitting results
reported by Ilbert et al. (2006) give 5% outliers and an
RMS error of σ∆z/(1+z) = .1881 for this sample. This
error is dominated by the catastrophic outliers (Figure
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Fig. 3.— Number of outliers (TOP) and RMS error σ∆z/(1+z)

(BOTTOM) in the photo-z estimation with the inclusion of differ-
ent individual principal components of the morphological param-
eters. The uncertainties represent the standard deviation of the
values obtained from different realizations, as discussed in §5.

2), and drops substantially to below that of the custom
neural network method if outliers are excluded.
Figure 3 shows the number of outliers and RMS error

for the inclusion of the seven different principal compo-
nents individually. Figure 4 shows the number of outliers
and RMS error for the inclusion of multiple principal
components, starting with none, then adding in the first,
then adding in the first and second, then adding in the
first through third, and so on. In each figure, the error
bars correspond to the standard deviation of the number
of outliers or RMS scatter in the different realizations.
We note that with six realizations per case, the standard
deviations in the number of outliers and RMS photo-z er-
ror are not particularly robust, however we include them
to provide a sense of the scatter of results from different
realizations. We note that the last principal component
(PC8) should by definition contain minimal significant
variation in the morphological parameters, so we do not
include it in the analysis.
It is apparent that adding in any one of the principal

components of the morphological parameters may pro-
vide a small decrease in the average number of outliers
or the RMS error or both, but the differences are not
statistically significant compared to the inclusion of no
morphological information. As seen in Figure 4, adding
multiple principal components increases the number of
outliers and the RMS error.

Fig. 4.— Number of outliers (TOP) and RMS error σ∆z/(1+z)

(BOTTOM) in the photo-z estimation with the inclusion of multi-
ple principal components of the morphological parameters, start-
ing with none, adding the first morphological principal component,
then the first and the second principal components, and so on.
The uncertainties represent the standard deviation of the values
obtained from different realizations, as discussed in §5.

6. DISCUSSION

We have used a custom artificial neural network for
photometric redshift estimation to evaluate the effects of
including galaxy shape information, in the form of prin-
cipal components of morphological parameters, on the
photo-z estimation. The data set we use consists of 2612
galaxies with five optical band magnitudes, reliable spec-
troscopic redshifts, and eight morphological parameters
each. We note that a neural network is in a sense an
unbiased way of determining the relative strength of the
correlations of a set of input parameters with the output
parameter, and that this network is designed to treat all
input parameters on an equal footing.
In order to more effectively include the morphological

information, we form principal components of the mor-
phological parameters. An analysis of the principal com-
ponents and galaxy types shows that the value of the first
few principal components and galaxy type are correlated.
However, we find that the inclusion of morphological

information does not significantly decrease the number
of outliers or RMS error in photo-z estimation for this
data set with the neural network technique used. When
only one principal component of the morphological pa-
rameters is included, there can be a slight but not signif-
icant decrease. When multiple principal components of
the morphological parameters are included, the number
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of outliers and the RMS error increases. We conclude
that any gain that may arise in a neural network photo-
z determination from correlations between morphology
and redshift in this data set is overwhelmed by the ad-
ditional noise introduced. It may be that any correla-
tions between principal components of the morpholog-
ical parameters and the galaxy type are degenerate to
some extent with the correlations between galaxy type
and galaxy colors.
This analysis is applicable to artificial neural net-

work photo-z estimations, and possibly other training
set methods, with similar data. It is possible, however,
that morphological parameters could yield improvements
for other algorithms, especially template-fitting methods
with relatively large outlier fractions. This is because
such outliers usually occur when a particular spectral
break is confused for another break in a different galaxy

type at a different redshift (e.g. an elliptical galaxy at
low redshift mistaken for a spiral at high redshift). Hav-
ing additional information to guide the template selec-
tion might therefore be helpful in reducing the outlier
fraction. A preliminary analysis using Figure 1 to build
prior probability distributions on the template selection
in the Lephare package produced a few percent reduc-
tion in the number of outliers. A more thorough analysis
of the effects of shape parameters in photometric red-
shift estimation with a template fitting method will be
presented in a forthcoming work.

JS thanks T. Brookings for his counsel, and S. Kahn
and R. Schindler for their encouragement and support.
MS is thankful to R. Blandford and P. Marshall for very
useful discussions and support. This work was supported
in part by the U.S. Department of Energy under contract
number DE-AC02-76SF00515.
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